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The cup product 1s graded commutative on the cohomomology 1lvel,
but not on the cochain level. The failure of commutativity is measured
by the higher diagonal approximations underlying such invariants as the
‘Steenrod squares [6] and the symmetric signature associated to a Poin-

care duality space [5].

An n-skeleton of a XK(w,1) 1is a CW complex X of dimension n
with ﬂi(X) =0 for 1<1i<n and mX =m . For example, X could
be a space form, a manifold whose universal cover 1s the sphere or
Fuclidean space. This paper shows how the geometric higher diagonal
approximations of X can be calculated Qurely algebraically from the

cellular chains of the universal cover X

This work was motivated by certain questions of John Jones and
R. James Milgram concerning the Cappell-Shaneson detection [1] of a
non-zero element 0(83/Q8) in the symmetric L-group L3(ZZQ8). T wish
to thank Andrew Ranicki for repeatedly bringing these questions to my

attention.

Using the results of this paper one can compute the symmetric sig-
nature o(s8/G) ¢ L™(Za) for any free action of a finite group G on
s™ . The symmetric signature appears in Ranicki's product formula for
surgery obstructions. However, algebraic guadratic surgery shows that
the product formula depends only on the chain level Poincare duality map
(depending on A defined below) and not on the higher diagonal approxi-

0
mations.

1. Preélimindries.

Let W be the standard free Z [Z /2] - resolution of Z

We e iz 2l Em w1 2w rm 21 o m w21

Here Z /2 = <T> . Let ey denote the generator of the i-chains of

_ i
W . Then B(ei) = (1+(-1) T)ei_l

¥*Partially supported by NSF grants.
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Let C Dbe a chain complex. Then 7% /2 acts on C 8 C (= C @ZZ C)

via the interchange map
T: C®C — C 8 C
T(agb) = (-1)968 3 deg by o
We will consider Z[7Z /2] - module chain maps
A: WO C —— C 8 C
Define Ay C—> C 8 C by Ai(c) = A(ei ® ¢) . Since A is a chain
map the Ai satisfy relations
i _ i

1.1 aAi - (=1) Aia = Ai—l + (-1) TAi—l
Thus AO is a chain map, Al is a chain homotopy between AO and
TAO R A2 is a chain homotopy between Al and TAl , etc. Conversely

given a sequence of maps {Ai} satisfyling 1.1, they give rise to a
Z [Z /2]-module chain map A

Let S(X) denote the singular chain complex of a topological space

Theorem 1.2.

There exist functorial ZI[Z /2] -module chain maps
A: W B S(X) — 3(X) ®& S(X)
such that Ao(c) = c¢c ® ¢ for any singular O-simplex ¢

Proof. Method of acyclic models. U

If a group 7 acts on a space X , then functoriality implies
that A 1i1s a ZI[Z /2 x m] -module chain map.

Preposition 1.3.

Let m act freely and cellularly on a connected CW complex X
There 1s a splitting of Z m-module chain complexes S(X) = A & B where
A is isomorphic to the cellular chain complex C(X) and Hg(B) = 0

Proof.

Following Wall [7] let

i—l))

D,(X) = ker (3: 5, (X7) —— 5, (X")/s, (X

i-1
Let Ei(X) = ker(Di(X) e Ci(X)). Then we have an exact sequence of

X m-chalin complexes

0 — E(X) —— D(X) — Cc(X) ——— 0
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Since D(X) ——— C(X) 1induces an isomorphism in homology, Hy(E(X)) =0
and hence E(X) 1s chain contractible. It then follows that

D(X) = C(X) ® E(X) as chain complexes. Likewise the inclusion

D(X) —— S(X) splits as a map of chain complexes. 0

Let f: C(X) —— S(X) and g: S(X) —— C(X) be splitting maps
in 1.3. Any ZI[7Z2 /2 x m]-module chain map

P: W8 C(X) —— C(X) B C(X)
chain homotopic to
(g8g) o A o (18Ff): W B C(X) — C(X) 8 C(X)

is called a geometric w-higher diagonal approximation. The mod 7
reduction of ¢ gives a geometric l-higher diagonal approximation on
X/m . If mw =1, ¢ can be used to compute cup products and Steenrod
squares. If X is simply connected and X/m is a Poincare complex, then
Y can be used to compute the symmetric signature [5]

o (X/1) ¢ L7z )

occuring in the product formula for surgery obstructions.

Let C = {Ci’a}i>0 be a chain complex of 7Z -modules with augmenta-

tion e;: C, —— 7Z . Tet e8®1: CQC—s Z B C =CC . Let

0
¢cee), = ® C., ® C,
Koogggex 1 J
and
(cgc)k = 8 C, 8C,
i<k J
Jj<k

Consider Z [7Z /2] -module chain maps A: W ® C —— C ® C satisfying

(1) AWeC,) < (cec)t for all i

(i1) (e®l) o A
(1Be) o A

0
0
(ii1) For all i , for any c¢ «¢ Ci , there is an '
a e C; ®C, such that A,(c) - cBe = a + (-1)7Ta

These conditions are geometrically inspired. Condition (ii) cor-
responds to the fact that for any cohomology class o ,
@ uvl=1uoa=aoa. Note that (ii) is satisfied for the Alexander-
Whitney diagonal approximation. Condition (iii) is related to the

identity Sqo(a) = q

3
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Proposition 1.4,

On the category of topological spaces there exist functorial
Z[Z /2] - module chain maps

A: W B S(X) —— S(X) 8 S(X)
satisfying (i), (ii), (iii).
Proof.

Condition (i) will hold for any functorial map. Let c(A™) be the
simplicial complex of the standard n-simplex. Consider c(A™) as a sub-
complex of s(a™ . By acyclic model theory there exists a functorial
A such that A(WeC(A™)) < c(A™) ® c(A™) for all n . Induction on n
shows that (e@l)(AO(An)) = A" (1@s)(AO(A“)) = A" . The proof that
Sqo = Td (see [6]1) shows that condition (iii) holds for c = A" . Then
linearity and functorality shows that (ii) and (iii) always hold. [

2. The Main Theorem.

Theorem 2.1.

Let C = {Ci’a}oiiin be a chain complex of free Z m-modules such

that HO(C) = 7 and Hi(C) =0 for 0 < i1 < n . Then there exist
Z[7Z /2 x m] -module chain maps

A: WB®C ——CB8C

satisfying conditions (i), (ii), and (iii). Given two such maps they

are chain homotopic.
Here the action of w on C ® C is given by g(xBy) = gx 8 gy

Corollary 2.2.

If X dis a skeleton of a K(w,1) and C = C(X) then any map
satisfying (i), (ii), and (iii) is a geometric mw-higher diagonal ap-

proximation.

Before we embark on the proof of 2.1, we need a lemma.

Lemma 2.3.

Let e = +1. If b « (C@C)2i+1 is e-symmetric (Tb=eb) and a

boundary, then it is the boundary of an e-symmetric chain. If

b e (C@C)2i 1s e-even (b = a + eTa for some a ) and a boundary, then
it 1s the boundary of an e-even chain.

Proof.
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E ® E satisfy the conclusion of lemma 2.3. Then
(D8E) ¢ (DBE) = D ® D & (DRE @ ERD) ® E 8 E also satisfies the conclu-

sion.

Now as a 7Z -module chain complex C 1s isomorphic to a direct sum
of Hn(C) s HO(C) and elementary chain complexes of the form % — 7 .
If D 1is any one of these chain complexes 1t is easily verified that
D ® D satisfies the conclusion. The lemma then follows by induction. [J

Proof of 2.1.

To construct the ZI[Z /2 x n] -module chain map A: W® C — C 8 C
it suffices to construct of sequence Ai: C —— C ® C of 7 w-maps
satisfying the relations 1.1 as well as conditions (1), (ii), and (iii).
Choose a Z 7 basis of C of the form A vu {po} where e(po) = 1 and

0
e(f) = 0 for f ¢ A . Define Ao(po) =Py 80y . For f e A, define

Ao(f) =P ®f +f8F + B 0o - Extend to a map of C, by linearity.

0
Fix k > 0 and & < k-1 . Assume now that A has been defined
on W B Cj for jJ < k and that Ai has been defined on Ck for i < 4.
Let x be a basis element of Ck . We first consider the case £=0
Let 7z, = ker(d: c, — Ci—l) By the Kunneth theorem

Hi((CQC)l) = Zi B Z & 7Z ® Zi - In particular if b is a i-cycle in

(CRC)™ with (e®1)b = 0 = (18e)b then b 1is a boundary in (c®c)t
So AO(BX) - 9x ® p, - Pgp ® 3x 1is a boundary in (C@C)k_1 . Say it is

da . Then define AO (x) = x® g t og ®x +a . For 2 >0,
(10", (3x) + 8, 1 (x) + (-1)%, (x) 1is a boundary in (coC)X say sa

Define AQ(X) = a . Extend to amap A,: C, —— C B C by linearity.

L k
Now fix k > 0 and assume that A has been defined on W B Cj
for j < k and that Ai has been defined on Ck for i < k-1 . Let
X be a basis element of Ck . Then

k-1 k-1 k-1 .
(-1) Ak_l(ax) + Ak-2(X) + (=1) TAk_2<X) - (-1) 3x ® 3x 1is a
(ml)k-l—even boundary in (C@C)k n (C@C)2k_2 and hence by lemma 2.3

lifts to a + (-1)"'Ta with a < (cec)¥ o (coe) We define

2k-1
A 1(x) = a + (-1)k_1Ta + 3x ® x . (For the case k = 1 we also have
to guarantee that (e@l)AO(x) = x and that (1@8)A0(x) = x , but this

can be done by the proof of 2.3.). Extend Ak—l to a map of Ck by
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linearity. Now

(-1 8, (ox) + &, (x) + (-8, (x) = 5x & x + (-1)¥ x 8 ox

So define Ak(x) = x 8 x for the basis element x . Extend by linearity.

This completes the existence part of theorem 2.1.

For the uniqueness part of 2.1 consider Z [Z /2] -module chain

maps A: W R C —— C 8 C satisfying

(i") A(W8C,) < (ceC)t  for all 1

(1i") (e81) o Ay = 0
(18e) o Ay = 0
(1i1i1) For all 1 , A,(C,) « im(1+(=1)TT).

Lemma 2.4,

A Z[Z /2 x 1] -module chain map satisfying (i'), (ii'), and

(1ii') is of the form A = 3x + ¥x3 for some degree one map ¥

Proof.
Define Xi(c) = x(ei 8 ¢c) . Then A = 3y + x3 1is equivalent to
2.5 o= axg + (DI # xg g+ (DT
Let x be a basis element of C, . Then AO(x) is even and a

boundary. Thus there is an a « (C@C)1 such that 3(a+Ta) = Ao(x) and
(e®l)a = 0 = (18e)a . Define XO(X) = a + Ta . Extend to a map of CO
by linearity. Replace A Dby A - 9xy - X3

We now assume A satisfies (i'), (ii'), and (iii') and that
AO(CO) = 0 . We will now only consider ¥ such that x(Cd) < (cec)d

Fix k<0 and & < k - 1 . Assume that x has been defined on

W ® Cj for Jj < k and that X4 has been defined on Ck for 1 < %

Furthermore assume

_ i i
a,(e) = ax;(e) + (-1)Px (3e) + x;_q(e) + (-1)my, ;(e)
for c¢ ¢ Cj , J <k and for c¢ ¢ Ck , 1< % . Let x be a basis
element of Ck . Choose an element a « (C@C)k such that

ba = 8, (x) - (=D, Gx) - x,_(x) = (-1 7y, (x)

Define X2<X) = a . Extend to a map of C, by linearity.

Now fix k > 0 and assume that x has been defined on W ® Cj

for J < k and that X4 has been defined on Ck for i < k -1
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j <k and for ¢ e C. , 1<k ~-1. Choose D ¢ (C@C)k such that

ob = A (x)

- (x) - (-1 1y (0

= Xyo2

Now Ak(x) - (b+(—l)ka) is a (—l)k—even cycle so by lemma 2.3,

A (x) = b+ (DT + ¢ + (=1)¥7e

for some cycle c ¢ (C@C)k . Define xk_l(x) = Db + c¢c . Extend by
linearity. This completes the proof of 2.1. 0

There are two cases where one can avoid some of the above homologi-
cal algebra to calculate the geometric higher diagonal approximations.
First, if X is a simplicial complex, one can apply acyclic model theory
in the simplicial category to X directly. Second, if X 1s actually
a K(m,1) , the construction of A follows from the "fundamental lemma"
of homological algebra from a projective complex to an acyclic one.
Indeed, if C 1is acyclic, any two Z[Z /2 x m] - module maps

W®8C—— CB8C
commuting with the augmentation are chain homotopic.

If X is a n-skeleton of a X(m,1) , then the homotopy type of
X is determined by TXs TX and the first Eilenberg-MacLane k-invari-

ant kn+1(x) ¢ gitt (nlx; wnX) . (See, for example, Olum [4]). Now

kn+1(x) can be defined algebraically as follows: Let D = {Di,a}i>o

be a projective Z m-resolution of Z . Choose a chain map
{Di,a}iin — Cyx (X)

commuting with augmentation. Induced is a map

~

D —_— ker(Cn(X) _— Cn_l(X)) = ﬁnX

n+l
This cocycle gives kn+1(X) . Hence the homotopy type of X 1s deter-
mined by the chain homotopy type of C(X) . Thus every homotopy invari-

ant of X should be computable algebraically. This gives a philosophi-

cal justification for Corollary 2.2.

3. Product.Formulae

Given a product map

m n

Td x £: N% x M* —— ™ x X

R SR I =il A AT1lAacead manrntTPATA andAd £ . Mn - Yn a dAeoreae ONne Normal
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map, the surgery obstruction o(Id x f) ¢ IL o (Z L (X)]) is determined

by the symmetric signature o(N) « LU (ZZ[W (N) 1) and the surgery ob-.
gtruction o(f) « Lh(ZZEW (X)1). Indeed o(N) can be represented by a sym-
metric Poincare complex (C,¢) with C = Cu(N) and o(f) by a quadratic
Poincare complex (D,¢y) with H,(D) = Ky (M). Then according to Ranicki's
product formula [5,IT.8.11

o(Id x ) = (C ® D, ¢ ® ¢)

3

using the algebraically defined palring

m
L (Z [ﬂlN]) ® Ln(Zi[ﬂlX]) —_— Ln+m(Z:[n1N] R 7 DHIX])

and the identification 7z [ﬂlN] ® Zi[ﬂlX] = 7Z [ﬂl(N x X)]J

Here ¢ and ¢ are represented by a sequence of maps
n-r+i .
o, f'HomZZEﬂlN] (c Colr ez, 1> 0}

{$,  Hom (pn-r-1

Z [roX] ,Dr)lr e Z, 1> 0}

and (¢®w)i = 0,80,

A geometric wlN—higher diagonal approximation

A: W8 C(N) —— C(N) ® C(N)
determines the symmetric signature o(N) = (C,¢) as follows:

Choose a representative [N1] e Cm(N;ZZt) for the fundamental class of

N . Let m=mX . Apply z % g 7 o t0 the A, associated to A to

obtain

-~ t ~ ~
by + C(N;Z7) —— C(N) ® ,,  C(N)

Then the ¢i are defined via the slant product

. ~N=r+i
¢i : C —_— Cr

B }—— A;([N])/B

Lemma 3.1: The class of a quadratic Poincare complex (C°,9”) in Li(A)
depends only on wb 0
Proof: This is an immediate consequence of the algebraic theory

of surgery [5,I.4.31]

Corollary 3.2: The class of (C ® D, ¢ ® y) 1in the product formula
depends only on ¢O and wo

We now restrict our attention to ¢O . As a corollary of the proof

of 2.1 we have:
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Corollary 3.3: Let C = {ci,a} be a chain complex of free Z m-module

Oil
such that HO(C) = 7% and Hi(C)

a ZI[r] - module chain map

n

no|A

0 for 0 < i < n . Then there exists

AO:C — C 8 C

satisfying conditions (i), (ii), and (iii), for 1 =0

Because of its importance in the product formula we make explicit
on algorithm for computing ¢O . A contracting chain homotopy for C
is given by #& -module maps {s,6}

§ : Z —— C

0
s : C, — C,
i-1 1
satisfying ds + 8¢ = Id on CO
and 38 + s3 + Id on C, for 0 < i < n

i
Choose a % m-basis of Cy of the form A v {po} where oy = §(1) and
e(f) =0 for f e A

Define
Aolpy) = 0y ® 0y
Ao(f) =pp®8f+f@®Ff+fBp) for f ek

Extend to a map on C by linearity. Now assume AO has been defined

0
on Cj for j <k . For a Zmw-basis element x of Ck define
AO(X) = x B oy + Pg 8 x + (s ®1 + 8¢ @:ﬂ(AO(Bx)-ax 8 Po=Pg ® 9x)
Extend to a map of Ck by linearity. This AO satisfies the desired
properties.
Let X Dbe an n-skeleton of a K(m,1) . Let Y = K(wm,1) . Nailvely,

one might try to avoid the algebra in 2.1 by constructing a geometric

m—-diagonal approximation

Ayt c(%) _ c(%) R C(%)

(Using, for example, the contracting chain homotopy
{fs ®1+8e®s, §® S on C(Y)® C(Y)) , and then restricting the map
AO ~ 1 C(X) —— C(X) ® C(X)
c(x)
to obtain a w-diagonal approximation for X . However, this AO need
not satisfy the hypothes of 3.3, so there 1s no guarantee that
A is the correct chain homotopy class. In fact, unpublished com-

0163y
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to a geometrically incorrect diagonal approximation for X . We now
describe this example in some detail as it was the motivation of this

paper.

A fundamental problem in surgery theory is the oozing problem,
the problem of determining which elements of Ly(Z 1) arise from surgery
problems over closed manifolds. A critical example is the Cappell-
Shaneson example

Id x f: 83/ﬂ X T2 — 83/ﬂ X 82

where 7=Q(2") is the generalized quaternion group and f: T2 —_— 82

is the Kervaire problem" representing the non-trivial element of
LE(ZE) = Z /2 . Here o(f) 1is represented by (D,y) e LO(ZZ,—I) = L2(Z )

where

( \ = D =7 ® 7 — DO =7 & Z
Using geometric reasonlng, . Cappell and J. Shaneson showed
o(Id x £) # 0 « LI(Z'W) . However, the product formula hints at an

algebraic derivation of this result. 1In a preliminary attempt at this

problem, Jones and Milgram constructed a map

Ay C(K(w,1))

and restricted to the 3-skeleton to obtain

- C(K(m,1)) 8 C(K(m,1))

AO: C —— C R C

where C = C(SB/W) . (Cartan and Eilenberg [2] give an explicit periodic
Z m-resolution of Z corresponding to a cell decomposition of SB/W)

The above A lead to a chain homotopy equivalence

0

3_%
¢O: C —— Cy

Applying the product formula (C ® D, ¢ ® ¥) , they obtained a .trivial
element of L?(Ziﬁ) » seemingly contradicting the Cappell-Shaneson exam-
ple.

The resolution of this dilemma is that the naive approach does not
lead to a geometrically correct result. Unpublished computations of the
author show that the methods of this paper give a formation representing
o(Id x f) « L (zZ m) , and prove algebraically the Cappell-Shaneson result

that o(Id x £) # 0 « L?(ZZ ™) , and im(0(Td x £)) = 0 ¢ LP(zm)

For an alternate algebraic approach to this result, see the paper
of R. James Milgram, "The Cappell-Shaneson example," appearing in these

proceedings.
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