Triviality of the Involution on SK_1 for Periodic Groups

bу

Jonathan D. Sondow

Courant Institute of Mathematical Sciences

New York University

New York, N. Y. 10012

Let π be a periodic group or, more generally, a finite group with every p-Sylow subgroup either cyclic, or, for p = 2, a dihedral, quaternionic, or semidihedral group. In §1 of this note we show that the involution on SK_1 ($\mathbb{Z}\pi$) is trivial. The proof uses the results of Oliver (3), (4), where he calculates SK_1 ($\mathbb{Z}\pi$) $\stackrel{\sim}{=} \mathbb{Z}_2^k$. In §2 we derive some consequences for the groups H^n (\mathbb{Z}_2 ; $Wh(\pi)$), which have applications in surgery theory (cf. (7, Prop. 4.1)) and the theory of semifree group actions (5, Prop. 3).

By Wall (9) the involution is also trivial on $Wh(\pi)/SK_1$ (ZZ π). The question remains whether it is trivial on $Wh(\pi)$ for π periodic (see the Remark in §2).

For examples of finite groups with non-trivial involution on SK_1 see (11, proof of Theorem 4.8) and (10, Props. 24 and 25).

Involution on SK_1 for Periodic Groups

§1. The involution on SK_1 ($ZZ \pi$).

For any group π the involution on the group ring \mathbb{Z} π defined by $x \mapsto x^{-1}$, $x \in \pi$, induces by conjugate transpose on GL $(\mathbb{Z}\pi)$ and involution on Wh (π) and, for finite π , on SK_1 $(\mathbb{Z}\pi)$ and SK_1 $(\mathbb{Z}\pi)$

Lemma. Fix a prime p and let π be a finite group such that the involution on SK_1 $(Z_{\pi}')_{(p)}$ is trivial for every p-hyperelementary subgroup $\pi' \subset \pi$. then the involution is trivial on SK_1 $(Z_{\pi})_{(p)}$.

Proof. This follows immediately from the Dress induction isomorphism

$$\xrightarrow{\underset{\pi'}{\text{lim}}} SK_1 (Z\pi')_{(p)} \xrightarrow{\cong} SK_1 (Z\pi)_{(p)}$$

of Oliver (4, p. 302), where the limit is taken with respect to inclusion and conjugation (which commute with the involution) among p-Q-elementary (hence p-hyperelementary) subgroups $\pi' \subset \pi$.

Theorem 1. Let π be a finite group whose 2-Sylow subgroup is cyclic, dihedral, quaternionic, or semidihedral. Then the involution on $SK_1(ZX\pi)$ is trivial.

<u>Proof.</u> First reduction. It is not difficult to show that the hypothesis on π is satisfied by every subgroup of π . Hence by the Lemma it suffices to prove the result when π is 2-hyperelementary.

Second reduction. It is also not difficult to show that the 2-Sylow subgroup π_2 has a normal abelian subgroup with cyclic quotient. Hence by (4, Prop. 9 (ii)) we have $SK_1(\mathbb{Z}_2\pi) = 0$ in the exact sequence

$$0 \rightarrow \mathbb{C}\ell_{1}(\mathbb{Z}\pi)_{(2)} \rightarrow \mathbb{S}K_{1}(\mathbb{Z}\pi)_{(2)} \rightarrow \mathbb{S}K_{1}(\mathbb{Z}_{2}\pi) \rightarrow 0,$$

where $\text{Cl}_1(\mathbf{Z}\ \pi)$ denotes the kernel of the natural surjection (see (3, p. 184))

$$SK_1 (Z \pi) \rightarrow \sum_{p} SK_1 (\widehat{Z}_{p}^{\pi}).$$

Thus we need only show that the involution is trivial on $(Z\pi)_{(2)}$.

Third reduction. SK_1 ($ZZ\pi$) = 0 if π_2 is cyclic by (3, Theorem 2),

so finally we are reduced to proving that the involution is trivial on ${^{\text{CL}}}_1(\mathbb{Z}\,\pi)_{(2)}$ if π is 2-hyperelementary and π_2 is dihedral, quaternionic, or semidihedral.

To begin the proof we have $\pi \not\cong \mathbb{Z}_n \longrightarrow \pi_2$ with n odd. Write $\mathbb{Z}_n = \{1, x, \dots, x^{n-1}\}$ and $\operatorname{Aut}(\mathbb{Z}_n) = \{a \mid 1 \leq a < n, (a,n) = 1\}$. The action of π_2 on \mathbb{Z}_n is given by a homomorphism $t \colon \pi_2 \to \operatorname{Aut}(\mathbb{Z}_n)$ with $\operatorname{gxg}^{-1} = x^{t(g)}$ for $g \in \pi_2$. Thus $\mathbb{Z}(\mathbb{Z}_n \longrightarrow \pi_2) = \mathbb{Z}(\mathbb{Z}_n)$ (π_2) is a twisted group ring with involution defined by

$$xg \rightarrow xg = x^{t(g^{-1})}g^{-1}$$
.

Now fix d|n. Let $\zeta_d = e^{2\pi i/d}$ and let $\mathbb{Z}\zeta_d$ denote the ring of integers in the extension of \mathbb{Q} by the dth roots of unity. Since n is odd and \mathbb{Z}_2 is a 2-group, we have (d,t(g))=1 for $g\in \mathbb{Z}_2$. Hence $\zeta_d \mapsto \zeta_d^{t(g)}$ defines an automorphism t_g of $\mathbb{Z}\zeta_d$, and $g \mapsto t_g$ defines an action of π_2 on $\mathbb{Z}\zeta_d$.

Let $\mathbb{Z}\!\!\zeta_d(\pi_2)^t$ denote the corresponding twisted group ring, with multiplication given by $\alpha g \cdot \alpha_1 g_1 = \alpha t_g(\alpha_1) g g_1$ for $\alpha, \alpha_1 \in \mathbb{Z}\!\!\zeta_d$ and $g, g_1 \in \pi_2$. The involution on $\mathbb{Z}\!\!\zeta_d(\pi_2)^t$ is defined by

$$\alpha g \rightarrow \overline{\alpha g} = t_{g^{-1}}(\overline{\alpha})g^{-1} = \overline{t_{g^{-1}}(\alpha)}g^{-1},$$

where $\overline{\alpha}$ is the ordinary complex conjugate of $\alpha \in \mathbb{Z}\zeta_d$ \boldsymbol{c} . Setting $\operatorname{pr}_d(x^mg) = \zeta_d^mg$ for $x^m \in \mathbb{Z}_n$ defines the natural projection

$$\operatorname{pr}_{d}: \mathbb{Z} (\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{\zeta_{d}}(\pi_{2})^{t}.$$

One checks easily that pr_d commutes with the involution. Hence the induced homomorphism

$$\operatorname{pr}_{d^{*}(2)} : \operatorname{Cl}_{1}(\mathbb{Z}(\mathbb{Z}_{n} \to \mathbb{Z}_{2}))_{(2)} \to \operatorname{Cl}_{1}(\mathbb{Z}\zeta_{d}(\mathbb{Z}_{2})^{t})_{(2)}$$

commutes with the involution on these groups. Therefore

$$\sum_{d \mid n} \operatorname{pr}_{d_{*}(2)} : \operatorname{Cl}_{1}(\mathbb{Z}(\mathbb{Z}_{n} \mathbb{Z}_{2}))_{(2)} \xrightarrow{\Sigma} \sum_{d \mid n} \operatorname{Cl}_{1}(\mathbb{Z}\zeta_{d}(\mathbb{Z}_{2})^{t})_{(2)}$$

commutes with the involution, which leaves each summand on the right invariant. But according to (4, Prop. 11) if π_2 is dihedral, quaternionic, or semidihedral, then $\text{Cl}_1(\mathbb{Z}\zeta_d(\pi_2)^t)_{(2)}$ is either 0 or \mathbb{Z}_2 , which have only the trivial involution. Hence the involution on the direct sum is trivial. Since $\sum_{d \mid n} \text{pr}_{d*(2)}$ is injective (indeed, bijective) by (4, p.328),

it follows that the involution on $\mathbb{C}^{\ell}_{1}(\mathbb{Z}(\mathbb{Z}_{n} \to \pi_{2}))_{(2)} \cong \mathbb{C}^{\ell}_{1}(\mathbb{Z}\pi)_{(2)}$ is trivial. This completes the proof of Theorem 1.

Remark. A. Bak has an unpublished proof that the involution is trivial on $\text{Cl}_1(\mathbb{Z}^{\pi})$ for any finite group $^{\pi}$, a general result he conjectured and proved a special case of in (0).

Theorem 2. Let π be a finite group whose p-Sylow subgroups are cyclic or, for p = 2, dihedral, quaternionic, or semidihedral (e.g. π periodic). Then the involution on $SK_1(ZZ^{\pi})$ is trivial.

<u>Proof.</u> $SK_1(Z^{\pi})_{(p)} = 0$ for p > 2 by (3, Theorem 2). So $SK_1(Z^{\pi}) = SK_1(Z^{\pi})_{(2)}$ and the result follows by Theorem 1.

§2. $H^n(Wh(\pi))$

Wall has shown (9, p. 617) (see also (2, Corol. 6.10)) that for a finite group π the involution $\tau \longmapsto \overline{\tau}$ is trivial on $Wh'(\pi) \equiv Wh(\pi)/SK_1(ZZ^{\pi})$. Hence setting $h(\tau) = \tau - \overline{\tau}$ for $\tau \in Wh(\pi)$ defines a homomorphism

h: Wh(
$$\pi$$
) \longrightarrow SK₁($ZZ \pi$).

From now on assume π satisfies the hypothesis of Theorem 2.

Remark. Although the involution will then be trivial on both $Wh(\pi)/SK_1(Z\pi)$ and $SK_1(Z\pi)$, it does not follow that it is trivial on $Wh(\pi)$. (For example, it might take (1,0) to (1,1) in $Z\times Z_2$.) Question: Is it, if π is periodic?

By Theorem 2 we have h $SK_1(Z\pi)=0$, so there is a unique homomorphism h: $Wh'(\pi) \to SK_1(Z\pi)$ factoring h = h'ov, where v: $Wh(\pi) \to Wh'(\pi)$ is the natural projection.

It follows from Oliver (3, Theorem 2) and (4, Theorem 6) that $SK_1(Z\pi) = Z_2^k$, where k is the number of conjugacy classes of odd cyclic subgroups C \subset π such that (i) the 2-Sylow subgroup of the centralizer of C is nonabelian and (ii) there is no g \in π with $gxg^{-1} = x^{-1}$ for all $x \in C$. Combining this with Wall's result (9, Theorems 1.2 and 6.1)(see also (8, §§6 and 7)) that $SK_1(Z\pi) = tor(Wh(\pi))$, and Bass' theorem (1) on the rank of $Wh(\pi)$, yields $Wh(\pi) = Z_2^k \times Z^{r-q}$, where (using (6, Chap. 13)) q is the number of conjugacy classes of cyclic subgroups of π , and r is the number of conjugacy classes of unordered pairs $\{x, x^{-1}\}$, $x \in \pi$.

Let m be the \mathbb{Z}_2 rank of $\operatorname{im}(h) = \operatorname{image}$ of h in $\operatorname{SK}_1(\mathbb{Z}\,\pi) \cong \mathbb{Z}_2^k$. Note $m \leq \min(k,r-q)$ since $\operatorname{im}(h) = \operatorname{im}(h')$ and we may interpret $h' \colon \mathbb{Z}^{r-q} \to \mathbb{Z}_2^k$. For an abelian group G with involution $g \longmapsto \overline{g}$ set

$$H^{n}(G) = \frac{\{g \in G | g = (-1)^{n-}g\}}{\{g + (-1)^{n-}g | g \in G\}} = H^{n}(\mathbb{Z}_{2};G).$$

These are elementary 2-groups.

Theorem 3. If π is a finite group whose p-Sylow subgroups are cyclicor, for p = 2, dihedral, quaternionic, or semidihedral, then

(i)
$$\operatorname{H}^{n}(\operatorname{SK}_{1}(\mathbb{Z}_{\pi})) = \mathbb{Z}_{2}^{k} \text{ for all } n$$

$$(ii) \qquad \text{H}^n(\text{Wh}(\pi)) \qquad \stackrel{\sim}{=} \begin{cases} \mathbb{Z}_2^{k-m} & \underline{\text{for n odd}} \\ \mathbb{Z}_2^{k-m+r-q} & \underline{\text{for n even}}. \end{cases}$$

<u>Proof.</u> (i) This is immediate since $\sigma = \overline{\sigma} = -\overline{\sigma}$ for $\sigma \in SK_1(\mathbb{Z}\pi) = \mathbb{Z}_2^k$.

- (ii) <u>n odd</u>. Recall that $\tau = \overline{\tau} + h(\tau)$ with $h(\tau) \in SK_1(\mathbb{Z}\pi)$ for $\tau \in Wh(\pi)$. Hence $\tau = -\overline{\tau}$ implies $2\tau = h(\tau) \in SK_1(\mathbb{Z}\pi) = tor(wh(\pi))$, whence $\tau \in SK_1(\mathbb{Z}\pi)$. Conversely, $\tau \in SK_1(\mathbb{Z}\pi)$ implies $\tau = -\overline{\tau}$ as above, so $H^n(Wh(\pi)) = \{ \tau = -\overline{\tau} \} / \{\tau \overline{\tau}\} = SK_1(\mathbb{Z}\pi) / im(h) = \mathbb{Z}_2^k / \mathbb{Z}_2^m$.
- (ii) <u>n even</u>. Choose a basis $\sigma_1, \dots, \sigma_m, \dots, \sigma_k$ for $\mathrm{SK}_1(\mathbb{Z}\,\pi)$ as a vector space over \mathbb{Z}_2 such that $\sigma_1, \dots \sigma_m$ is a basis for the subspace $\mathrm{im}(h')$. Then by induction on r-q find a basis $\tau'_1, \dots, \tau'_m, \dots, \tau'_{r-q}$ for $\mathrm{Wh}'(\pi)$ as a free \mathbb{Z} module such that $\mathrm{h}'(\tau'_i) = \sigma_i$ for $i = 1, \dots, m$ and $\mathrm{h}'(\tau'_{m+1}) = \dots = \mathrm{h}'(\tau_{r-q}) = 0$. Finally, pick $\tau_i \in \nu^{-1}(\tau'_i) \subset \mathrm{Wh}(\pi)$, so that $\mathrm{h}(\tau_i) = \mathrm{h}'(\tau'_i)$, $i = 1, \dots, r-q$. Let (x_1, \dots, x_s) denote the subgroup generated by x_1, \dots, x_s . Then, since $\tau = \overline{\tau} + \mathrm{h}(\tau)$ for $\tau \in \mathrm{Wh}(\pi)$ and $\mathrm{h}(\tau) = 0$ if $\tau \in \mathrm{SK}_1(\mathbb{Z}\,\pi)$, we get

$$H^{n}(wh(\pi)) = \frac{\{\tau = \overline{\tau}\}}{\{\tau + \overline{\tau}\}}$$

$$= \frac{\langle \sigma_{1}, \dots, \sigma_{k}, 2_{1}, \dots, 2_{m}, m+1, \dots, r-q}}{\langle 2\tau_{1} + \sigma_{1}, \dots, 2\tau_{m} + \sigma_{m}, 2\tau_{m+1}, \dots, 2\tau_{r-q} \rangle}$$

$$= \frac{\langle \sigma_{1}, \dots, \sigma_{k}, 2\tau_{1} + \sigma_{1}, \dots, 2\tau_{m} + \sigma_{m} \rangle}{\langle 2\tau_{1} + \sigma_{1}, \dots, 2\tau_{m} + \sigma_{m} \rangle} \times \frac{\langle \tau_{m+1}, \dots, \tau_{r-q} \rangle}{\langle 2\tau_{m+1}, \dots, \tau_{r-q} \rangle}$$

$$\stackrel{\sim}{=} \mathbb{Z}_2^k \times \mathbb{Z}_2^{r-q-m}$$
.

From Theorem 3(ii) we derive some consequences which do not depend on the unknown m, but only on the reasily computed r, q, and k.

Corollary. If π is a periodic group, then

- (i) the Herbrand quotient $|H^{0}(Wh(\pi))| = 2^{r-q}$ $|H^{1}(Wh(\pi))|$
- (ii) for n odd, $H^n(Wh(\pi)) = 0 \text{ only if } k \leq r-q$
- (iii) for n even, $H^{n}(Wh(\pi)) = 0$ if and only if $Wh(\pi) = 0$

<u>Proof</u>: (i) follows trivially, (ii) follows from $m \le r-q$, and (iii) because $m \le k$ also, so $k-m+r-q=0 \iff k=r-q=0 \iff Wh(\pi)=0$.

References

- 0. A. Bak, The involution on Whitehead torsion, General Top. and Appl. $\underline{7}$ (1977), 201-206.
- 1. H. Bass, The Dirichlet Unit Theorem, induced characters, and Whitehead groups of finite groups, Topology 4, (1966), 391-410.
- 2. J. Milnor, Whitehead torsion, Bull. AMS 72 (1966), 358-426
- 3. R. Oliver, SK for finite group rings: I, Invent. Math. 57 (1980), 183-204.
- 4. SK1 for finite group rings: III, Proc. Conf. on Algebraic K-Theory (Evanston, 1980), Lecture Notes in Math., vol.854, Springer-Verlag (1981), 299-337.
- 5. M. Rothenberg and J. Sondow, Nonlinear smooth representations of compact Lie groups, Pacific J. Math. 84 (1979), 427-444.
- 6. J.-P. Serre, <u>Linear representations of finite groups</u>, Springer, New York (1977).
- 7. J. Shaneson, <u>Wall's obstruction groups for G x Z</u>, Ann. of Math. 90 (1969), 296-334.
- 8. M. Stein, Whitehead groups of finite groups, Bull. AMS $\underline{84}$ (1978), 201-212.
- 9. C.T.C. Wall, Norms of units in group rings, Proc. London Math. Soc. (3) $\underline{29}$ (1974), $\underline{593-632}$.
- 10. R. Oliver, SK_1 for finite group rings: II, Math. Scand. 47 (1980), 195-231.
- 11. $\frac{SK}{Soc. (3)}$, $\frac{SK}{46}$ (1983), 1-37.