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Introduction

In this note we shall be considering the quaternion group

Q, = {x,y|x2::y = {xy) , denoting it by m. From {[6)] we have that
K

8

‘O(Z(ﬂ)) = #Z/2 with generator the Euler characteristic of the trivial
Z{ny-module Z/3, which we denote'<3++>.
Mmn)) = m/207/2 with a
canonical non-zero class [A] given by the image of the non-trivial
class in Hev(2/2;KO

Now, 1 acts freely on SB, and in [2] Cappell and Shaneson

From e.g. [5) we have that L
(Z(7))) in the Ranicki-Rothenherqg exact sequence.

prove that the surgery obstruction in LT(Z(H)) of the map

T.1 Txf : 85 /mx kI gd s, 52372

is non-trivial, and given by [A], with f representing the
simply-connected Kervaire problem. However, their proof proceeds by an
intricate "peeling" arqgument, and it has seemed desirable for a number
of reasons to have a purely algebraic proof of their result.

In the current volume Jim Davis' paper [3] is concerned with
this question, and provides a general recognition principle by which
cne can decide if a symmetric Poincaré structure on a chain complex
(necessary for the application of the surgery product formula of [7])
is "geometric". Also Hambleton and Ranicki in as yet unpublished joint
work have obtained other algebraic proofs based on "peeling".

In this note we first construct a 3-dimensional chain
complex C, of f.g. free Z{(rm)-modules and a chain equivalence

-k
¢ : C3 —=*>(C,. We then analyze the class of ¢ in ZR (C,RBC,) and

note that this class determines ¢ up to chailn homotogﬁfﬂéomparing this
class with that of the diagonal chain map gives that ¢ is the base map
of a suitable symmetric Poincaré structure on C,: so taking the product
of (C,,¢) and the algebraic Kervaire problem gives an explicit guadratic
Poincaré complex whose surgery obstruction is that of I.1.

This problem is then quickly evaluated (the procedures used
here may have independent interest) and the Cappell-Shaneson example
1s the result. Indeed, by way of illustrating this last comment the
final section indicates how to extend these results to the remaining

compact space forms.
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A. The complex C, and the map ¢

There is exactly one chain homotopy class of finitely
generated free Z{(7m})-module chain complexes with the homology of 83
{(since the set of such classes is given by U{Z/8)/<+l,inT> = {1},
with T the Swan subgroup, sce e.g. [4]). A representative iz given in

[1] and is specified as follows

ALl 1 ] ' Ci Generators 3
o Z(m a O
1 Z(myez (mn) b (x-1})a
b {yv—1l)a
2 ZAMYBZ () C {1+x)b - (yv+L)b'
ol {(xy+l)b+ (y+1)b’
3 Z (T | e (x—lyc - (xy~-1l)c’

Then C* is specified by the formulae

A2 S(c*) = (xo-1)e*
S{c'*) = —(yx=-1)e*
S(b*) = (l4x°)c* + (yx+l)c'*
S(b'*) = —(yo+l)ck + (xo-1)c'*
S(a*) = (x°-1)b* + (yo=1)b"*

A3 d(e*) = a
${c*) = -x°h
¢{c'*) = —(yb+b')
§(b*) = (yx-(y +1) (14x))c' + (2y°-y)e
b *) x Tt
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B. ¢.is the beginning map in the Mishchenko-Ranickl symmetric structure
on 83/'”

The set of chain homotopy classgses of Z{n)-module chaln maps

Jk
o+ 7T ——sC,
is in 1-1 correspondence with HB“ZEZZ(W)(C*EC*))’ where Z (7} acts on
C,RC, via the diagonal map
B.1 A 2Ty ——= Z(MBZ (1) = Z(T=x7) ; g+—>>glg

Thig is well known, sce e.g. [7].

Proposition B.2 H_{Z® {CL,RCL)) = ZB9Z with gencrators A,B (say}

3 Z L)

and the projection p:C 80, ——ZR {C,RC,) induces_an injection

Z(m)

Py ¢ Hy(CLBC) — H, (2R

3 (CLBC,))

3 77 )
el 4+ 18e+—3»8A , el r——m> B

Proof: There 1s a spectral scquence converging to H, (ZR

with

Z“T)l((j‘,clléii(j*}}

2 - e
Ei,j = Hi(“,Hj(L*EC*))
50 Ei 5 # 0 only for j = 0,3,6. Moreover H4(H,ZJ = 0, s0
d4 = 0 : E4,O____+EO,3 and H3(Z®Z“ﬂ)(L*®C*)) 18 given as an

extension

i
4 N 2 —
B.3 O =B, 3 > H,(Z8,  (CEC,)) — By . 0
where EO,3 = Z87Z and "3,0 T Z/8. Moreover 1 in B.3 1s the map p,.
To determine the extension in B.3 note that the geometric

diagonal d:53~——$ Ssx 83 is m-equivariant, sc that there is an

algebraic chain approximation such that the diagram below commutes

%
C, > CRC,
B.4 Pq P
a
dy |
EZ@?Z(W)C* —"—*Z@Z(ﬁ) (CLHC,)
But H3(C*) = 7Z and HB(ZEZZ(H)C*) = Z , with Pow multiplication by 3.
On the other hand d*:HB(C*)——F~5H3{C*®C*) sends the generator e to

e®) + 1lBe, and B.2 follows.
[]
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Corollary B.5 The map ¢ defined in A.3 is chain homotopic to the map

corresponding to the diagonal in B.4. More exactly [¢] = a*(f) where f
zZa,, Cyd e

is a generator of H3( ()

Proof: It suffices to show that [¢] €H

3(C*QC*} is d,{e) from B.2. But

this is the case if and only if

(4) 4 @ H(C) ——H, (C)

is dual to (¢), : HO(C}————+H3(C) and both are isomorphisms. This is

easily checked and the result follows since the desired symmetric
structure on C, restricts to the class of the diagonal map in degree O.

[}

Remark B.6 In this case the c¢lass of the lifting in B.4 determined the

class. In general this is not true as there may be many classes 1in

Hn{Zﬂ%E(ﬂ)(L*EC*)) which l1ift to the same class 1n HH(L*EC*}. {Here

"class" means d#,gﬁ and "1lift" multiply by the order of ).

[]

C. The evaluation of the surgery obstruction for I.1

Proposition C.1 Let 1 be a finite 2-group, and suppose C,,D, are

eguivalence X, :Cy—>Dy. If Z2/2&,,  C, and Z/28 D

s
boundary maps then A

(1) (1)7% =22

is an injection. Moreover, for each i Di/im}\i

4
is a finite odd torsion module.

Proof: Since k# is a chain isomecrphism

M ot I, (Z/28 ) Cu) ———>H, (Z/28,, D)

(1) (1)

is an lsomorphism, but sincc %/2®ZH g = O in both complexes 1t

T)
follows that

Z /28 Z/28,,  \C, > Z/28 D

# (1) 7 (1) 1

ig an isomorphism for each i. Now apply Nakayama's Lemma and C.l

follows.

[]

Corollary C.2 Let (D,V) be the (4i+2)-dimensional quadratic Poincare

complex over Z with Kervaire invariant 1,

D2i+l = ZeZ |, Dj O for ] # 21i+1
. — tl 2i+1
‘|JO - Y

e 1

C.3 (C,BD, ¢RY)

Z@Zﬂ—h*—§Dzi+l = Zo7Z ,
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The chain equivalence

. 4i+45-%
C.4 ORY - *RY* : (C,BD) ——— C,&D

is an _injection in each degree with odd torsion cokernel.

Proof: N direct application of C.1,

In dimension O

3 —l+2y—y3 -1
A= b By - QY = ,
© 0 2y-y” ~1+2y-y” '
while in dimension 1
X +2y-y Xj * *
5 2y-y x3+2y—y3 * *
Ay o= 0BV - dTRYE =
' O 0 x+1 1

O O X ®x+1 ,/

Hence the order of an odd torsion guadratic form rvepresenting the

surgery obstruction of the product (C,BD,$8)) 1is

det ($ @) - 3 BY*) /det (0BY -~ 0 BI%)
where det{d). means the class of & in K, (Q(m)). Restricting to tho:
five irreducible representations of ;e have the taple
;Representation i ++ I = ] -t ] - ] O
C.5 AO 1 3 1 3 73
Ay 9 -3 1 -3 73

Hence the form in guestion 1s represented by a torsion module of order
9 at the trivial representation and O at all other representatlons.
Since the form is SKEW SYMMETRIC this must be Z/3®67ZZ/3 with each Z/3
a torsion lagrangian.

But this torsion class exactly represents the image of the
class <377> from ﬁev{z/z,KO(Z(n))) in LD

1
the surgery cobstruction for I.1 1s non-trivial.

{7Z(m}) and we have proved that
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D. The algebraic evaluation of the surgery obstruction for other space

forms
Let T be one of the groups Z/im Or
272 2
Qon = {x,v] x = y° = (xy}“~}, so that T acts frecly preserving
orientation on the sphere 52m+l the first case or S4n+l in the second.

Each such action corresponds to a finite chain complex with the chain

homotopy type unambiguously specified by the first k—invariant ki of
the resulting quotient Sl/T. (See e.g. [4] for discussion and references).
For these compléxes C(T,Km+l) Proposition B.2 generallzes,

and the only change in the statement isg

0.1 p, (e®Rl + 1Re) = btin

D.1 together with C.1

obstruction. When <

Proposition D.2 Let

provide an effective method for determining the

22/2m here is the result.

T =

Z/zﬂl and suppose C(T:U2n+2) is the Z{1)-module

chain complex of dimension 2n+l

x1-1 5 5 x=1 b x—1
Z(T) ———2 Z(T) — oo —— (1) —— ST T) —Z(T) ———>Z (1)
2n+l-%* o

with Poincare duality chain cgquivalence ¢:C(T,u2n+2) T,U2n+2},

for some unit u in the ring Z/Qn.'Then

h

a. For n+l odd 0((C(T,u2n+2),¢}®Kerva1re) =0 e L2n+3(mtr)} .
. . , h .
b. T'or n+l even O{{L(T,u2n+2),¢)®Kervalre) Z 0 e L2n+3(Z(T}} and has
non-trivial image in L?(Z(T)) = Z/2 .

Proof: The geometrically induced ¢ 1s such that ¢O = id. and

n+l

¢2n+l (—) .1d. Hence a suitable ¢ is given by the table
dimension ¢
O id
1 Lo, . 407071
2 (m-u}
D3 3 —-(m=-u)x
4 -{(m—-u}
5 (m-u)x
6 (m-u)
7 .
2n (-1 " T (L)
2n+1 (-1) "t
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Moreover (C,,%) satisfies the conditions of C.1, so

n+1

D.4 (C,BKervaire, 98V - (~1) *RY*)

gsatisfies the hypothesis of C.1 ag well, Henc¢e the answers come from
evaluating the alternating product of the images in Kl of the

— — n+l * * 1 1 1 =
(¢i®$ (-1} 2n+l—i®$ } through dimension 1 =n.

This calculaticn is direct. The matrices which appear are

u—1
( o 1 > in degree C, ( O Lxt. . +x \ in 1, and
-1 . -

o 1+x+..+xu_l) 0 J

. -1
u( Lo . _]) otherwise. The result is alternately
N

— l_
2 -1 -2
1- + )
u (l-x = Jl% n+l even

(L4xt. . +x"7 12

D.5

flext. . +x97 12 n+l odd

The odd case vlearly gives 0. P'or the even case we check at the trivial

representation and the -1 representation rﬂ(xl) = (—l)l obtaining

+ -\
D.6
u2 3u2)
which represents the non-trivial element in L%(Z/2m}.
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