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Let m be a periodic group or, more generally, a finite group with every
p-Sylow subgroup either cyclic, or, for p = 2, a dihedral,quaternionic,
or semidihedral group. In §1 of this note we show that the involution:
on SK1 (Z m) is trivial. The proof uses the results of Oliver (3), (4),
where he calculates SK1 (Z ) = Zg . In 8§82 we derive some consequences
for the groups H" UZQ;Wh(ﬂ)), which have applications in surgery theory
(cf. (7, Prop. 4.1)) and the theory of semifree group actions (5, Prop.
3).

By Wall (9) the involution is also trivial on Wh(TT)/SK1 (Z 7).
The question remains whether it is trivial on Wh (m) for = periodic
(see the Remark in §2).

For examples of finite groups with non-trivial involution on SK

see (11, proof of Theorem 4.8)and (10, Props. 24 and 25) .

1

Involution on SK1 for Periodic Groups

§1. The involution on SK1 (ZZ 7).
For any group 7 the involution on the group ring Z m defined by
X l-—g x_l, x € m, induces by conjugate transpose on GL (Z 7 ) an in-

volution on Wh (m) and, for finite T, on SK1 (Z m ) and SK1 (Ziﬂ)(p).

Lemma. Fix a prime p and let m be a finite group such that the involution

on SK1 (ZZW')(p) is trivial for every p-hyperelementary subgroup 7 e .

then the involution is trivial on SK1 (Ziﬂ)(p).
Proof. This follows immediately from the Dress induction isomorphism
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of Oliver (4, p. 302 ), where the limit is taken with respect to inclu-
sion and conjugation (which commute with the involution) among p-Q-

elementary (hence p-hyperelementary) subgroups m’' & T.

Theorem 1. Letm be a finite group whose 2-Sylow subgroup is cyclic,

dihedral, quaternionic, or semidihedral. Then the involution on SKI(ZW)(Z)

is trivial.

Proof. First reduction. It is not difficult to show that the hypothesis

on m is satisfied by every subgroup of m. Hence by the Lemma it suffices

to prove the result when m is 2-hyperelementary.

Second reduction. It is also not difficult to show that the 2-Sylow

subgroupﬂ2 has a normal abelian subgroup with cyclic quotient. Hence

N
by {4, Prop. 9 (ii)) we have SKlﬂﬂzw) = 0 in the exact sequence

0 > CR(ZM)(,) » Sk (ZTW), » SK (?zzrr>+ 0,

where CRl(Z T ) denotes the kernel of the natural surjection (see ( 3,
p. 184 ))

SK1 (Zm )y -~ [Z) SK1 (Zpﬂ).

é/
Thus we need only show that the involution is trivial on Cﬂl (ZZW)(Z).

Third reduction. SK1 (ZZm ) = 0 if Ty is cyclic by (3, Theoremn 2) ,

so finally we are reduced to proving that the involution is trivial on

CQI(Z'W)(Z)if m 1is 2-hyperelementary and m ., is dihedral, quaternionic,

2
or semidihedral.

To begin the proof we have T & ZZH>~Q ™o with n odd. Write
Z%1= {l,x,no,,xavl} and Aut(Zal)= {a] 1= a< n, (a,n) = 1}. The action
of m, on Z is givén by a homomorphism t:m, » Aut(Z ) with gxg_l = xt(g>
2 n t n
for g € m,. Thus ZKZ%ENGWZJ = 2Z ) (ﬂzj is a twisted group ring with

involution defined by

xg|-+ §§ = X g

Now fix d|n. Let Lq = eZTri/d and let Zﬂﬁ denote the ring of integers

«in the extension of ® . by the dth roots of unity. Since n is odd andTT2
> t(g) .
9 Hence Cd| Cd defines

an automorphism tg of Zﬂﬁ, and gl'> tg defines an action of ﬂ2 on Zﬁd.

is a 2-group, we have (d,t(g)) =1 for g ¢ T



273

Let Zld('g)t denote the corresponding twisted group ring, with multi-
plication given by oag® ul%l = atg(onl)gg1 for a,a; € dg, and g,gq € T,
The involution on Zkﬁ[ﬂz) is defined by

— . -1 —_— -1
0Lg|‘> ag = t _1(0c)g =t __1(05) g ’
2 8
where o is the ordinary complex conjugate of a ¢ ZZd C ¢.
Setting prd(xmg) = C?g for x"e Z%ldefines the natural projection

t
prd.Z(an 1T2] > ng[ﬂz) .

One checks easily that PTy commutes with the involution. Hence the in-

duced homomorphism

PTan(gyt CU(Z (Z, 3 m,))) oy > CR(Zg(m,)0) )y

commutes with the involution on these groups. Therefore

t
:czl(zz(zn><3n2)>(2)+ v czl(zz;d(nz) )(2)

rd*(z) d|n

)}
d|n
commutes with the involution, which leaves each summand on the right
invariant. But according to (4, Prop. 11) if Ty is dihedral, quaternionic,
or semidihedral, then CQI(Zgﬂﬂz)t)(2> is either 0 or Zz,vddch have
only the trivial involution. Hence the involution on the direct sum is

trivial. Since T PT s () is injective (indeed, bijective) by (4, p.328),
d|n

it follows that the involution on C& (ZUZ ><7T2 )(2) ~ C (Zﬁﬂ)(z)

is trivial. This completes the proof of Theoren 1.

Remark. A. Bak has an unpublished proof that the involution is trivial
on Cﬁl(Zﬂ):ﬂn‘any finite group 7, a general result he conjectured and

proved a special case of in (0).

Theorem 2. Let T be a finite group whose p-Sylow subgroups are cyclic

or, for p = 2, dihedral, quaternionic, or semidihedral (e.g.T periodic).

Then the involution on SKl(ZZW) is trivial.

Proof. SKI(ZZW)(p) = 0 for p > 2 by (3, Theorem 2). So SKI(Ziﬂ) =
SKI(Z’W)(2>and the result follows by Theorem 1.
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§2. H"(Wh(@))

Wall has shown (9, p. 617) (see also (2, Corol. 6.10)) that for a

finite group T the involution T——— T is trivial on Wh'(m) = Wh(r )/
SKl(Z T ). Hence setting h(T) = T - T for T ¢ Wh(7m) defines a homomorph-
ism

h: Wh(ﬂ)——>—SK1(Z ™).
From now on assume T satisfies the hypothesis of Theoren 2.

Remark. Although the involution will then be trivial on both Wh(m)/
SKl(Z‘W) and SKl(ZIﬂ), it does not follow that it is trivial on Wh(m).
(For example, it might take (1,0) to (1,1) in Z XIZZ.)Question: Is it,
if ™ is periodic?

By Theorem 2 we have h SKl(Z m)= 0, so there is a unique homo-
morphism h* WH(m) - SKI(ZZH) factoring h = h’s v, where v:Wh(m)> Wh’ (m)
is the natural projection.

It follows from Oliver (3, Theorem 2) and (4, Theorem 6) that
SKl(ZZW )~ Z&;,where k is the number of conjugacy classes of odd cyclic
subgroups C € m such that (i) the 2-Sylow subgroup of the centralizer
of C is nonabelian and (ii) there is no g € T with gxg_1 = x_l for all
x € C. Combining this with Wall’s result (9, Theorems 1.2 and 6.1)(see
also (8, 886 and 7)) that SKl(ZZW ) = tor(Wh(m)), and Bass’ theorem (1)
on the rank of Wh(m), yields Wh(m) = Zgzcizrﬁq,where (using {6, Chap.

13)) q is the number of conjugacy classes of cyclic subgroups of m,

and r is the number of conjugacy classes of unordered pairs {x,xal},
X & m,
Let m be the ZZZ rank of im(h) = image of h in SKl(ZW)E Zl?f. Note
m £ min(k,r-q) since im(h) = im(h’) and we may interpret h’: /A I Zg.
For an abelian group G with involution ghwa-g set
n {g e GI% = ("1)n_8} n
H (G) = = H (ZZ;G).
{g + (- | g e cl
These are elementary 2-groups.
Theorem 3. If m is a finite group whose p-Sylow subgroups are cyclic:

or, for p = 2, dihedral, quaternionic, or semidihedral, then
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(1) HY(SK,(Z 7)) Z Z5 for all n
Zg_m for n odd
(ii) H? (Wh(m)) -
Zg—m+r—q for n even.
Proof. (i) This is immediate since 0 = 0 = -0 for Og¢ SKI(ZZW):; Zé.
(ii) n_odd. Recall that v = 7T + h(t) with h(71) ¢ SK,(Z m) “for
T ¢ Wh(w). Hence T = -1 implies 2T = h(T) ¢ SKI(Z'N) = tor(wh(m)), whence
T € SKl(Z‘n). Conversely, T ¢ SKl(ZIW) implies T = -T as above, so

m

HY(Wh(m)) ={ T = -1 } /{1-7} = SK.(Z7)/ im(h) = zZ5/z™.
1 2 2

(ii) n even. Choose a basis OpseevsO seens0p for SKl(ZZﬂ ) as a
vector space over Zstuch that Opse-.0, is a basis for the subspace
im(h”). Then by induction on r-q find a basis T'l,...,T'm,...,T'r_q
for Wh'(m) as a freeZ module such that h'(T'i) = 0 for i = 1,...,m

’ ’ ’ _ . . - 1 7
and h’ (T m+1) = ... = h (Tr_q) = 0. Finally, pick T, €V (T i)(: Wh(m),
so that h(Ti) = h'(T'i), i=1,...,tr-q. Let <X1""’Xs> denote the
subgroup generated by Xiseees X . Then, since T = T + h(1) for T e Wh(m)
and h(t) = 0 if T ¢ SKI(ZZH), we get
. {1 =7}
H (wh(m)) = —
{1 + 1}
<
_ Ol**"fck’z 1,.,.2 nY mel’ T rogq
<2T.40,,0¢.,2T 40 ,27T s e ee s 2T >
171 m m m+1 r—-q
< ;
N 019""Ok’2T1+01""’2Tm+Om> <Tm+1,...,Tr_q>
< ,
211+01,...,2Tm+0m> 2<Tm+1,...,Tr_q>
~ k r-q-m
_ Zﬁ X ZEZ .

From Theorem 3(ii) we derive some consequences which do not

depend on the unknown m, but only on the reasily computed r, q, and k.

Corollary. If m is a periodic group, then




(1)

(ii)

(iii)

Proof:

because m =

0.

10.

11.
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the Herbrand quotient IHO(Wh(W))| =
1
[H™ (Wh(m)) |
for n odd, H'(Wh(m)) = 0 only if k <
for n even, Hn(Wh(ﬂ)) = 0 if and only

2774

r—q

if Wh(m) = 0O

(i) follows trivially, (ii) follows from m £ r-q, and (iii)
k also, so k-m+r-q = 0 <=> k = r—-q = 0 <=> Wh(m) = 0.
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