Some Remarks on Local Formulae for Py L

by Norman Levitt

§0. Introduction

A well-known paper [GGL1] of Gabrielov, Gelfand and Losik,
which was further explicated by MacPherson [M] and Stone [Sy,S21],
shows how a rational cocycle representing the first rational
Pontrjagin class Pq of a manifold may be computed directly
from a combinatorial triangulation of the manifold, provided
that certain other data, viz, "configuration" and "hyper-
simplicial" data, are given as well. There has been, in
addition, a further attempt by Gabrielov [G] to extend these
ideas to the higher Pontrjagin classes. But this is only
partially successful in that there is a conceptual obstruction
to carrying out the suggested procedure which resides in the
fact that the topology of certain configuration spaces, in
particular the rational homology thereof, is not at all well
understood.

The point of the present paper is that much of the apparatus
of the original Gabrielov-Gelfand-Losik work is needlessly
complicated and obscures what is, at base, a relatively straight-
forward geometric concept. The essentials of the methodology
can, in fact, be transcribed into a framework that has been in
the literature for forty years: the Cairns proof [Ca 1] [Ca 2] of
the smoothability of PL 4-manifolds. For that matter it is not
too much to say that a prescription for dete}a?ﬁ?ﬁaf76651
formulae for Py is already implicit in Cairns' foundational
work on smoothing theory. Recall that this work [which
contained some minor lacunae subsequently repaired by J.H.C.

Whitehead [W] considered combinatorially triangulated manifolds
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simplex-wise convex-linearly embedded in general position in a
high-dimensional Euclidean space. The main question posed by
Cairns was whether a transverse hyperplane field can be
found; for the existence of such a field was shown to imply
smoothability. (In more modern language, Cairns was essentially
demonstrating that a vector-bundle reduction of the PL normal
bundle of a PL manifold yields a smoothing.) For our purposes,
the most salient fact is Cairns' discovery that there is no
obstruction to obtaining a normal field over the 4-skeleton of
the dual cell-structure. This fact reduces to a theorem about
the path-connectedness of certain configuration spaces which was
proved in [Ca 2].

We shall show in what follows that the rather explicit
construction of transverse plane fields readily allows the Tlocal
calculation of a real 4-cocycle representing the real
Pontrjagin class Py In fact, by slightly amplifying the
combinatorial data, we may in fact obtain an integral cocycle
representing the integral -

It should be emphasized that the formulae we obtain are

quite similar in spirit to those of [GGL1].

Perhaps one should raise, at this point, the question of
explicitness. The methods developed below for evaluating
a cocycle representing p, are formulated in such a way as to
involve appeal to an explicit transverse field over the dual
4-skeleton. While it is shown that the value of the cocycle on
a typical 4-cell depends only on the restriction of the field on
the boundary 3-sphere (where it can easily be constructed
explicitly), the actual computation would seem to depend on

having a specific field on the 4-cell itself. Cairns'
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construction is,res§éétia11y, an "existence proof" rather than
an explicit algorithm. However, we show in the concluding
section how this difficulty can be avoided in principle so that
the computation can go forward quite constructively in the
presence of the appropriate data. Moreover, our derivation is
far more transparent than that of [GGL1] and, in particular,
avoids the "hypersimplicial" formalism of that paper. The
superfluous complexity of the Gabrielov-Gelfand-Losik approach
is, as we have intimated, an artifact of its failure to exploit
directly the work of Cairns on transverse fields. Finally, this
outline, read in conjunction with [G], makes it clear why the
attempt to extend this approach to higher Pontrjagin classes

runs into difficulty.

§1. Transverse fields
Let MM be a topological manifold embedded in RN*k,
Recall [Ca 1, Wh] that a linear k-plane P in RNtk s said to
be transverse to MN at x e M0 provided that there exists an

open neighborhood U of x in MM such that for any two
e U,

distinct points ul,u - U, ¢ P. Here, subtraction

2 1
denotes ordinary vector-subtraction in RNk, We Tet Gk, n

denote the usual Grassmannian of k-planes in RN*k, A continu-
ous assignment F:MM > Gy , such that F(x) 1is transverse to

MNP at x is called a transverse field. Clearly, if we view F

as the classifying map of a k-dimensional vector bundle v over
Mn» v is then a vector-bundle reduction of the stable TOP
normal bundlie of MM, Cairns and Whitehead showed that the
existence of such a transverse field implies that MM s
smoothable and, in fact, that it allows an isotopy of the

embedding, pointwise arbitrarily small, to an embedding whose
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image is a smooth submaﬁifold of RN*k,

We next consider a closed n-form w € Q(Gk,n) representing
a stable real characteristic class for vector bundles (so,
implicitly, n = 0(4)). Consider, now, a combinatorially-
triangulated oriented n-sphere N together with a distinguished
equatorial (n-1)-sphere in-1, assumed to be a subcomplex.
We also assume a PL embedding of N in RNtk and a transverse
k-plane field ¢:" » Gy n (which is piecewise-smooth on the

n-simplices of =N)., We orient " and distinguish one of the

hemispheres into which "l divides it as D:, so that
n _ .n-1
BD+ = z .
. B n n-1
We now define a real number n = n(r , I ,w,0) by:
n = f ¢*w .
pn
+

Lemma 1. For a given embedding of " in RNtk 1y depends

only on ¢|DT, where DT is the hemisphere of N opposite
n
to D+.

Proof. Since ¢ <classifies a stably-trivial vector
bundle (the normal bundle of a sphere in Euclidean space), it

follows that [ ¢*w = 0. Consequently, if ¢ and ¢, are
T n

' . n
transverse fields which agree on D_, we have:

f ¢*w = -f ¢*w = -f ¢:w = f ¢lw.
n n n

n
D, D D" D,

Lemma 2. For a given embedding of :£M, n depends only

on ¢|zn-1,
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Proof. By the same reasoning as in Lemma 1 above, n

depends only on ¢|D2. Let 4,9 now be transverse fields

which agree on Zn-l. Let ¢ a9 denote restriction to Dz,
DT respectively, and similarly for bosv_. Let n(a) abbrevi-

n Zn-l

ate n(z", , a,w) for any transverse field a. Then, by

the preceding observations:

n{¢) = n(o+Uv) = n(v\J V) = n(v).

In 1like manner, we have the following:

Lemma 3. n depends only on the restriction to a neighbor-

hood of M-l of the embedding and the transverse field ¢

LN n+k R n+k
17 % <R > ¢; and f,: IN<=R » ¢,

both be pairs consisting of an embedding and a transverse

Proof. Let f

field. Assume first that f1,¢1 coincides with f2,¢2 on

a neighborhood of DT. By the reasoning of Lemma 1, the
respective n's agree. Then, extending the reasoning of

Lemma 2, we see that the n's still agree on the weaker
assumption that (f1,¢1), (f2,¢2) merely agree on a neigh-
borhood of M=l in SN, Note that for this last part of

the calculation, we may have to refer to a field transverse to

an immersed, rather than embedded ", But this makes no

difference, practically speaking.

Corollary. n depends only on the restriction of the

embedding to a neighborhood of "=l and on ¢|Zn'1.

Proof. Given an embedding and two fields ¢1,¢2 which

.agree on -1 9t s easy to deform both ¢, 59, to transverse
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fields. ¢;,¢; such that on a co11ar"neighborhood Z"-lxI,

) =n(¢.) (for
1 1

1,2). Therefore n(¢1) = n(¢2) since, by the lemma

¢;(X,t) = ¢ (x), x e z"-1, and so that n(¢
1

H

;
n(6,) = n(4,).

From the discussion above, it follows that an invariant n
may be defined by data consisting of:

an embedding i of znh-1 x I;

a transverse field ¢ to the embedded £n-1 x I;

a closed form o on Gk p

(Provided, of course, that it is understood that the
embedding i and the transverse field ¢ extend, in some
fashion, to an embedding and a transverse field on N, We
also assume, obviously, that M=l x I is oriented.)

Thus, we shall revise our notation and speak of n(i,¢,w).

We may then note the following, understanding that in so

n-1

-1 i g1 {%}Cz x 1.

doing, we identify = with
Let MM be a compact oriented n-manifold with boundary
oM = zn-1. et f: MN » RNYKk  pe an embedding (or even an

1
,E_}

" Wwhich agrees with i on PRUREI {0

immersion) of M
(thought of as a collar of zN-1 §n MM, Let v be a
transverse field to the embedded MM which agrees with ¢ on

n-1 1
I x {0,3 . Let Yy denote the real characteristic class

represented by w. Finally, let MQ denote the closed

manifold Mn cgn-1,

Lemma 4. The characteristic number Y[ME] is given by the

formula Y[M:] = anw*w - n(i,¢,w).
+

This is almost self-evident. The reader should note the

formal analogy to the mn-invariant of oriented Riemannian
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(4j-1)-manifolds defined by A£iyah, Patodi, and Singer [APS]. I
The idea is that Riemannian data has now been replaced by
geometric data consisting of the embedding i and the
transverse field.
Finally, we develop a slight extension of these ideas.

Rather than an (n-1)-sphere Zn-l and an embedding

PUREIIVIE P Rn+k, consider a (j-1)-sphere zJ-1 and an
embedding 1':2‘}.-1 x I x Dn-jCZRn+k. ¢ will now be a transverse
field to this embedding, and o becomes a j-form on Gy n. It
is understood that i and ¢ extend, in some fashion, to
Zj x Dn_j.

Then n(i,¢,w) is defined as [ v*w, where pd s

| o0 '

identified with D} x {0} in zIxD"7J. The statements

analogous to Lemmas 1,2, and 3 are then easily proved. e

§2. Real cocycles representing Py

We now consider explicitly the case of 4-dimensional
characteristic classes, which reduces, in essence, to a
discussion of Py

Let MM be a PL triangulated manifold embedded in RN*K
so that each simplex is convex-linearly embedded. Suppose a
k-plane field ¢ 1is defined on M£4) = 4-skeleton of the cell
complex Poincare dual to the given triangulation. We assume
that for every x e M£4), $(x) 1is transverse to M" at «x.
Let w be a closed differential 4-form on the Grassmannian Gg p
representing some real characteristic class vy (e.qg. py or
Py of the complementary bundle). Define an oriented real 4-

cochain ¢ on M* by stipulating for any oriented 4-cell e of

M

*
*

c(e) = Je¢ w
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Lemma 5. ¢ 1is a cocycle representing +y(M) e H¥(MN;R).

Proof. Let v denote the PL normal (block) bundle of

n

M. Quite clearly, the vector bundle over M£4) defined by

. 4
¢ constitutes a vector-bundle reduction of v|M£ ) so that

regarded as a cochain, and hence a cocycle, of M£4), c

4 ,.n H4(M£4);R)

certainly represents Y(v|M£4)). Since H (M ;R) ~»

is monic it follows that we need merely show that ¢ is a //ﬂ“

cocycle of M* itself, for then its cohomology class must
coincide with y(M). To see this, we need merely consider an
arbitrary oriented 5-cell d of M_. Since 6l9d dis easily
seen to represent the stable normal bundle of 3d = S4, it

*

follows that j8d¢*w = 0. But fad¢ w = quad fe”¢*w = %QEEZ).
Hence, 6c = 0 and we are done,

We now recall the work of Cairns [Ca 1] and Whitehead [W]
to remind the reader of how a transverse k-plane field ¢ on
M£4) can always be constructed under the very weak assumptions
(1) The embedding of MN in RMK s in general
position, i.e., the images of the vertices of any star form a
linearly independent set of (n+k)-vectors.

(2) Every star of an (n-4)-simplex is a Brouwer star,
i.e., st(o"=4) embeds in RN with the embedding convex linear
on each simplex.

(It is well known that any combinatorially triangulated
manifold admits a subdivision wherein all stars are Brouwer

stars.)

If we consider an abstract Brouwer star of the form

Ap*zn—p-l’ where :"P°l denotes a triangulated (n-p-1)-

sphere, we note that the property of being a Brouwer star is

Zn-p-l

equivalent to the fact that the complex ¢ embeds in
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n- . .
R"P 5o that the embedding is convex-linear on each simplex.

We define the configuration space CF(Zn'p-l) to be the space

(with the obvious topology) of all such embeddings (normalized
so that the cone-point % » 0) modulo the action of GL(n-p,R).
The role of configuration spaces in analyzing transverse fields
is revealed by the following:

Lemma 6 (see [W]). Let the Brouwer star Ap*zn-p-l be

embedded in RNtk ip general position convex-linearly on
simplices. Let N Gk,n denote the set of k-planes P such
that P is transverse to AP*gn-P-l g p - barycenter of

s, Then N is homeomorphic to CF(Zn-p-l) x R'. where

i = nk - q(n-p) and q = number of vertices of gh-p-1
(By convention, if p =n, id.e., gh-p-1 W then

cr(z" Py - x )

Let us review Cairns' proof of the smoothability of
4-manifolds, assuming the crucial result that the existence of
a transverse field implies smoothability. We need only
analyze, in a rather straightforward way, the obstructions to
obtaining a field transverse to a simplex-wise convex-linear,
general position embedding of Mi in R4+k.

First, to each simplex o¢ assign, in arbitrary fashion, a
k-plane P4 transverse to M4 at the barycenter bg. Next, we
try to extend this to a transverse field defined everywhere. An
obvious fact is that if x € M¥ and o(x) denotes the unique

simplex such that x e int o, and if we let N(x) denote the

set of k-planes transverse to M4  at X, then

NEx) = Nbg(x)) ~ CF(xka). g

Now, since f&ko is of dimension < 3, there are only a few

cases we need analyze.
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Lémma /. If dim g2ko < 2, i.e dim o = 2,3 or 4, then
CF(2ko) is contractible; if dim(fks) = 2, di.e., dimo = 1,
then CF(fko) is path connected.

The first part of the lemma is a triviality. The second

part, however, is far from trivial; it represents the substance

of a separate paper of Cairns [Ca 2].

Remark: As of this writing, it remains an open question

whether CF(z2) s, in fact, contractible for a triangulated
2-sphere 2., We may reformulate this question slightly by
characterizing CF(ZZ) as the space of geodesic triangulations
of the standard S?2 realizing the simplicial complex £2 such
that each simplex is contained in an open hemisphere and such
that one particular 2-simplex, 02, is realized in a fixed way.
Block, Conolly and Henderson [BCH] have proved the following:
Let K2 be a subdivision of the standard 2-simplex such that

K triangulates the boundary sl in the standard way. Let C
denote the set of simplex-wise convex linear homeomorphisms

K2 » A2 which are the identity on the boundary. Then C s
contractible. This can be read as strong evidence for a
positive answer to the stated open question.

Returning to Cairns' proof of smoothability for 4-
manifolds, we exploit Lemma 7 in the following way. Consider
the first barycentric subdiviéfon K of the given triangulation
of M4,

We wish to construct a transverse field ¢ on M such
that ¢(by) = Py for simplices o of the original triangula-
tion. The assignment by Py defines ¢ on the O-skeleton

of K. Now consider a l-simplex 1 of K; extending ¢ to
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v 1is tantamount to finding a path between two points in

N(bgs) ~ CF(2ko), where o 1is the smallest simplex of the
original triangulation such that 1t¢Co. Lemma 7 guarantees
that we can do this, the most difficult case occurring when
dim o = 1. Proceeding to the s-skeleton we must, for any
2-simplex t of K, find a way of extending ¢, now defined
on T to all of t. Again, with o the smallest original
simplex containing 1, this is a question of contracting a
loop in a space homotopy equivalent to CF(&ko); but since
dim o > 2, Lemma 7 tells us that CF(&ko) is contractible.
We continue in Tike manner to define ¢ on the 3-skeleton and
then the 4-skeleton of K, which is to say, all of M. Hence
as asserted, a transverse field does exist.

Transposing this argument to the more general context of
triangulated n-manifolds (for arbitrary n), we see that
exactly the same procedure works to construct a transverse
field over the union of all simplices +t of the first sub-
division such that the smallest original simplex o

containing t satisfies dim o > n-4., 1In other words, the

method works to construct a transverse k-plane field ¢ over
the 4-skeleton M£4) of the cell-complex M, Poincare dual
to the original triangulation.

Given now a closed 4-form w e 2(Gy,p) whose deRham
class is the real characteristic class vy, it follows from
Lemma 5 that the real 4-cochain C defined on oriented 4-cells

e of M by:

cle) = fe¢*w

is a cocycle representing y(M).

We may now, without loss of generality, make the following
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assumptions about the plane-field ¢. Let e be a 4-cell of

M, with boundary 3e. Then, typically, e is Poincare dual
to an (n-4)-simplex o and is identified with a particular
subspace of bg*tk(o)Cst(o). Thus, e naturally has the
structure of a cone , viz., cde where by corresponds to the
cone point. Let C; denote a collar neighborhood of 3e in
cie = e. We can assume that, for x e C_, ¢(x) = ¢(px), where
p denotes projection of Cz upon de.

Now, let C; denote a collar neighborhood of 3de in
(bg*2ko) - int e. It is then easily seen that ¢ may be
extended to a field ¢1 defined on e\/Cé, again by letting
$(x) = ¢(px) for x e C;. Now it is quite obvious that the

n+k

embedding of the 4-ball eL}Cé into R extends to an

embedding of a sphere 24 = e C;(J cal (where 81 denotes

the copy of 3e bounding e&!Cé, at least if k 1is large

enough. If we consider further the product neighborhood of

eL/Cé in M", it is clear that this embedding of a

4-bal1l x D" extends to an embedding i: & x Dn_4C:Rn+k.

As for $,» this extends to a k-plane field % on g4

transverse to the embedded £t x Dn'4‘

Thus, we are in the
situation alluded to at the end of §1, and, reverting to the
notation of that section, we have c¢(e) = n(i,$ ,w). It
follows that «c(e) depends only the embedding of M in a
neighborhood of 3e% and on ¢]3e.

Our main objective, be it recalled, is to characterize a
lTocal formula for y. Thus, taking w, for the moment, as a
given, we need to look a bit more closely at the actual
construction of ¢ on 9de. Taking e, as usual, to be the

cell dual to a simplex o, we see that $|3e has been

specified in the following way according to the procedure
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devised by Cairns:

(1) For each simplex p with p > ¢ we have picked a
point  in CF(2kp) (which yields a particular k-plane P
transverse to MM at b, 1lying within the (n+k-dim p)-
plane comprised of all vectors perpendicular to t.)

(2) For dimp = n, n-1, n-2 P can, in fact, be chosen
canonically. That is, for p of dimension n, the obvious

_choice is to make P the k-plane perpendicular to p; for

dim p = n-1 we take P to be the k-plane determined by the
"obvious" configuration of the cone on the O-sphere in RI,
viz., the two points of SO0 at =-1,1 vrespectively with the
cone point at 0. Finally, for dim p = n-2, the choice of
configuration of c2kp is almost equally obvious; we embed
cskp in RZ as a regular polygon inscribed in the unit
2-disk.

(3) Note, in contrast to the foregoing, that, for dim
p = n-3, the choice of P, i.e. of an element in CF({ 2%kp),
is not, in any obvious way, canonical. We must therefore rest
content with an arbitrary choice.

(4) To complete the construction of ¢ over 3de we must
now choose contractions of the configuration spaces CF(2%kp)
to the aforementioned canonical points for p of dimension n,
n-1, n-2. Fortunately, these choices are also canonical, or
very nearly so. To remove lingering ambiguities, it is helpful

to make use of the notation of local ordering (introduced in

[L-R]).

Definition. A local ordering on a locally-finite

simplicial complex K s a partial ordering on the vertices of

K such that the vertices of st(c) are linearly ordered for
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any simp1ex O,
We will assume, henceforth, that the triangulations we

work with are locally ordered in this sense. I.e., the linear
order on each star will be assumed as part of the local data,
in addition to the underlying combinatorial data, per se.

With the assumption that st(p) 1is linearly ordered, it
is easy to construct canonical contractions of CF(f&kp) for
dim p = n, n-1, n-2. This hay he done trivially in the first
two cases. For the case dim p = n-2, we may view CF(2kp)
in the following way: Think of CF(2kp) as the space of all
simplex-wise linear embeddings of the triangulated disc ctkp
in RZ2 which put the cone point at 0 and which take the
"earliest" simplex of fkp to an edge of the standard regular
j=gon (j = # of vertices of fkp). Specifically, "earliest"”
means with respect to the induced lexicographic ordering on
pairs of vertices. We choose the "standard" regular j-gon to
have one edge lying in the right half plane and with the ususal
x-axis as perpendicular bisector. If (VO’Vl) is the
in the given ordering), v is

earliest edge of fkp (v, < v

0 1° 0
assigned to the endpoint of the standard edge lying below the

x-axis, and v to the endpoint above the x-axis. The point

1
is [see W] that any element a € CF{(fkp) 1is represented by one
and only one embedding with this property; thus the space of
all embeddings with this property is, in fact, identical to
CF(&ko). Thus, the "canonical" element of CF(f2kp) 1is the one
which, subject to this condition, embeds fkp as the standard
regular j-gon. Now, if f is some arbitrary embedding satis-

fying the given constraint, then we form a one-parameter

family of embeddings connecting f and the canonical embedding
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C]ear]y‘we can slide f(v) to §(v) by first s]iding it
along a circle of radius |f(v)| in the proper angular
direction until it is radially in line with s(v) and then

sliding radially until it coincides. Do the "angular slide at

—

uniform angular velocity for O t < and the "radial" slide

t 1. Doing this simul-

2
at uniform linear velocity for <

o= | A
| A

taneously for all v deforms f through configurations to the
standard configuration.

This is jointly continuous in f and t and thus yields
the desired contraction of CF(2kp).

We may conclude, on the basis of (1)-(4) above that the
only data needed to specify a cocycle ¢ representing vy are

(1) The local ordering of M

(2) The form w

(3) The choice of an element of CF(p) for (n-3)-
dimensional simplices p.

Clearly,  being assumed, c(e) will only depend on
the data on st(o), o dual to e. That is, we need only know
the linear order on st(o), the embedding of st(c) in RNtk
and the choice of an element in CF(fkp) for ph-3cst(o).

In order to obtain a purely local formula, i.e. one
depending on the structure of st{(oc) as a simplicial complex,
and on that alone, there are a number of simplifications
available. First, we can take the form w to be invariant
under the action of O0(n+k) on Gk,n. Moreover, we might as
well assume that we have chosen w € 94(Gk,n) consistently

for all n,k. This means that in the natural double sequence
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} |

e Gy 7 B
| |

o Gy 7 Sk ner O
} !

the choice of w s consistent with pullback on a4,

Next, given MM merely as a triangulated manifold, we may
pick an embedding MNPcRNMK by embedding MN as a subcomplex
of the standard simplex antk-1 c grn*k,  This amounts to
assigning vertices v of MM to standard basis vectors of
RNk 4p arbitrary fashion and then extending convex-linearly
to a map on MN,

Having done this, we obtain a transverse k-plane field on
Mi4) upon choosing a local order for M and choosing, for
each o"-3, an element in CF(2ko).

[f we have proceeded as above it is clear that we obtain a
4-cocycle ¢ such that, for a typical dual 4-cell e, c(e)
depends only on the combinatorial structure of ko (o dual to
e), on the linear ordering of st o, and on the choice of an
element in CF(f2kt) for all tN-3 with o < t. Thus we may
write <c¢(e) as a function of such data without reference to
MN  per se.

Now we may write down a formula:

where E denotes expected value over all choices of a linear
order on st o and all choices of configurations

=3 -5 o ¢ CF(2kt). Here we are implicitly assuming that the
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manifold CF(2kt) has the natural structure of a measure
space; but this is not at all hard to justify.

The following result is immediate:

Theorem 1. Let MM be a combinatorially-triangulated
manifold. Then the assignment e -» c(e)n is well-defined on
oriented 4-cells and the resulting oriented cochcain with real
coefficients, <c(M), is a cocycle representing the character-
istic class v(M) e H4(M;R).

So, in particular, if y designates the first (tangential
or normal) Pontrjagin class, we see that Theorem 1 gives us a
local formula, one which is, the author trusts, less obscure

than that in [GGL1].

§3. A local-ordered formula for the integral Pq-
In the foregoing section, we constructed a reasonably
explicit local formula for the real first Pontrjagin class. On

the other hand, the work of the author and C. Rourke [L-R] gives
theoretical grounds for asserting the existence of a local

foréuTa for the integral P> provided that the local data is
now understood to encompass a linear order of stars. I.e., we
should expect to find, for any triangulated locally-ordered
manifold MDD, an oriented integral 4-cocycle g representing
the integral (tangential or normal) Py such that, given an
an oriented dual 4-cell e, g(e) € Z depends only on the
combinatorial type of the complex st(o"=4) (oN-4 dual to e)
and on the linear order on st(o).

The claim is that the ideas of the previous sections can
be somewhat extended in order to create just such a formula,

which we call a local-ordered formula. It is slightly
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unfortunége that in order fojgreate it, we must restore some of
the arbitrary choices that were "averaged away" at the end of
the previous section. That is, given an oriented dual 4-cell e,
in order to know the value of the formula on e one would

have to know not only the a linear order on st(o) but, as
well, a specific choice of configuration of(t) € CF(2kt) for
every -3 < g, Therefore, in a strict sense, we only have a
local ordered formula for p, once we have made, a priori, a
choice of a(Z2) e CF(£2) for every possible triangulated
2-sphere. Thus we create not one but rather a multiplicity of
local-ordered formulae, one for each such assignment.

The basic idea, once more, is to call upon Cairns' work on

construction of transverse fields over M£4). But rather than
using such a field to pull back a 4-form from Gk,n to be

integrated over 4-cells, we use it to define certain intersec-
tion numbers which are, perforce, integers.

As a preliminary step, we recall the work of Thom [T] on
dual characteristic cycles in Grassmannians. Consider once more
the Grassmannian Gy n of linear k-planes in RN+K, k > n. Let
Q be an arbitrarily chosen linear n-plane in RN*+K, We then have

defined a certain subset V(Q)C Gy n by
V(Q) = (P e 6 nldin(PNQ) > 2}.

V(Q) dis a manifold of dimension nk-4 (i.e., of codimension 4)
away from certain low-dimensional singularities. Moreover V(Q)
is a naturally-co-oriented cycle. That is to say, the normal
bundle in Gy, n of the non-singular part of V(Q) has a
natural 4-dimensional integral Thom class p. For a given
k-plane bundle & over an arbitrary C+W complex K <classified

by f:K » Gk,n>s pl(g) may be computed as follows: assume f
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is in general position, so, in particular, f(k(3))Nv(qQ) = 8.
Then, for any oriented 4-cell e of K, the intersection
number d(e) = f(e)-V(Q) is well-defined, using the natural
co-orientation of V(Q) as well as the orientation of e. The
assignment e+~ d(e) 1is an oriented cocycle of MM, and
pl(g) is its integral-cohomology class.

We now update some ideas from §l. Let 4 x Dn-4 e

embedded in RN*K; 3 is taken to be the equatorial sphere;
i.e., 3 - Df(\Di, it - D?t)Di. As before, we assume that
4 x pn-4  admits a transverse k-plane field ¢. We make a
choice of reference n-plane QCRN*K and assume ¢ is in

general position, viz, ¢(z3) V(Q) = 0. We then obtain an

integer

In analogy to the work of §1 where integrals of forms,
rather than intersection numbers, were used to define n, we

have:

Lemma 8. =n depends only on the embedding and the field

¢ on a neighborhood of 3,

In view of Thom's result, we may easily obtain the
following consequence.

Let MM be a triangulated manifold embedded simplex-wise
convex-linearly in RNtk 4p general position. For each simplex
o of codimension < 4, pick an element oa(o) e CF(fko).
Assuming a local ordering of MN, follow the procedure of §2
to obtain, over M£4), a transverse field ¢ to Mn. Now

let Q be a generic n-plane in R“*k, i.e., one chosen such

that ¢(3e)NV(Q) = \, for any dual 4-cell e. We then define
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d(e) = ¢(e) -« V(Q).
Essentially, d(e) 1is the value of n determined by the

embedding and the field ¢ 1in a neighborhood of 23e, as well

as by the reference plane Q.

Lemma 9. d 1is an integral 4-cocycle whose cohomology
class is the first integral Pontrjagin class Py of the stable
normal bundlle of MP,

The proof proceeds much as in the case of Lemma 5.

Remark: At this point, we could, effectively, claim to
have obtained another local formula for the real first
Pontrjagin class. Again, the formula would emerge through an
averaging procedure, i.e., by choosing a "standard" embedding of
MM  and by averaging over the set of reference planes Q as
well as the ordering and configuration data which lead to the
explicit construction of ¢. Details are omitted.

Comparison with [GGL2] suggests that this formula might be
replacable by one which involves only a finite averaging pro-
cedure, rather than one expected value over a measure space.
This we leave as a conjecture, observing only that the key
point seems to be this: Pick a reference plane Q and con-
figuration data at the simplices 1 > o, (oN~* dual to e%).
We see that d(e), provided that it is well defined (i.e.,
provided that the field ¢|3e determined by configuration data

has image disjoint from V(Q)) remains constant under small

Vggrturbations of Q and of configuration data. This would seem
to suggest that averages (perhaps weighted) should be taken over
connected components of the set of all possible choices for Q

and for configuration data, rather than an expected value whose
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determination involves an integral. Whether this would, in
practice, represent an actual computational improvement is not
clear.

It is now our purpose to sharpen Lemma 9 to the extent of
obtaining a local formula for the integral (normal) first
Pontrjagin class which disregards all data save the Tlocal
ordering, the combinatorics of Tinks of (n-4)-simplices and the
choice of configuration for links of (n-3)-simplices.

Our first observation is directed towards eliminating the
role of the arbitrarily-chosen reference plane Q from our

We&isting formula.

Lemma 10. Let ¢ be a transverse k-plane field to Mn
RO*YK,  Let q: MM » Gpn,k be a homotopically trivial map. Let
V(g) ¢ MN x Gg,n denote the set {(x,P)|dim(PNq(x)) > 2}. Let
¢ be the section of MM x Gy , Pigg- MM induced by ¢, i.e.,
o(x) = (x,¢(x)). Finally, assume & is in general position
with respect to V(q). Then pl(an) is the primary
obstruction in HA(MN;Z) to deforming @& off V(q).

The proof is trivial. For the case of q = the constant
map q(x) = Q € Gn,k» the lemma is merely a slightly roundabout
statement of Thom's result. But if 9,-9 , are homotopic maps
n

x G from

then V(ql) and V(qz) are homologous cycles in M KN

which it readily follows that the primary obstructions to
deforming ¢ off V(ql) and V(qz) respectively must
coincide. The lemma is then immediate.

We may paraphrase Lemma 10 as follows: Assume that & s
in general position with respect to V(q) in the sense that
¢(M£3)) V(g) = & and <I>|e4 is transverse to V(q), for any
oriented dual 4-cell e4. Then the intersection number d(e) =

¢(e)-V(q) 1is well-defined if e be oriented. (In fact,
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strictly speaking, we need not assume <I>|e4 is transverse to
V(q) to have this intersection number well defined.) The
assignment e — d{(e) is then an oriented integral cocycle

representing the first Pontrjagin class pl(an).

We may even go further: the observation above remains
valid provided merely that ¢ arises from a transverse field ¢
defined over M£4).

We now construct a locally-determined map q: My > Gp g,
using only data provided by the local ordering, so that g
will turn out to be globally trivial. In fact, we define a
frame-field over MM. First consider the barycentric sub-
division of MN, and a typical vertex by (= barycenter of o)
where o 1is a simplex of the initial triangulation. We let
q(by) be defined as the n-frame (vl(o)---vn(c)) where
vl(c)...vn(o) represent the earliest vertices of st(d) in the
presumed ordering. To define g more generally, recall that
the generic point x of MM may be uniquely denoted

X = albo tooot asbc
1 S
where aj > 0, Zaj = 1. (I.e., bgy... bgg are the vertices
of the unique simplex of the barycentric subdivision of MP

which contains x as an interior point; thus Oy <0y e < os).

Let wvj(x) = Zajvj(oj) e RNtk for j = 1,2 ... n.

Lemma 11. For any X, {vl(x),-~°,v (x)} is a linearly

n
independent set.

Proof. Suppose there is a dependence relation:

(i) cptvy(x) + .en t cptv,(x) =0
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for some x and some set of coefficients Citrecy not all O,

Let us remember that wvj(x) 1is a linear combination
of vertices of st(oj). Since st(cl):) st(oz) cee D st(og) it
follows that the left side of (i) may be rewritten as a linear
combination of the vertices of st(ol). But since this set, by
the general position assumption concerning the embedding MR RN+K
is linearly independent, we see that in this reformulation all
coefficients must be O.

Consider the earliest coefficient in (i) which is nonzero;
call it cj. Consider now the vertex Vj(dl). In general, for
any p, Vp(°i) > vp(ol) in the order on st(ol). We use this
fact to examine the coefficient of VJ(°1) in the reformulation

of the right-hand side of (i) in terms of the vertices of st(ol).

First of all,
cjvi(x) = cjrayvilo)) + cjo,vilo,) ==

Since c¢j # 0, aj > 0, it follows that Cj'Vj(X) = A'Vj(ol) +
{other terms} where the additional terms do not involve Vj(cl)
and A # 0. On the other hand, consider the term Cprvp(x) =
Cp*Laj-vp(oj) for p > J. Now wvploj) > VP(°1) > Vj(Gl). So
Cp-vp(x), rewritten as a linear combination of vertices of
st(ol), does not involve vi(ol). Thus clvl(x) cee Ccp*vplx) =
A'Vj(ol) + B where B does not involve Vj(ol), A# 0. But
this contradicts the presumed linear independence of the vertices
of st(cl). Hence the lemma follows.

Thus we may define q(x) for any x as the n-frame
(vl(x) *++ vp(x)). By slight abuse of notation, we also use q

to denote the map MN > G, | defined by

X b=+ span(vl(x),-~°,vn(x)). Clearly, q represents a trivi-



119

alized bundle and is thus null-homotopic in Gp k.

Consider once more the k-plane field ¢ transverse to M0
defined over Mi4) by data consisting of a local order on M
and configuration data for simplices of dim > n-4. We have,
simultaneously, the n-frame field q. Thus, by the remarks
following Lemma 10, we shall have a well-defined cocycle d(e)
(depending on the embedding as well as the afore-mentioned data)
simply provided that ¢(M£3))f\V(q) = Q, We claim that this
last condition will hold for a generic choice of configuration
data, though the proof will be omitted.

As to dependency on the embedding, this may be eliminated
simply by picking any "standard" embedding of MM as a sub-
complex of antk-1, j.e., by assigning each vertex of M to an
element of the standard basis for RNtk and then extending
convex linearly. It turns out that d(e) 1is independent of the

particular embedding, and so d(e) 1is now seen to be intrinsic,

depending only on the local ordering and the configuration data.

We may emphasize the intrinsic nature of the formula we
have by freeing it entirely from the notion of embeddings and
transverse fields.

Consider the typical dual 4-cell e?* dual to on-4,
Decompose it into sub-cells {d;}gs<¢>, defined by
dr = st(bT,M”)f\e4 where st( ,M") refers to the combina-
torial star in the second barycentric subdivision of M,

Omitting details, we note that we may slightly modify the
definition of the frame-field gq so that for x e d¢, vj(x)
will lie in the vector subspace spanned by the vertices of
st(t). We also assume: ¢(x) is transverse to M at by if
x € dr « These modifications in the definitions of ¢ and g

are relatively simple to make and leave d(e) wunaffected.
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Concentrating on d Ne, we let ¢(x) dénéféwihe
CF(&kt)-coordinate of ¢(x). For convenience, we shall think of
$(x) as an embedding ¢(x): stt,br < RN,0 where the embedding
is convex linear on simplices and is the "standard embedding" on
" where 6N denotes the n-simplex of st v smallest with
respect to the lexicographic ordering induced by the linear
ordering of the vertices of st t. In fact, rather than using
the standard RM, we think of the n-plane P parallel to &N
passing through the origin. So therefore, if we consider the
direct-sum decomposition of RNtk as P @ ¢(x), the configura-

tion of st t in P comes merely by projection Tp onto the

" P-factor of t-b; for all vertices t.
Having oriented e and therefore d; we may define an

integer g(e,t) as the algebraic number of points x e dr

such that
(ii) dim span (ﬂpvl(x) eee Tpvp(x)) < n-2.

The point is that given the configuration of st t in P
we can determine Tp in purely algebraic terms (without
reference to the embedding or the normal field). For these
purposes, we may, without loss of generality assume that RNtk
is spanned by the vertices {t} of st t. Now, from &N pick
the earliest vertices among the t's (label them ul,...,un)
so that {yj} = {uj-bg} spans P. Label the remaining vertices
Wiseee,Wk. Consider zj = wj - wj - by where wj, a linear
combination of y's, is the image of wj under the
configuration embedding ¢ (x). Let B be the matrix
(yl,...,yn, 21--~Zk) (writing vectors as columns with respect

to the ordered basis tl""’tn+k)' Let Q = B-l, and set =

first n rows of Q. Write R1 = (g) an nxn matrix so R1
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is a projection expressed in y,z <coordinates and BR1 =0 1s
projection Tp expressed in t-coordinates. 1N, of course,
depends on x. So g(e,t) 1is the algebraic number of points x

such that

(ii1) rank H(x)(vl(x),...,vn(x)) < n-2.

Now define n(e) by

Theorem. The assignment e > n(e) 1is an integral
oriented cocycle representing the first integral normal

Pontrjagin class pl(vM).

We omit an explicit proof, but we do note that the formula
for n(e) represents, essentially, a computation of what we
previously denoted as d(e). This computation is a rather
routine working out of consequences of the characterizations
given in [Ca 1] and [W] of the space of k-planes transverse to
M at a point in terms of configuration spaces.

This formula should be compared with the formula of [GGL].

There remains the slight problem of deriving a formula for
the integral "tangential" first Pontrjagin class. Suffice it to
say that the same general approach will work. I.e., in
constructing a "normal" field over M£4)--the transverse k-plane
field ¢--the Cairns procedure simultaneously constructs a

1

“tangent" plane field ¢~. By the same token, q must be

replaced by a locally determined trivial k-plane bundle.
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§4. Computational considerations

In the various local formulae we have exhibited above,
there remains the problem of explicitness. That is, we have
shown that given, say, an embedding of MN jp R”*k, together

with a local ordering a choice of configuration data at

simplices of dimension > n-4, we may construct a field

transverse to M" over M£4), from which a cocycle

representing Py (with real or integral coefficients) may be
computed. Note, however, these contrasting facts: We have shown
that the value of the cocycle on a dual 4-cell e depends only
on the given data on Je. (Strictly speaking, it depends on

data for simplices +t of dimension > n-3 to which o, the

dual simplex to T, is incident.) Yet, in point of actual
computation our formulas refer to data defined over all of e,
Thus, by way of concrete example, if we adopt the approach of §2
and make use of a differential 4-form on Gk,n we see that
the value of the associated Pontrjagin cocycle on a typical o4
is given as fe4¢*w, even though this number is an invariant of -
¢ restricted to e?. So, to compute this number, we should
have to know ¢ explicitly on e4, i.e., we should have to
carry out the Cairns construction in detail using the detailed
methods, as well as the actual results, of [Ca 2]. In some

ways, the situation is analogous to what one finds for the
Atiyah-Patodi-Singer n-invariant of an oriented Riemannian

4j-1 manifold M. n(M) s, of course, dependent only upon M
but is in general quite difficult to compute merely in terms of
M. VHowever, 1f7”M is known to be the boundary o%wiﬁe Riemannian
4j-manifold W (with the product metric near the boundary) then
the value of n(M) may be computed with relative ease.

In what follows, we indicate a computational alternative to
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specifying the transverse field ¢ explicitly on the”interfor
of e4, Again, for simplicity's sake, we work in the context of
real coefficients and differential forms.

The general idea is that one wants to avoid the difficulties
of making Cairns' construction of the field ¢ over the 4-cells
explicit. What is proposed, instead, is to use configuration data
at (n-4)-simplices, together with the explicitly-constructible
transverse field ¢ over the dual 3-skeleton to construct a
certain field F over 4 cells e (one for each dual 4-cell e)
so that integration can be done over e in place of fe¢*m with
essentially the same result, albeit F is not to be understood as
a transverse field to e. Rather, F arises from constructing a
l1-parameter family of embedded 3-spheres bounding a one-parameter
family of 4-cells so that, for each 3-sphere in the family, we
have an explicit field extending, in principle, to a field over
the corresponding 4-cell. The process begins with ¢ and ends
with a constant field so we can, for computations sake, regard it
as a field over a 4-cell. The integral we get therefore
represents the difference between the invariant [g6*w defined
by ¢ itself and the invariant one gets from a constant field over
a "“flat" 3-sphere, i.e. one which bounds a "flat" 4-cell. Since
the latter is obviously 0, we will have computed the former. The

point is that F is, in principle, directly constructible without ~
- 7
appeal to Cairns' theorem on connectivity of configuration spaces

of cones on oa-spheres.

Once more, assume that the combinatorially triangulated
manifold MM 4is simplex-wise linearly embedded in RN+K  jn
general position. We assume further data consisting of a
local ordering on the triangulation and a choice, for every

simplex o of dimension > n-4, of an element in CF(2ko).
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With this data in hand, as We have noted continually, wewbbtaiﬁ,
by a perfectly straightforward construction, a k-plane field ¢
transverse to MN  over M£3). This, of course, makes no use of
the configuration data at (n-4)-simplices. Rather than
concerning ourselves with extending the transverse field to
M£4), however, we now make use of the remaining data in a
different way.

Given an (n-4)-simplex o, the choice of a configuration
of ko is essentially a choice of a k-plane P transverse to
MM at bg. Choose an n-simplex p of st o, e.g., the
smallest in the lexicographic order induced by the linear order
on the vertices of st o. It follows, then, that every vertex
v. of st o may be represented uniquely (in the conventional
(n+k)-vector notation) as: v = bg + ry + ny where ry is a
vector in the linear n-plane Q@ parallel to p and ny € P,
Since P s, as assumed, transverse to MN at bss, it follows
that the projection map v bs + ry is not only 1-1 but
extends, in fact, by convex-linear extension, to an embedding

st ocby + Q. Furthermore, if we Tlet ut be defined as the

convex-linear extension of the map veé= by + ry + (1-t)eny

for 0 <t <1, we obtain a simplex-wise linear embedding

st oCRMK, If t < 1, ut is in general position; therefore

by Lemma 6 for such t we may use the configuration data on
simplices of dimension > n-3 to construct a k-plane field ¢t on
ut(ae4) - ut(st o), where e is the 4-cell dual to o, such
that ¢¢(x) is transverse to wut(st o) at wut(x). This

process is continuous on det «x [0,1). Moreover,

1im ¢t(x) = ¢;(x) exists for x € ae4 and we obtain thereby
t>1

a vector bundle on 3e% x I, in fact a map &: det x I » Gk ,ne



125

Finally, ¢1(x) is transverse to the n-plane by + Q.

Now we may deform ¢, further (regarding it as a map
sed Gk,n) to a trivial map, i.e., the constant map X p=— QL.
We think of this deformation (which may, of course, be con-
structed explicitly in terms of ¢y without difficulty) as

defining a map V¥: coel » Gg,n with ¢|8e4 = ¢,. Thus con-

IR

catenating with ¢, i.e., taking F = ¢y ¥: set x Tu cael
coet » Gk,n, we get a map from a topological 4-cell to Gk, n.
Call this 4-cell & . Now let w e 2%(Gx n) be, as in §2, a
closed form representing the real Pontrjagin class Py in DeRham

cohomology. We then have the following.

Theorem: Let & be any extension of ¢ to e%* with ¢

transverse to M. Then

f hg*w = f_ F*w,
e o'

We omit a proof. Suffice it to remark that what is being
exploited here is a principle cognate to, though much simpler
than, the well-known fact that, although the Atiyah-Patodi-
Singer n-invariant of a 4j-3 dimensional Riemannian manifold
is not the integral of a locally-determined form, nonetheless
the difference between the n-invariants of two Riemannian
structures which differ by deformation can be represented as
such an integral over the manifold x I.

As a final note, we observe that this method for computing
a cocycle representing py may easily be adapted to the integer
coefficient case studied in §3 above, where intersection numbers

are used in place of integrals.
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