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INTRODUCTION

One of the classical problems in transformation groups has been
to study the properties of the stationary point sets of actions on
manifolds, and to characterize them whenever possible. P. A. Smith
theory in combination with various other topological considerations
provide a number of necessary conditions to be satisfied by the
stationary point sets of some restricted classes of actions. In the
case of smooth actions of a compact Lie group G on a manifold W, the

stationary point set, say F, is a manifold and its normal bundle in

W, say v, is a G-bundle which determines the action in a (tubular)
neighborhood of F.

For a complete characterization (of the diffeomorphism type) of
F, one needs to show that the above mentioned necessary conditions are
sufficient as well, in the following sense. Assuming that the sub-
manifold F of the prescribed manifold W, and the G-bundle v given, one
tries to find an action on W which would restrict to the given action
in the tubular neighborhood of F provided by the G-bundle v. Special
cases of such problems have been considered under various circumstances
by various authors: (311, {321, [a1l, [A2], [A3], [A-B 1], [A-B 1],
[L], [D-R], [S] to mention a few. 1In these and other related contexts,
a common hypothesis is that W is simply-connected and this assumption
is indispensable for the techniques and the arguments to be applicable.

In the following, we consider this and some other relevant ques-
tions in the case of non-simply connected compact manifolds on which a
finite group G has a "simple semifree action," i.e. where action is
free outside of the stationary point set, and a certain localized
Borel construction becomes fibre homotopy trivial. Although semifree
actions comprise a restricted class, their understanding seems essential
in developing general theories with more complicated isotropy group
structures. The further restriction of "simplicity" of actions has been

imposed to bring the homotopy-theoretic constructions and algebraic
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calculations within reach, as well as to provide a satisfactory answer
to the above-mentioned questions in the form of less-complicated nec-
essary and sufficient conditions.

In the presence of the fundamental group of the ambient manifold —
on which the desired G-action is to be constructed — much of the
methods and results of the simply-connected cases (in their various
forms and contexts) are inapplicable. Thus, one is led to construct a
new obstruction group and a new invariant (depending on both WlW and G)
whose vanishing is one of the necessary conditions for the existence
of such actions. The obstruction group fits in a five~term exact
sequence relating various Whitehead groups, and conceivably it can be
defined as the fundamental group of the fibre of a transfer map between
two Whitehead spaces involved in the problem, although its definition
given below is in purely algebraic terms. The above-mentioned invariant

is related to a certain Reidemeister torsion-type invariant.

T becomes simply RO' This functor takes into account

the interaction between RO (the finiteness obstruction in the presence of

If T =1, Wh

G-actions) and Wh, (the Whitehead torsion involving the fundamental

1

group m, = m) in a way which is necessary to study the above mentioned

problems. Thus, in the geometric context, Wh? plays the same role in
the study of finite group actions on non-simply connected compact mani-
folds that ﬁo does in the simply-connected case.

The organization of the paper is as follows. 1In Section I we
introduce Wh? and state some of its algebraic properties which are used
subsequently to detect the (combined) finiteness and Whitehead torsion
type obstructions as the image of a Reidemeister torsion type invariant.
Section II illustrates some computations of th. (The details of the
results in these sections will appear elsewhere.) Section III considers
semifree simple actions and gives necessary and sufficient conditions
for existence of simple actions in this context. The problem of char-
acterization of the stationary point sets of simple semi-free actions
on compact bounded manifolds and an extension theorem for free simple
actions are reduced to the homotopy theoretic problem of constructing
appropriate Poincaré complexes, which are carried out using mixing the
localizations of diagrams of spaces involved. Section IV gives an in-
dication of the proofs of the theorems of Section III. Section V gives
some useful theorems on constructing free simple actions either by ex-
tending a given action on a subspace or by pulling back actions from a
given space, thus formalizing and generalizing the constructions needed

in Section III. Although these are non-simply connected versions of



analogous results in [A2] and [A3] where free actions are constructed
from homotopy actions on simply-connected spaces (which are not simple
in general), there is little overlap in scope or the methods.

There is somewhat of an 6verlap between some of the results obtain-
ed independently by S. Cappell and S. Weinberger [CW] as well as S.
Weinberger [W], P. Loffler [L], P. Loffler and M. RauBen [LR]. The

papers of L. Jones [J] and F. Quinn [Qu] also deal with related problems.

SECTION 1. Let A be a ring and pP(A) denote the category of finitely
generated projective A-modules. 1In the sequel, G will denote a finite
group, and m a discrete group which denotes as well the subgroup

T x{1l} « m xG for simplicity of notation. Consider the set

A= {(P,B)|P eP(Z (r xG)), B= Zn-basis for P}. The operation of
direct sum of modules and disjoint union of % w-bases in the given

order gives A the structure of a monoid with neutral element (0,0).

We introduce the equivalence relation (P,B) ~ (P',B") among the elements
of A if there exists a Z (1 x G)~linear isomorphism o : P——P' such that
Tﬂ(d) = 0 with respect to B and B', where Tﬂ(a) eWhl(ﬂ) is the White-

head torsion. The set of equivalence classes A' = A/ v inherits the
monoid structure of A, and contains the submonoid "of trivial elements";
namely, (P,B) represents a trivial element in Al if_f is Z (r x G) -free,
and B is induced by a % (71 x G)-basis. The quotient monoid A' modulo

the submonoid of trivial elements is seen to be an abelian group and is
denoted by Wh?(ﬂ'cTTX G). We have an obvious homomorphism

oz th(ﬂ = W><G)—4~ﬁb(z (mxG)) induced by the forgetful map
(P,B)——+Pe,ﬁ0(z (mxG)). There is a further homomorphism

B : Whl(ﬂ)—~+Wh$(ﬂ < m XG) which is induced by the operation of "twist-
ing the standard basis;" namely, let x.eWhl(ﬂ) be represented by

o (Z'ﬂ)n~—»(23w)n. After stabilization, we have a m-linear homomor-
phism ¢ & id : (zm (w><G)m——+(Z (ﬂ><G))m. Let B be the image of the
standard basis of (& (7 x G))™ under the Z7~ linear map ¢ ® id. Then
B is a ZT7-basis for (Z (v xG))™ and ((Z (W><G))m,B) represents

8(x)e Whl (1 = m xG).

1.1 Theorem. There is an exact sequence

Tr R T o tr
Whl(ﬂ X G)——~——+Wh1(ﬂ)—-—+Wh1(ﬂ o W><G)——+Wh0(ﬂ X G)—~———+Wh0(ﬂ)

in which Tr and tr are transfer homomorphisms and Wh0 = RO’



The homomorphism Z 7 '*Z(qﬂ induces a homomorphism
def
. = + =
Wh, () ——>Wh1(1T,ZZq) E K, (Z qTT)/{_TT} where ZZq 7% /qZ . One has a
further map y : Whl(ﬂ;Z:q)—+ Wh?(w cm xG) defined as follows. Let
GLn(Z m) be the monoid of (nxn)-matrices which have an inverse in

1
GLn(Z(qﬂ). Given ¢ € GLn(Z'n), one has an exact sequence

(c,) : 0—(ZmM¥— (mm —m =0

Thus Mq M & Z(q = 0. It follows that proj dim M < 1, and we

Z (m xG)
may take a short projective resolution over Z (Il xG) for M, where order
(G) = qg:

] ] )
(Ci) 3 0—>Cy = Cy—>M— 0

1 1
such that C1 is free and C0

T
7Z m-linear chain homotopy equivalence ¢ : C, > C,. Since the finite-
1]

is projective over m XG. There is a

ness obstruction of C, over Zm vanishes, <y is stably trivial over Zr
1 1 [}
also. After stabliization, we choose Zn-basis for C1 and CO' say Bl

and 52. If we choose the "standard bases Bl and BO in the resolution

(C,) above for C, = (z )" and C, = (Z'ﬂ)n, then it is possible to

1 0
1

]
arrange for the choices of Bl and BO so that becomes a simple homo-

1) 1 1 T
topy equivalence over Z n. Let yv(¢) = [(Cl,Bl)] - [(Cl,Bl)] in
Wh?(ﬂﬁc:ﬂ XxG). In general, for ¢ eGLn(ZZqﬂ), we take ¢ = éw, where
(s,q) = 1. Then s(Id) e GLn(Z'n) and ¢ € GLn(Z'n).

Let v (¢) = y(s(1Id)).

I.2. Theorem. vy induces a well-defined homomorphism such that the fol-

lowing diagram commutes

Why (r) Whrf(wc T x G)

canon. Y
Whl(Tr;ZZ q)

Suppose C, is a chain complex over Z m such that H,(C,®8Z q) = 0. Then



the Reidemeister torsion of C, is a well-defined element of Whl(w;Z<q)
and is denoted by t1(C,). The main algebraic result of this section is

the following:

T .
1.3. Theorem. Let A, be a finite 7Z n-based chain complex, and A, be a

finite Z (m x G)-based chain complex. Suppose there exists a Z m-linear
map f:A;—q-A* which is a Z m-chain homotopy equivalence. Further, sup-
pose H, (A ® Z<q) = 0 and that G acts trivially on H,(A), where order
(G) = g. Then there is a finite Z (7 x G)-based complex B, and a

ZZ (m x G)-chain homotopy equivalence h:A, -+ B, such that hf:A, » B, is
m-simple if and only if Y( TW(A,)) = O.

The above algebraic theory has the following application which is

crucial in the construction of surgery problems of the next sections.

1.4 Theorem. Suppose we have a commutative diagram
Y

Bl

Y

with the following properties:

<
<<

o
Q

i) i,Ywand Y are finite connected CW complexes, and X is a con-
nected CW-complex.
ii) ﬂl(X) = Wl(Y) = ﬂ,ﬂl(X) = wl(Y) = mxG.
iii) Y is a covering space of Y and a induces a homotopy equiva-
lence from X to the covering space of X with the fundamental group 7.

iv) H*(§,§;Z(q[ﬂ]) = 0 and the Reidemeister torsion of (i,?) is
7(X,Y) in Whl(ﬂ;z(q).

v) G acts trivially on H*(i,Q);Z [r]) = Hy (X,Y;Z [7n xG]).

Then there exists a homotopy equivalence from X to a finite com-
plex Z such that the composite map X—2% X — 7 induces a simple homo-
topy equivalence from X to a covering space of Z, if and only if
y(T(X,Y)) = 0.

Indication of Proof: Let us denote by C,(-;M) the cellular chain com-

plex with (twisted coefficients M. We have a 7m-linear homotopy equiva-
lence £ : C,(X,Y;Z m)— (C,(X,¥;%Z [m xG]l). 1If there exists such a Z,

then we have a T-simple homotopy equivalence



Co (X, Y% 7)——C, (Z,Y;%Z [1 xG])

from a finite m-based complex to a finite 1w X G-based complex. Hence
by Theorem 1.3, Y(T(%,?)) = 0.

Conversely, suppose that Y(T(i,?)) vanishes. Then there exists a
finite ™ X G-based chain complex B, and a m X G-homotopy equivalence g
from C,(X,Y;Z [T XG]) to B, such that g o f is nm-simple. This implies
that the finiteness obstruction of X vanishes and there exists a homo-
topy equivalence from X to a finite complex 21. Moreover, we can add
2-cells and 3-cells to Z1 in order to modify the simple type of Z1 to
obtain a finite complex Z such that the composite map

-1
B*—9~———rc*(X,Y;Z [ﬂ><G])~—+C*(Z,Y;Z [TxG]) is a 7 x G-simple homotopy

equivalence. It is easy to see that the composite map X -X -2 induces
a simple homotopy equivalence from X to the covering space of Z with

fundamental group .

SECTION II. Let A = Zm and w

= Xg be the norm of G. For simplicity
g G

of notation, let A[G]/wA[G] = A[G]/w,A/gA = Aq’ and

i

Z/2%Zx M =z {+1,-1} xM +tM for any group M. Consider the cartesian

diagram:

[G]/w

(C)

P
Hh
P

where f is the augmentation and all other homomorphisms are cannonically

defined quotient morphisms. The associated Mayer-Vietories sequence is:

K, (A[G] )—+Kl (A)G)Kl (A[G] /w)«~—+Kl (Aq)—-—+ Ky (A[G])—

(MV)
L (n) 8K (AlGl/w)y— L (Aq)

Corresponding to (MV), one has the following exact sequence if G #Z 2

(U) 0‘—-—-»iH1(Tr)><Hl(G)-—-* iHl(Tr)QiHl('rT)XHl(G)—* iHl(Tr)—Q-*ZZ—-*ZZ & Z272-—~7Z-—0

and if G = Z the sequence reads:

2[
00— iHl (m) XHl (G)— iHl (Tr)@Hl (m) ><H1 (G)—-*Hl (ﬂ)——Q->2Z-—+ Z © Z—7Z—0



The sequences (U) and the corresponding homomorphisms are also obtained
from the diagram (C). The sequence (U) admits an injective homomor-
phism into the sequence (MV) and the quotient sequence is the exact

sequence of the Whitehead groups below:

Why (1 x G)— Wh (1) @ Kl(A[G]/w)/iHl(ﬂ)><H1(G)—~+Whl(ﬂ;2(q%—§+

KO(A[G])~*+KO(A) ) KO(A[G]/w)—~*KO(Aq)

For simplicity of notation we write this sequence in terms of Whitehead

groups (by a slight abuse of notation)

)
Whl(A[G])——+Whl(A)QWhl(A[G]/w)——+Whl(Aq)——*WhO(A[G])

(W)
Who(A)@WhO(A[G]/w)——+WhO(Aq)

The boundary map 3 in the sequence is related to a generalization of the
Swan homomorphism (Eq)&—+RO(Z(H in the case of 7 =1, (cf. [Sw] or
[M]). We continue to call 3 the Swan homomorphism.

Let o and vy be as in Theorem I.1. Then the Swan homomorphism is

~aoy, To see this, let erhl(Aq) correspond to the isomorphism

o (Aq)n~~->(Aq)n induced by the (injective) homomorphism ¢ : R
As in Section I, it follows that in the exact sequence
0—A"—A"— M— 0
one has projdimAG(M) < 1. Thus one has the commutative diagram:
0 AR LAy 0
0— K—5 A[G]2s M—> 0
where (£)7 is induced by the augmentation f£. Thus oy ([¢]) = - [K] and

the problem is reduced to show that the following diagram is cartesian:

K 3 » (A[G]/w) ™

A (v) "

Ok b
A (a/q) B——(a/q)"




(Recall the definition of 3 in the Mayer-Vietories sequence; cf. [M]
Ker(f)n = Ker(\))n and (f)nou = ¢oA, oOne has the

e.g.). Since Ker) = =
diagram:
0 0 0
Ker = ‘Ker(f)n = Ker(\))n
1
K >(A[G] /W)™
]
\A[G]l’l 4 )
1 _ (v)
n o 0 3 .
A (A/q) (A/q)
»
. £) = (p)n

obtained from diagrams (B) and (C) above, and in which Eo(p)no A

()% 602 = () (B)ou = (Mo m) e u = (VT . Thus (B) is
cartesian. :
Next, we identify the transfer Ti : Whl(A[G])—~+Whi(A) , 1i=20,1

in the 5-term exact sequence of Theorem I. Consider the diagram:

b AlG]/w

\Y

AG AG/w so that vod = p.

where § is the composite A——A x {1}
Let p e P(AG) be given and tensor P over AG by the diagram (C) to obtain

the cartesian diagram:
p —————— P!

_—

Po —— Po/qPo

Thus one obtains four functors from P(AG) to the categories P(A[G]),

P(A[G]/w), P(A), and P(Aq). The above cartesian diagram yields the

commutative diagram:



0 P P,®P'—— P,/qP —— 0
] 1+0 I 1
0 P, Po »Po/gPo = 0
(-)xq

which yields the exact sequence:

0—— Po —> POPo — > Po®P'—— 0

The above sequence defines, in fact, a short exact sequence of the cor-
responding functors due to the functoriality of all the above construc-
tions. It follows from Quillen's theorem on the additivity of functors
(cf.[Q]) that the functor P—P®Po is the sum of functors P—— Po

and P—— Po®P', which in turn implies that induced homomorphisms on

K-theory satisfy Tr = £, & trh,, Tr : K, (A[G])— K, (A) and

tr : K, (AG/w)—> K, (A) are transfer homomorphisms. Thus on the level of

Whitehead groups, one has the following:

I1.1 Lemma. Let T, : Whi(A[G])—+ Whi(A) and ty s Whi(A[G]/w)——+Whi(A)
be transfer homomorphisms. Then T, = fe ® tih*’ where f, and h, are
induced from diagram (C) above.

Let Py = Py Whi(A%—# Whi(A)*—+Whi(Aq). Specializing to the case

G =7Z the above calculation is continued to show

2'

20
IT1.2 Lemma: The sequence Whl(ﬂ)———-—l-—~>Whl(w;Zz 2)"L*Wh’:f(ﬂ < X 7 2)-——-»

-—= Kerp—0 1is exact. 1In particular Kery = Im2p.
(o]

This characterizes completely the obstructions which are discussed

in Section I in terms of the Whl(ﬂ) and the mod 2 reduction
Whl(ﬂ)——+Whl(w;Z22). To obtain examples of nontrivial obstructions,

let m = Z g Then computations show

Whl(ZZ.S;ZZZ) ;ZZz®2ZZ$ZZ4

T - .
I1.3 Corollary: Whl(z g =& 8><Z 2)= Z 5 ®zZ, 0%, %, and kery

consists of the 2-divisible elements of Whl(Z 8;% 2).

Although Whl(Z = Z , one can show that in the case 1 = Z 5

5) N

G = %Z ,, all the obstructions vanish.
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II.4 Corollary: Whl(zfs;z 2) = 7 3 and Im(y) = 0.
Remark: In [Kw] Kwun has shown that the transfer Whl(z 2>< Z&)—“*

Whl(z:r) is onto if and only if r = odd or r = 2,4,6. We thank the

referee from bringing Kwun's result to our attention.

SECTION III. Let X be a finite dimensional CW complex with ﬂl(X) = T,

and let G be a finite group of order g acting semifreely on X - i.e.
the action is free outside of the stationary point set. 1In general,
there is no explicit relationship between H, (X) and H*(XG). The rather
implicit information obtained using the localization theorems of
Atiyah-Borel-Quillen-Segal type does not seem sufficient to yield a
satisfactory characterization of the stationary point set XG under
general hypotheses. 1In the sequel, we will consider a class of actions
which are encountered often in the geometric considerations, and to
which it is possible to apply the present techniques of algebraic
topology to obtain rather precise information and characterizations of
XG.

Given a connected space X and a subring of rational numbers A or

A= Ziq we denote by XA the localization of X which preserves ﬂlx and

Wi(XA) = Wi(X) ® A for i > 1. For instance Bousfield-Kan's localiza-

tion [B-K] applied to the universal covering space X yields iA on
which wl(x) operates freely and i——*iA is equivariant. Then XA can be
defined as %A/ﬂl(X). For A = Z(q, A= 7 (q) and A = Z:[%] we can use
. 1 .
the notations X , X and X (=) respectively.
" q (a) (q) P Y

The key observation to reconstruct a space (respectively a diagram
of spaces) from its localizations (respectively its diagrams of locali-

zations) is the following:

III.1. Lemma. For any connected space X the following diagram is

cartesian:
1
X ey X (=
- (q)
f f!
X X _(})
q g q

Proof: Since H*(Xq,X;Zﬂ/q[ﬂ]) = 0 it follows that H*(Xq,x;z'n) is
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Z [é—]—local. Hence the (homotopy) fibre of f is % [%]—local (CE. [S]).
Since the (homotopy) fibre of f' is also Zﬂ[%]—local, f and f£' has the

same fibre (up to homotopy).

Definition. Let X be a connected G-CW complex, where G is a finite

group of order g. X is called a simple G-space (and the action is

called simple) if (EGxGX)q is fibre homotopy equivalent to (BGxX)q

For instance, if X has trivial mod g homology, then any G-action
on X will be simple, or if X has the mod g homology of a sphere and
x© # @, the X-{point} has a simple action if we take out a point from

G
X .

Proposition. Suppose G is a finite group of order g which has a simple

semifree action on the finite dimensional complex X with ﬂlx = m. Then

*(X,XG;Z(qﬂ) = 0, where the homology has local coefficients.

In the case of semifree simple actions on compact manifolds, one
obtains further restrictions imposed on XG. For simplicity, let us
consider the case of a smooth semifree G-action on a compact manifold

G

W' with ﬂlw = T, Then the stationary point set W~ = Fk is a submani-

fold with normal bundle v which is a G-bundle with a free G-representa-
tion at each fibre. Assume that n-k > 2. We identify the total space
of the disk bundle D(v) with a closed G-invariant tubular neighborhood
of F. Let C% = W-interior D(v). One can choose an appropriate CW
structure for W so that W, C, and D(v) become G-CW complexes, and var-
ious cellular chain complexes have preferred bases. If the action is

simple, then H*(W,F;Zﬂqﬂ) = 0, and G acts trivially on H,(W,F;Z ), as
well as on H, (S(V) ;7 [—é-] (1)) = H,(S(v)/G;Z [é] (nxG)). One further

observation is that the geometry provides us with the dotted arrow in

the following diagram in which 71 = nl(W):

T, (S (V) /G-mmmmm - g

%

ﬂl(S(V))

For a pair (W,F) as above, we define an element w (W, F)e;Wh (re7 xG)
as follows. Given a free finite % m-based chain complex(A*,A ) and a

free % G-resolution R, of %Z , we form the % (m x G)-complex A, = A* ® R,

which is % m-chain homotopy equivalent to Bx. Suppose Hx (Agx © Z<q) = 0.
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Then by theorem I.3 there is a finite Z (m X G)-projective complex B,

with a T-basis B such that (B,,B ) is 7m-simple homotopy equivalent to
I 1 1] 1 3
(A4, A ). Define w(a,,A ) = L(-1)"[B,,B,] €Wh" (1< TxG) which is seen

1
to be well~-defined. ©Now let A, be the Z T-chain complex of cellular
chains of (W,F) with local % T-coefficients and let’R'fbe the natural
] 1
preferred bases provided by the cells. Then w(W,F) = w(A,,R ) is well-

1 ! 1
defined. From section I, one can compute that w(A,,R ) = YT(A,).

IIT.2. Theorem. Let ¢ : G x W— W" be a smooth simple semifree action

with Fk = WG, n-k > 2, and v = normal bundle of F in W, 7 = ﬂl(W).

Then:
) H,(W,FizZ 1) = 0,
2) G acts trivially on H,(S(v)/G;Z [211-] (1 xG)),

3) there is a homomorphism 1 making the following diagram commute:

ﬂl(S(v)/G 0

|

T (S (v))

4) w(wW,F)e Wh?(ﬂ < mXG) vanishes,
Since C*(Cn,s(v);ZZﬂ) is Z m-chain homotopy equivalent to C, (W,F;Z ),

one verifies that w(W,F) is defined under the following more general
situation: FkCZWn is a submanifold with normal bundle v, n-k > 2, and

v has G-bundle structure with a free representation on each fibre, and
conditions (1) and (3) of Theorem II.2 are satisfied for (W,F).

The main results of this section are the following two theorems.

III.3. Theorem (Characterization of stationary-point sets of simple

actions).
Let W' be a compact manifold with connected boundary such that
wl(aw) = wl(W) = 1, and let (Fk,aFk)C:(W,BW) be a smooth submanifold

with normal bundle v, n-k > 2, 6. Then there is a smooth simple

n >
semifree G-action on W' with (Wn)G = F if and only if F:
1) v admits a G-bundle structure over F with a free representa-

tion on each fibre.

2) H*(W,F;Z(qﬂ) =0,

3) vyTt(W,F) Gth(ﬂ<:ﬁ_XG) vanishes.
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Remark: Condition (3) is equiValent to w(w,F) = 0. 1(W,F) is the
Reidemeister torsion, and y is the homomorphism of Theorem I.2.

The above theorem follows from the following extension theorem and
I1T.2.

ITT.4. The Extension Theorem. Suppose c” is a compact smooth manifold

with 9C = 8+C U3 C where 7,(3 C)
3 1=

Suppose that G is a finite group of order g and b, : G x8+C-+8+C is

4

m(C) =7, n > 6.

a free smooth action such that:

1) H*(C,3+C;quﬂ) = O'

2) there is a commutative diagram
Tr1(3+C/G) ——————————— > T
W1(8+C)

3) G acts trivially on H,(3,C/G;% [é-] (n x G)).
Then there is a free G-action ¢ : G x C = C extending b, with G

acting trivially on H*(C/G;Zi[%](ﬂ x G)) if and only if

T
1

up to concordance.

YT(C,B+C) € Wh, (rc 7 x G) vanishes. Moreover, this action is unique

SECTION IV. We indicate an outline of proofs of the main theorems of

Section III. Complete proofs and further applications will appear
later.
oOoutline of the proof of Theorem III.3. The necessity of condition (2)

follows from an application of the Atiyah-Segal-Quillen localization
theorem for each prime order cyclic subgroup of G to the covering G-
action on the universal covering space of W. Condition (3) is neces-

sary due to Theorem I.3.

Given (W,F) satisfying (1) - (3) of III.3, we can apply The Exten-
sion Theorem III.4 to W-intD(v) = C and the induced action of (1) to
S(v) = 9,C in order to construct a smooth simple semifree G-action on

G

W with w- = F.
An outline of the proof of III.4 is as follows. Theorems IV.1l and

IV.2 allow us to construct an appropriate Poincare pair (X,Y) such that

surgery problem provided by (X,Y) would yield the candidate for the
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the orbit space (C/G, C/G).

IV.1. Theorem. Let C" be a compact manifold with ﬂl(C)
nf

n n n
ﬂl(B_C) =7, oC = 8+C Us C ,8+C B_Cn = 9,C = 8(8+C) d9(o_C).

0
Suppose that ¢ : G xa+C —+8+C is a free G-action such that:
1) H*(C,B_l_C;ZZq[?T]) =0

2) 4 homomorphism ; such that

ﬂ1(8+C) i
I
Wl(8+C/G)
commutes.
3) G acts trivially on H*(8+C/G;Z [m x G]), where Z [m x G] is

the local system for 8+C/G via ;.
Then there exists a Poincaré complex (X,Y) such that
Y = (8+C/G) U(s_X), (3_X) ﬂ(8+C/G) = BOC/G, and (X,Y) is homotopy

equivalent to (C,03C) rel 8+C, where (i,%) is the covering space with

the covering transformation group G and fundamental group w.

IV.2 Theorem. Keep the notation and the hypotheses of IV.1l. Then

(X,Y) can be taken to be a finite Poincaré pair rm-simple homotopy
equivalent (re18+C) to (C,3C) if and only if YT(C,8+C) = 0.

Assuming the proofs of IV.1 and IV.2, the proof of III.4 proceeds
as follows. By IV.1l, we have a Poincaré pair (X,Y) whose covering pair
(%,%) with fundamental group 7 is homotopy equivalent to (C,3C) rel 8+C.
By virtue of IV.2 and condition (3) of the hypotheses, we can choose
(X,Y) so that (i,?) is simple-homotopy equivalent to (C,3C). Next we
show that the Spivak normal fibre space of (X,Y) has a linear structure
which in turn shows that the set of normal invariants of (X,Y) is non-
empty. Moreover, we can choose a normal invariant such that the

corresponding normal map (V,93V) f~>(X,Y) is relative to 8+C/G, i.e.

3,C/G <=3V and £]3,C/G:3,C/G »3,C/G <Y is the inclusion (as a normal
map). To see this, let A : X +BG be the classifying map into Stasheff's
classifying space for (stable) spherical fibrations. A[8+C/G has a
life to BO induced by the given smooth structure of a B+C/G. Since

G/0 is an infinite loop space, the obstruction to extending this 1lift
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* *
to X is an element aeh (X,8+C/G) where h is the generalized cohom-
ology theory associated with G/0. We need the following lemma to show

that this obstruction vanishes.

*
IV.3. Lemma. For any generalized cohomology theory h (X,8+C/G) is

(%)—local. _ v

Let 4 : X »X be the covering with the covering transformation
group . Then u*(a) GH*(§,8+C) vanishes since X is homotopy equivalent
to C Ee% 8+C and :he latter is a smooth manifgld. The transfer
t : h (X,8+C) + h (X,8+C/G) is defined and ty is multiplication by (.
The above lemma implies that p* is a monomorphism and o = 0 as a con-
sequence. Hence we can choose a lift of X to B0 which is compatible

with the given 1life for x|a+C/G so that the resulting normal map

f. o (Vl,BV

1 ~(X,Y) is rel 8+C/G as desired.

1)

Transfer

Let K = Ker(Whl(ﬂ><G) Whl(ﬂ). Although the Poincaré

pair (X,Y) is not necessarily a simple Poincaré pair, the G-covering
(X,Y) is a simple Poincaré pair since it is m-simple homotopy equiva-
lent to the manifold pair (C,3C). Consequently the Whitehead torsion
of the duality isomorphism lies in K. Denote by LE the surgery ob-
struction groups of Wall where the homotopy equivalences are required

to have Whitehead torsion belonging to K. Then the 7m-7 theorem of Wall

can be modified slightly to show that LE(W',W') = 0 for a finitely
presented group m'. Since the hypotheses imply that ﬂl(X) = ﬂl(Y—B+C/G),
we may assume that f1 is normally cobordant to a homotopy equivalence

£ (V,0V) »(X,Y) rel a+C/G with torsion in K.

Next, we can choose (V,3V) such that the covering space (V,03V)
with group G is diffeomorphic to (C,3C) rel 8+C. We have the commuta-
tive diagram of surgery exact sequences of Sullivan-Wall corresponding
to (X,Y) rel 8+C/G and (i,?) rel 8+C and the maps induced by the cov-

ering projection:

Li+1(ﬂrﬁ) ——— Ss(}w(,§)———i——> N(X,Y)—— Li(’ﬂ',’ﬂ')

| | I

LY 1 (1%G,mxG) > 8% (X,¥) ————— > N(X,Y)— L (7xG,xG)

83 Re——

The horizontal isomorphisms are due to Wall's (n-m) theorem. Now

~ o~ ~ *
N(X,Y) = hO(X,3+C/G) and N(X,Y) = hO(X,3+C) where h is the cohomology
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theory associated with the G/0 spectrum.

Consider the Carton-Leray-Serre spectral sequence for the G-

. - » . . * *
covering yu : X ~-+X in which the E2—term is H (BG;h (X,a+C)) and it
* *
converges to h (X,8+C/G) = h (X,8+C)G. The only nonvanishing terms

0 * ~ *
are H  (BG;h (X,8+C) = h (X,3+C)G. Hence the spectral sequence collapses

I

* * -~
and h (X,3,C/G) = h (Xi8+C)G. One can show that G acts trivially on

* * - * * .
h (X,8+C). Hence h (X,8+C) 2 h (X,3+C/G) and p induces the iso-

morphism. Thus we may choose the normal invariant in N(X,Y) so that
the corresponding homotopy smoothing (V,3V) has the G-covering (G,aG)
diffeomorphic to (C,d3C) rel 8+C.

G acts freely on (V,3V) as the group of covering transformations
and this action extends the induced action on 39,C.

The idea of the proof of IV.1 is to construct a diagram

9,C/G 5,C/G
1 |
3 X -~ X

(In which d_X, X and the dotted arrows are to be determined) with the
property that the diagram A consisting of various G-covering spaces is

(up to homotopy) the diagram D below:

(@)
+

o C C

In this vein, one constructs the diagrams Aq and A(%)(of "local-
izations") such that there is a map A(%)-*Aq(%) which lifts to the

appropriate maps of the G-coverings. The existence of such localized
diagrams uses condition (1) and obstruction theory. A modified version

of Lemma III.l1 for diagrams yields the diagram A.

In Theorem 1IV.2, consider the diagram
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8+C —_

L

9,C/G

where X has been determined up to homotopy by Theorem IV.1l. This dia-
gram satisfies the hypothesis of Theorem 1.4, hence X is homotopy
equivalent to a finite complex with X being m-simple homotopy equiva-
lent to C if and only if yT(C,8+C)<EWh$(ﬂw: m X G) vanishes. 1In partic-
ular if (X,Y) is mw-simple homotopy equivalent to (C,3C) rel 9,C then

YT(C,8+C) = 0. (Observe that both X and 3 X in the above diagram are

finitely dominated.)

To prove the converse, suppose that YT(C,8+C) = 0. Then by

Theorem I.4, we can replace X in the above diagram by a finite complex
whose covering with fundamental group m is 7n-simple homotopy equivalent
to C. For simplicity of notation, assume that X is such a finite com-

plex, so that X is also finite. Consider the diagram

X

5 X—— X
n
5 X— X

where 9 X and n are determined by the diagram A above. By Poincaré

*
duality, C (X,3+C/G;Z [m x G]) is chain homotopy equivalent to

Cu (X, X3Z [m x G]) =2 Cyx(n;Z [m x G]). Thus, there exists a m x G-chain

homotopy equivalence £ : C,(X,9 X;Z [r x G]) » D,, where D, is a finite

T X G-complex. Since ﬂl(B_X) = Wl(X) = 7 x G, by the additivity prop-
erty of finiteness obstructions, it follows that the finiteness obstruc-
tion of C, (5 X;7Z [r x G]) vanishes as well. Hence we may assume that
o_X and its covering a_ﬁ are finite complexes. At this point, the
argument of Theorem I.4 goes through to show that we can choose 3 X

to be a finite complex such that 8_% is m-simple homotopy equivalent to
o_C. The additivity of Whitehead torsions shows that (X,Y) is a finite
Poincaré pair such that (X,Y) is m-simple homotopy equivalent to (C,9C)
rel a+c.

SECTION V. To formalize some of the results of Section IV, in this

section we prove some general results for constructing quasi-simple

free actions on a given homotopy type (see below). The question of
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choosing a particular simple-type can be treated using the algebraic
theory developed in Section I. The analogs of theorem I.4 which de-

scribes the obstructions for the choice of a simple type (lying in
th(ﬂ'c T xG)) are valid and may be formulated in the context of

Theorems V.1 and V.2 below.

Definition. A free action G x X +X is called quasi-simple if

my (X/G) = 7 (X) xG and G acts trivially on H*(X;Z:[%]y,q = |G]|.

V.1l Theorem. (Pushing forward actions.) Suppose ¢: G x A —+A is a

free quasi-simple action, and £ : A — X induces an isomorphism

*
£ H, (A; £ zzq[n]—->H*(x;zzq[n]), where m = 7, (X). Then there exists

*

a free quasi-simple G-action on a space X', an equivariant map

£ : A—:+X', and a homotopy equivalence h : X— X' such that hef—f£f'.

Outline of Proof: We need to construct a space Y and a map A/G g»Y

such that the G-covering Y and the induced G-maps § : A ~»Y satisfy
the property required for X' and f'. Let g :(A/GE-—+Y be constructed

as follows. Since‘ﬁl(A)—»+W1(X) is surjective with a g-perfect kernel,

we can add free G-cells equivariantly to A to obtain iq such that

ﬂf?q) = Wl(X) and the inclusion A—Y induces a Z(q[w]—isomorphism
(equivariant plus construction). Then define Yq = §q/G' Next,

obstruction theory shows that (A/G)(é) = (A x BG)'(%) since the action

is guasisimple. Let Y(%) = (X><BG)(%) and let g(é) be the composition
(A/G)(%):»(A xBG)(%)-—»(X X BG)(%), Then we have a map Y(%)—Q+Yq(%)

by obstruction theory such that the pull-back diagram

1
Y Y(a)
1
g Iq (Ei)

has the G-covering Y homotopy equivalent to X via h : X— Y. Let
X' = Y. The G-action on X' is quasi-simple by construction. The maps

g and g(é) pull back to give the map g : A/G—Y and we let the 1lift

~

g : A—Y be f : A—X'. One verifies that f' and X' satisfy the
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required properties.

V.2. Theorem (Pulling back actions). Let A be a free quasi-simple
G-space with ﬂl(A) = 7. Let £ : X -+ A be such that

*
fo @ Hoy(X3f£ Z [7]) +Hy(A;Z [r]) is an isomorphism. Then there exists
a free gquasi-simple G-space X' an equivariant map f' : X' - A' and a

~

homotopy equivalence h : X' -+ X such that £ o h - f'.

Outline of Proof: As before, we need to construct the orbit space Y
and g : Y +A/G satisfying the stated properties on the level of G-
coverings. Let Y_ = (A/G)_ with g_= id and Y(é) - x(%) x BG with g(%)=
q
f(%) x id. There exists a map Y(é)-+Yq(%) which is up to homotopy the
s 1 1 1 1
composition X (=) xBG +X (=) xBG ~A (=) x BG A/G —). L
P (q' q(q) q(q) > (A/ )q(q) et Y be
pull-back of the diagram:
Y - (A/G
l ( 1 )q
X (2) x B6 —— (a/6) ()
g qaq
The Seifert-van Kampen theorem shows that Wl(Y) = ﬂl(X)><G. Further-

more, functoriality of pull-backs and the Mayer-Vietoris theorem show
that the G-covering Y is homotopy-equivalent to X. The maps g and
g(é) yield g : Y -+ A/G (via the above pull-back) and we may define

X +Y and £f' = g : ¥ > A the induced map on the covering spaces. One

readily verifies that X' and f' satisfy the desired properties.

V.3. Theorem. (The relative version). Under the hypotheses of V.2

suppose that a subspace XO < X is equipped with a quasi-simple free
G-action such that f\XO is equivariant. Then it is possible to
arrange for XO to be a G-invariant supspace of X', fIXO = f|X0, and

for h to be a homotopy equivalence rel XO.

Proof: This is the quasi-simple analog of [A3] Proposotion 2.III with
a similar obstruction theory argument.

Let A, and A, be the CW complexes. Call Ay and A, "weakly Z&—
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equivalent," if there exists a CW complex C and maps f1 : A1 +C such

*
that £., : (H;(A;;£.2 [r(C)]) —+Hi(C;Z(q[ﬂl(C)]) are isomorphisms.

q
The equivalence relation generated by weak Z(q—equivalence is simply

called "E‘q—equivalence".

V.4 Proposition. Suppose Al and A, are Z(q—equivalent complexes.

admits a free quasi-simple G-action if and only if A, does.

Then Al

Proof: This follows from V.1, V.2, and the defintion of %‘q-equiva—

lence.

V.5 Remarks: The above results are valid for diagrams of spaces as

it was needed in Section III.



21

REFERENCES

[Al] A. Assadi, "Finite Group actions on Simply-connected Manifolds
and CW Complexes," Memoirs AMS, No. 257 (1982).

[A2] + "Extensions of Finite Group Actions From Submani-
folds of a Disk," Proc. of London Top. Conf. (Current Trends
in Algebraic Topology) AMS (1982).

[A3] » "Extensions Libres Des Actions Des Groupes Finis
Dans les Variétés Simplement Connexes," (To appear in the
Proc. Aarhus Top. Conf. Aug. 1982.)

[A-B1] A. Assadi and W. Browder, "On the Existence and Classification
of Extenstions of Actions of Finite Groups on Submanifolds of
Disks and Spheres" (to appear in Trans. AMS)

[A-B2] A. Assadi and W. Browder, "Construction of Free Finite Group
Actions on Simply-Connected Bounded Manifolds." (In prepara-
tion.)

[B-K] A. K. Bousfield and D. M. Kan, Springer-Verlag LNM, No. 304
(1972).

[D-R] K. H. Dovermann and M. Rothenberg, "An Equivariant Surgery
Sequence and Equivariant Diffeomorphism and Homomorphism
Classification (A Survey)," Proc. Siegen Conf., Springer-
Verlag Lecture Notes.

[J1] L. Jones, "The Converse to Fixed Point Theorem of P. A. Smith
I," Ann. of Math. 94 (1971), 52-68.

[J2] , "Converse to Fixed Point Theorem Of P. A. Smith
II," Indiana U. Math. J. 22 (1972), 309-325.

[L] P. Loffler, "Z:p— Operationen auf Rationalen Homologiesph&dren
mit Vorgeschriebener Fixpunktmenge," Manuscripta Math. 36.
(1981) 187-221.

[Q] D. Quillen, "Higher Algebraic K-theory: I," Springer-Verlag
INM341.

[SW] R. Swan, "Periodic Resolutions and Projective Modules," Ann.
Math. 72 (1960), 552-578.

[M] J. Milnor, "Algebraic K-theory," Ann. Math. Studies, Princeton
Press 1971.

[CW] S. Cappell - S. Weinberger, (to appear).

[W] S. Weinberger, "Homologically Trivial Actions I" and "II",
(preprint, Princeton University 1983).

[LR] P. L6ffler - M. Raufen, (to appear).

[J] L. Jones, "Construction of Surgery Problems," Proc. 1978
Georgia Topology Conference.

[Qu] F. Quinn, "Nilpotent Classifying spaces and actions of finite
groups, " Houston J. of Math. 4, (1978) 239-248.

[Kw] K. Kwun, "Transfer Homomorphisms and Whitehead Groups of Some

Cyclic Groups," Springer-Verlag LNM, 298 (1972).



