THE INVOLUTION IN THE s
ALGEBRAIC K~THEORY OF SPACES

Wolrad Vogell

The primary purpose of this paper is to study the canonical involution on the
algebraic K-theory of spaces functor A(X). From a technical point of view the main
result is that several ways of defining such an involution lead in fact to the same
result.

The secondary purpose is to establish that the involution on A(X) relates nicely
to involutions on related functors, specifically the algebraic K-theory of rings, and
concordance spaces., Technically this follows simply by comparing the latter involu-
tions to suitable models of the involution on A(X). In particular there results the
expected fact that the involution on concordance spaces corresponds to the involution
on the algebraic K-theory of rings.

This is certainly a desirable result, and indeed several applications of it have
already been published, cf. [2], [3], [5]. For example, it is possible to obtain some
numerical information on the homotopy type of the diffeomorphism groups of some mani-
folds.

Aside from this technical result, the study of the involution on A(X) also has
some interest of its own. We obtain another proof of the theorem that stable homotopy

splits off the algebraic K-theory of spaces.

Here is a summary of the contents of the paper.

In § 1 a concept of equivariant Spanier-Whitehead duality is discussed. Here the
word 'equivariant' refers to the homotopy theory of spaces over a fixed space.

Using this concept of duality a model for A(X) is developed which lends itself
to a natural definition of an involution. Namely, on the level of the categories of
spaces used to define A(X) the involution corresponds to the transition from a space

over X to its equivariant Spanier-Whitehead dual.

It will be convenient later on to have a different description of duality avail-
able, Namely, instead of considering spaces over a fixed space one can equivalently
use simplicial sets with an action of a simplicial group. The translation into this
framework is given in the second part of § 1.

The concept of Spanier-Whitehead duality that we need is a version of Ranicki
duality for simplicial groups. Its relation to the usual concept of equivariant

Spanier-Whitehead duality is briefly discussed in the appendix to §1, cf. also [20].

In § 2 it is described how an involution on A(X) may be defined in various ways.
It is shown that these definitions lead to the same involution up to homotopy (cf.

cor. 2.10., and the remark after prop. 2.5.).
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Using the 'manifold model' [18], the relation of A(X) with the concordance space
functor is described, and it is shown that the involutions on both functors corre-
spond to each other,

Using the model of A(X) developed in § 1, the involution is compared with that

on the algebraic K-theory of rings (cf. prop. 2.11.).

In § 3 the description of A(X) obtained in § 1 is adapted to give another proof
of the splitting theorem: The canonical map QmSm(X+) —> A(X) from the stable homo-
topy of X to the algebraic K-theory splits up to homotopy. In fact, a very direct

description of a splitting map AX) ——> QwSm(X+) is given.
A summary of the contents of paragraphs ! and 2 has been published in [15].

I wish to thank F. Waldhausen and M. BOkstedt for numerous helpful discussions.

§ 1. Duality in equivariant homotopy theory

In this paragraph we discuss a concept of Spanier-Whitehead duality appropriate
in equivariant homotopy theory, meaning the homotopy theory of spaces (= simplicial
sets) parametrized by a simplicial set X. The motivation for this is that A(X), the
algebraic K-theory of X may be defined in terms of certain categories of simplicial
sets over X, cf. [16]. Actually we consider two equivalent formulations of this dual-
ity, one involving simplicial sets over X, the other one employing simplicial sets

with an actionof the loop groupof X. Both versions are used in § 2.

We introduce some language and notations. If X is a connected simplicial set

let R(X) denote the category of retractive simplicial sets over X, i.e. an object is

a triple (Y,r,s) consisting of a simplicial set Y, a retraction r:Y -~ X, and a section

s of r. A morphism from (Y,r,s) to (Y',r',s') is a map f:Y - Y' such that r'f = r and
fs = s'. An h-equivalence is a morphism in R(X) which is a weak homotopy equivalence.
Let hR(X) denote the category of h-equivalences; Rf(X) is the subcategory of R(X) of
those objects (Y,r,s) satisfying that Y-s(X) contains only finitely many non—degener—
ate simplices. The category Rhf(X) is the category of homotopy finite objects, i.e.it
is the full subcategory of R(X) of those objects which can be related to an object of
Rf(X) by a finite chain of h-equivalences. Let thf(X) be the intersection of hR(X)
and Rhf(X), and similarly with hRf(X). We will be interested in certain subcategories
of hR(X): 1let hRi(X) denote the connected component of hR(X) containing the objects
2 L

DU ... UD
<~ k -

XUsp® ... u ap*

<~ k =

> X

Indeed, all such objects are in the same connected component of hR(X), regardless of

the attaching maps.

There is an external pairing
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R R(X) x RX'") > R(XxX'")

(Y, ¥') b————> YxY'U XxX' .

XxY'U yxx'

This pairing is natural in X and X', and associative up to canonical isomorphism. The
properties of this pairing may be conveniently summarized by saying that it defines

a bi-exact functor in the sense of [19]. It also preserves finiteness (resp. finite-
ness up to homotopy), where these terms are defined with regard to the categories

Rf(X) (resp. Rhf(X))'

Notation: For typographical reasons we shall simply write Y A Y' instead of YXAX,Y'
if there is no risk of confusion. A special case of this pairing is given by the
fibrewise suspension over X, defined as

n n
ZX(Y) = S */\X Y,

n . . . . .
where S denotes a pointed simplicial set representing the n—sphere.
We can now give the fundamental

Definition: AK) = z x |lim hRﬁ(X)[+ .
)

The maps in the direct system are given by %_ in the f&~variable, and by wedge with

X
an %-sphere in the k-variable; "+" denotes Quillen's construction to abelianize the

fundamental group.

To define the concept of Spanier-Whitehead duality in the context of retractive
spaces, we fix a d-spherical fibration & over X, (i.e. fibre(|€| - IX[) LS Sd) with a

given section. Let Th(Z) denote an object of R(XxX) satisfying
(i) Th(g) z XxX 1is in the same component of hR(XxX) as the object
X x X Uy & 7 X xX

where the maps in the push~out are given by the diagonal map, and
the section of &;
(ii) Th(g) = XxX 1is a (Kan) fibration;
(iii) There is a map L:Th(Z) -+ Th(&) covering the flip map XxX - XxX and such

that v? = identity.

Such a space will be called a Thom space of £. Note that Th(f£)/X? is essentially the

Thom space of & in the usual sense.

We will also need the suspensions of Th(§). Since these are not automatically Kan
fibrations again, we use the following modification. There is a functorial way of
turning a map A > B of simplicial sets into a Kan fibration. This can be done by

using a relative version of Kan's functor Exm, cf. [6]. We continue to denote this

functor Exwu Define

Th (£) = Ex (33, (Th(£))), v = Exw<z;2(b>>.
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Of course, there always exists a Thom space in this sense: e.g. choose Th(g) =
o] . * .
Ex (X2 UXE). It will however be convenilient later on not to be restricted to one

choice of a Thom space.

Spanier—-Whitehead duality is defined with respect to a chosen space Th(g).
Let (Y,r,s) (resp. Y',r',s') be an object of R(X). An n—-duality map is a map in R(XxX)

. )
u: YAY > Thn_d(g)
satisfying that the induced map
o ¢ H (Y, X320 X D——m—> 1Ny X520 XD
u q 1 1
*
Z >u (t)/z

is an isomorphism for all q. Here te Hn(Thn_d(E),Xz;Z [n1X]') is a class mapping

oy
to a generator of HM(p*Th_ . (E),XxX;Z [1:1)(])z /4 [nTX] under the canonical map,

n-d
Y
where 'v' denotes the universal covering, p: XxX——>XxX 1is the canonical projection,
and Z [n1X]‘ denotes the right Z [u1X2]—module Z[n1 X1 With1H Xz—action given by
- 2
x.(g,h) = h 1xg, (g,h)e (n1X) , xe Z [n1X] .
Similarly we require that o , gives an isomorphism, where u' 1is the composition
u
of u with the flip map YAY' - Y'AY .

It turns out that this definition gives the correct notion of duality in the context of
manifolds and for the purpose of K-theory.

Before stating some elementary facts about duality, we have to mention a tech-
nical point. Since in our definition of Thom spaces we insisted on the Kan condition
we cannot just identify Thn+1(E) with the suspension of Thn(g). These spaces are of
course homotopy equivalent, but it is desirable to have a specific homotopy equiva-

lences such that the following diagrams commute,

1 ~ +1

S Ak (ST 4A 2 TH(E)) > 877 WAL 2Th(E)
1 v fn v

' wAg2Th (E) > Th_, (8)

Q

S]*A*(Sn*/\XZTh(g)) —F (Sn*A*Sl)*AXZTh(a) —> SnH*AXzTh(E)

Y &

n \%
S */\XzThn(E) > Thn+1(£) .

The vertical arrows are the natural inclusions induced from the map Y —+ Exw(Y)0



281 .

The reason for considering the maps g, which permute the suspension coordinates is to
ensure compatibility with certain constructions to be performed later on. The exist-—

(€.

ence of the maps fn (resp. gn) follows from the Kan condition on Thn+1
Lemma 1.1. Let u: Y AY' > Thn_d(g) be an n-duality map. Then

(1) u': Y'AY -~ Thn_d(g) is also an n—-duality map, where

u'(y' ay) = v Guly Ay"),

f
.. 1 1 n
(ii) Zzu: ZX(Y) AY' = (S *AX Y) AY' > S *AXZThn_d(g)--—~v>
Thn_d+1(§) and
S u: YAZL(Y') > 8 Th ()—-—g-g—-v-—>Th (£)
rt X *\x 2 n—-d 5 n—-d+1 &

are (n+l1)-duality maps. o

We now want to investigate the dependence of duality on the spherical fibration
£. Let Rfib(x) denote the subcategory of those objects of R(X) satisfying that the

structural retraction is a fibration. There is an operation

.3 Rfib(X) x R(X) > R(X)

€, YY) pb—————>E Y := ngYUEUng
X

We list some of its properties:
(1) If Y€ Rfib(x)’ then & *Y is (up to a dimension shift)
the fibrewise join over X of & and Y.
(ii) If Y € Rf(X), and fibre(f - X) is finite, then £ Y € Rf(X).
(iii) & +-: hR(X) —> hR(X) is an exact functor in the sense of [16].
(iv) The operation is compatible with the external pairing:
(E+Y) A (n-Y") = (£An) « (YAY'), where
E,n € R (X), Y,Y' € R(X).
(v) If £ = XxSf, then g Y = Z;(Y), the r—fold fibrewise suspension over X,

There is a kind of Thom isomorphism in this setting.
Let £ be a d-spherical fibration (d > 2) over X as before, Y an object of Rhf(X)
satisfying that WiX AN in, i=0,1., Let t € Hd(E,X) be a Thom class of E&.

Lemma 1.2. There are isomorphisms for all q > O

ot BY(Y, X5zl X1) > 11 ey, vizln, XD, 9 () =t U a

t

tNb.

by Hq+d(€’Y,X;Z[wl X1)

> Hq(Y,X;Z[Tr] XD, ¥, (b)
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Proof: Without loss of generality assume that Y € Rf(X). Then one can find a filtra-

(0] 1 k
above, £+— 1is an exact functor. So by a five-lemma argument one immediately reduces

tion Y., =X <Y <... ©Y =Y, such that Yi/Yi—I ~ X vV sh Now by property (iii)

to the case that Y=X v §° =X+. But in this case the assertion of the lemma is

obvious., o

If Th(g) is a Thom space of &, and n is another spherical fibration (with a section),
then by properties (iii) and (iv) above, (n Ae) Th(g) is a Thom space of n - &,
(e =XXSO); in shorthand notation (nAe) »Th(g) =Th(n «&).

Corollary 1.3. Let u: Y A Y' > Thn_d(i) be an n—duality map with respect to &, and

let n be a d'-spherical fibration (orientable and with a section). Then the map
L] ] L ' L] = L]
(nAe) *u: n<YAY" > (nAe) «Th _(E) =Th . .v(n-8)
is an (n+d')-duality map with respect to 1 *&.

Proof: We have a commutative diagram

- 1
> Hn qa*d

Hq(n-Y,X;Z[ﬂ1 XD (Y',X;Z[ﬂ1 XD

Hq_d,(Y,X;Z[ﬂ1 X1 > H (Y',X3Z[w

where the vertical map on the left is the isomorphism of lemma 1.2., and the horizon-
tal maps are given by slant product with a Thom class of & (resp. n *&). By assump-—
tion the lower of these maps is an isomorphism, hence so is the upper one. Inter-
changing the roles of homology and cohomology gives another commutative diagram for

which the same argument applies. g

Let £ be as before. Define a category DR;h(g)(X), in which an object is given
by a triple (Y,Y',u), where Y (resp. Y') is an object of Rhf(X), subject to the tech-
nical condition that the inclusion of X in Y (resp. Y') induces an isomorphism on T

and s and u: Y A Y' »-Thn_d(g) is an n-duality map.
A morphism (Y,Y',u) -~ (Z,Z',v) is a pair of morphisms in Rhf(X)
f:rY~>2Z, f': 2" > Y

such that the diagram
f A id

Y A Z! > Z AN Z'
id Af! v
v \
1
YAY — > Thn_d(z)

commutes,
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A morphism (f,f') in DR )(X) is called an h—equivalence if f and f' are h—equlva—

(X).

Th(g
lences. The subcategory of h—equivalences will be denoted hOR:

Th (%)

The category hDR> )(X) does not essentially depend on the particular choice of

Th (&
the space Th(g). Namely, suppose Th'(Z) is another model for the Thom space of £ in

the sense defined above. The conditions on such a space imply that there is a fibre

homotopy equivalence Th(g) > Th'(§).
Lemma 1.4. A fibre homotopy equivalence a: Th({) ——> Th'(%) induces a functor
a: hDRTh(E)(X) Th (g)(X) which is a homotopy equivalence.

Proof: It is clear that o induces such a functor. To see that this functor is a homo-
topy equivalence choose an inverse of a, a': Th'(£) —> Th(§). This defines a func-
tor a' in the other direction. Let g: Th(&) A I~ Th(£) be a homotopy over X from

a'o to id. Define an endofunctor f of hDR%h(g)(X) by

¥,Y',u) b———> (¥ ¥ I+,Y', go (u M id)) .
There are two natural transformations

id > f < a'a .

These provide the required homotopy o'a = id, cf., [11]. Similarly, ao' = id. o

In view of this lemma the choice of the Thom space Th({) does not really matter. In
the following we will always assume that a definite choice of Th(g) has been made. To
simplify the notation we will usually write hDRg(X) instead of the more precise

hDRgh(g)(X) whenever there is no danger of confusion.

By lemma 1.1. there are two suspension functors

T, DRg(x) —_— 2+](X), (Y,Y',u) b= (3,Y,Y',%,u), resp.
.t DRE(X) —— DR“+1(X), (Y,Y',u) — (Y,Z Y' zru) .

Stably the category DRg(X) does not depend on the spherical fibration &. Namely,

in view of cor., 1.3.
(Y,Y‘,u) l""’""’*“> (E'YQY',(E /\8) ‘u)

defines a functor

Rn+d

:hDRZ(X) > hD (X),

%

where € =X x8° is the trivial spherical fibration.

Lemma 1.5. The functor og induces a weak homotopy equivalence

lim hOR®(X) —————> 1im hORD(X) .
1 e 5 3

%y Ly

Proof: First assume that X is finite up to homotopy. Then we can find an inverse n

of £ such that & e n = X x s, Multiplication with n defines a functor
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0t WORY (X) e n0RY )
The composite wgwn (resp. @nwg) is the same up to homotopy as the r-fold suspension
BOR (X) ———> hDRZ " (X) (resp. hDRp(X) > hDR2+r(X))

(cf. property (v) of the operation +). The general case of the lemma follows by a

direct limit argument.

o
Remark: There is an analogous assertion with Z2 replaced by Zr throughout. g
Since ZKZr = ZrZ2 it makes sense to talk about the limit
lim  HORZ(X).
> €
Zﬁ’zr
We have
Proposition 1.6. The forgetful functor
§ : lim hOR™(X) —————> 1lim hR__(X)
- € > hf
ZQ,’ZI' Z:X
(Y,Y',u) > Y
is a weak homotopy equivalence.
Proof: This will be proved below after prop. 1.15. a

Remark: By imposing a condition on the homotopy type as in the definition of the
categories hRi(X) one defines categories hDRﬁ’m(X), i.e. an object is a triple
(Y,Y',u), where Y (resp. Y') has the homotopy type of a wedge of X and k spheres of
dimension & (resp. m). (The spherical fibration £ is suppressed in the notation of
these categories).,

The map § restricts to a weak homotopy equivalence

. L,m . L
§: lim hDRk X)) ————> lim th(X) .

o
2,m L

A different setting for the duality just described is provided by using simplic-
ial sets with a group action instead of retractive simplicial sets. The group in
question is the loop group of X, cf. [7]. This setting is sometimes more convenient

to work in. We have to give a few definitions first.

Let G be a simplicial group. U(G) is the category of pointed simplicial sets
with right (simplicial) G-action. Uf(G) is the subcategory of those G-sets which are
free (in the pointed sense, i.e. xg=x implies g=1 or x =%) and finitely generated
over G, i.e. they are generated as a G-set by finitely many simplices. An h-equiva-
lence is a G-map which is a weak homotopy equivalence of the underlying simplicial
sets, hl(G) is the subcategory of h-equivalences, Uhf(G) is the subcategory of U(G)

of those G-sets which are related to objects of Uf(G) by a finite chain of homotopy
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equivalences; huhf(G) 1= (G) n nle).

Let M and M' denote objects of U(G). An n-duality map is a pointed right
(GxG)-map

u: M A M' ——————> Ex (S" AG,)
satisfying that it induces an isomorphism of Z[woG]—modules

. G ] n=q
o Hq(M ) ———> H, M)

*
z b—————> u (t)/z, 0<q¢n,
where teI{ (Ex (s" AG ) Z [n G]') is a class mapping to a generator of

G X0 (Ex (8" AG, ) Zi[n GD= Z[n G] under the canonical map, where G denotes the iden-

t1ty component of G, and ZIH%G]' denotes the Z [%f} Jmodule Z [%G 1 with noGz—

action given by x.(a,b) = b—1xa, (a,b)e (nOG)Z, xe Z [noG] .
Here we consider SnAG+ as a right simplicial (GXG)-set via (xAg)°(h,k)=xAk—1gh,

x € 8™, g,h,k €G . This induces a GXG-action on Eiw(SnAG+).

Similarly we ask that O is an isomorphism, where u' 1is defined as the composite

L
~ [¢)
M'AM — > MaM' -S> Exoo(SnAG+) 2> Ex (s"Ac,)

and the map b is induced by g r—>g~!

G G

* * -
B;A), H (M;A) = H QtxCE,*x

where E is a universal G-bundle, and A is a = G-module.

By definition HG(M'A) =H (MxGE *x E;A),

Ex denotes the functor of [6] which turns a simp11c1a1 set into a Kan simplicial set.
Note that in case that M and M' are finite (up to homotopy) the second condition on

a duality map is implied by the first, and vice versa.

We call M' an n-dual of M if there exists an n—duality map u: M A M'

Ezample 1.7. The map w: (S5 AG,) A (Sn_kAG+) —> " AG, —> Ex (5" AG,) induced from

> Ex (" AG,).

the map 6 x G —> G, (g,h) +—> h—lg is an n—-duality map. .

Just as in the case of retractive spaces, duality is compatible with suspension.
The rigorous statement is as follows. Choose sequences a and bn of homotopy equiva-
lences such that the following diagrams commute.

b
o Ex (st AG)  Ex (sTAG,) as! —2 5 mx"(s™ ! AG)

a

st AEx" (s™ AG,)

Q

n+l n 1 = n 1 s n+l
AQ+HW--~> S AG+ S AG+AS ~—~—> S AS AG+—~> S AG+°

st A "

Here the vertical arrows denote the canonical inclusions. The maps a, b exist by

the Kan condition on Ex (Sn+1 AGy).
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We now can state the analogue of lemma 1,1,

Lemma 1.8. Let u: M A M' > Exw(sn'AG+) be an n-duality map; L ¢ Ex (Sn'AG+) —_

Exw(Sn'AG+) denotes the inversion map induced by g —> g—l. Then

(i) u': MAM

> Exw(Sn AG+), m' Am —> bnu(m Am')

is an n-duality map;

. a
(i1) Z,(u): s' Ay At 2% o1 p" (5" aG,) —2> Bx"(5™ Ac))
and
1 R~ 1 uaid © 1 1 bn
T (u): MA(S AM") > MAM') A S ——> Ex (S AG+) AS >
+
Ex” (™! AG,)

are (n+1)~duality maps. o

We want to give a function space description of duality now, analogous to that
of [14]. Let FE(M) denote the simplicial set of pointed right G-equivariant maps from
M to Exm(Sn'AG+). G acts freely (pointed) from the left on this function space.
Convert this to a right action using g b—> g_l. FE(M) is a Kan simplicial set, since

Exw(Sn'AG+) satisfies the Kan condition.
The evaluation map

e: FE(M) A M ————> Ex (ST AG.)

G +
induces a map
. G/ o0 n-q

a: Hq(FG(M)) > HG ™).
Let M € Uf(G) be of G-dimension k.
Lemma 1.9. The map o, is an isomorphism in the range 0 <q <2(n-k) - 1.

Proof: By induction. The assertion is trivially true in the case M = *, For M = G,

we have Fg(M) = Map*(So,Sn'AG+) =gt AG_, and the evaluation map

G, A st AG, = Sn/\G_FAG+ _— Sn‘AG+ is a special case of the map of example 1.7..
So o, is an isomorphism in that case. Since M was supposed to be finite, it has a
G-skeleton filtration * =M <M < .., CMk = M, such that we have cofibration

0 1
sequences

i
>> V g AG,,
o

o € some finite index set. The general case then follows by a five lemma argument and

the fact that the canonical map gt AG+ —> Ql(Sn'AG+) is (2(n-1) — 1)—-connected,

Corollary 1.10. Let M be an object of Uf(G). Suppose that u: M A M' ——> Exm(Sn'AG+)

is an n~-duality map. Let n > dim M. Then the map

A
u: M'

> Fg (M)

adjoint to u is (2(n—-dim M) - 1)-connected.,
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Proof: There is a commutative diagram

MAM
u
. A ® N
id Au Ex (S /\G+)
A4
M A FE(M)/T

which implies another one
Gyt
N
v

G, n
Hq(FG(M)) o

n-q
He, (M)

e

By assumption o is an isomorphism for all g3 a, is an isomorphism in a certain

. A
range by lemma 1.9, Hence so 1is u. o

Remark: If M is finite up to homotopy only, define dim M to be the least of all di-
mensions of finite G~sets which can be related to M by finite chains of homotopy

equivalences. Then the assertion of the corollary also holds in this case.

Suppose that we are given two n—duality maps u: M A M' —> Exw(Sn'AG+) (resp.
v: N AN —> Exm(SnﬁAG+)). Let f: M —> N denote a morphism in U(G). If there
exists a morphism f': N' —> M' such that the following diagram commutes up to homo-
topy

M AN fAid >N AN’

id Af! v
A\ v
MAM > Ex®(s" AG.)

then f' will be called an n-dual of f.

Suppose that M (resp. N') is homotopy equivalent to a G-set of G-dimension at most k

(resp. n). Let n > 2k+1, Further suppose that M' satisfies the Kan condition.

Lemma 1.11., In this situation there exists an n-dual of f.

Proof: The condition on a dual map f': N' —> M' 1is equivalent to asking if there
exists an arrow N' —> M' such that the following diagram commutes up to homotopy.
A
M! = > Fo (M)
G
2
| £*
! A
' \ n
N > FG(N)

A A
where u (resp. v) denotes the adjoint of u (resp. v).
First assume that N' is n-dimensional (not just up to homotopy). By cor. 1.10. the

A . . e .
map u is (2(n-k) —1)-connected. Hence, since M' is Kan, one can construct a lifting
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up to homotopy as indicated by the broken arrow. Furthermore, this lifting is unique
up to homotopy. In the general case, where N' is only homotopy equivalent to an n-
dimensional G-set, one can still find a Kan simplicial set ﬁ, and an n—dimensional
G-set N such that N' >=> N << N,

Now one first finds a map N —> M'; this extends to N —> M' by the Kan condition

on M'. Restricting this map to N' gives the desired map. o

Our next goal is to show that for every object of Uhf(G) there exists an n—dual

if n is sufficiently large. To show this we need the following technical lemma.

Lemma 1.12. Let M f > N —&-> N g CM be a cofibration sequence of objects of
Uhf(G). (CM denotes the cone on M.) Let M' (resp. N') denote an n—dual of M (resp. N),

and let f': N' —> M' denote an n—-dual of f. Then there exists an (n+1)-duality map

w: NUCMAM U CN' > gx” (s™*! AG,).
f £
Proof: Let u: M A M' —> Exm(Sn‘AG+) (resp. vi: N A N' —> Exm(sn‘AG+)) denote an

n—duality map. The map w is constructed as follows,
Let o denote the composite

. 1 —_
GdAf,EAZId) o smamt) v (NAZIN'),

TMAN') —2> (EMAN') v (MAZIN')

where 1 denotes the comultiplication, and =-id is a homotopy inverse. By definition

of f' the following composite map is nullhomotopic:

(T, u, 2_v)

TMAN') —2> (IMAM') v (N AIN') —2 B s E (™! AG,) .

Hence the map (Zgu,er) may be extended to a map
w: GMAM') A (NAZN') U CZ(MAN') —> Ex (s AG,).
a

The left-hand side is isomorphic to ((N U CM) A (M' q CN'"))/N AM'.,
Let w denote the composite ’ ’

NUCMAM U CN' >> ((N U CM) Q" U CN'))/N A M s g (5™ AG) .

f f! f f

By construction of w the following diagrams commute up to homotopy.

NUCM AM haid > A M
£
Zu
. \
id Ag l v L
N U CM AM' UCN' i > Ex7 5™ AG)
£ £ *
id AR'

N A M'UCN' > N A IN'

. £
g Ald l l er

N UCM A M' UCN' L > Bx"(s™! ac,) .
£ £
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Here h: N UCM —> M (resp. h': M’ q CN' ~——> N') denotes the canonical map in
f
the cofibre sequence of f (resp. f').

These diagrams imply the following commutative diagram of (co-)homology groups.

W) ——> ) > BECM' U oN') > BCGaN") > 5o (zM")
\
uZ v aZ u OLw aZ v aZ u
2 2 r r
VP P P Pv Pv
HG(ZN) > HG(ZM) > HG(N g M) —————> HG(N) —— HG(M)
(p = n+l-q).

Since by assumption u and v are duality maps, all the vertical arrows except possibly

a are isomorphisms. Hence by the five lemma so is a_, as was to be shown.
o

Proposition 1.13. Let M be an object of Uhf(G). There exists an n—-dual of M, if n

is sufficiently large.

Proof: We say that an object N of Uhf(G) is obtained from M by attaching of a k—cell

if N is isomorphic to the pushout of the following diagram of pointed G-maps

k k

M < oA G+ >——> A AG+

where BAk denotes the boundary of the k-simplex, and the map on the right is the
natural inclusion.

Since M is finite up to homotopy one can find a Kan simplicial set ﬁ, and a finite
G-set M such that M >=> M << M,

Suppose we have found an n—-duality map MAM —> Exm(Sn'AG+)g Then we may extend
this to a map M A M' ——> Exoo(Sn AG,), since the inclusion MAM —>MAM is a
homotopy equivalence, and because Exm(Sn'AG+) satisfies the Kan condition. This ex-
tended map is clearly also an n-duality map. Restricting this map to the subspace

M AM' finally gives a duality map for M, This argument shows that there is no loss
of generality in assuming M to be finite,

Now any finite object of U(G) may be obtained from the base point by attaching of a
finite number of cells. Hence an n-dual of M can be constructed inductively, the

inductive step being provided by lemma 1.12, 0

Define a category 9UH(G) in which an object is a triple (M,M',u), where M and M'

are objects of Uhf(G), and u: M A M’ > Exw(Sn'AG+) is an n-duality map. We add
the technical condition that mM = ﬂiM' =0, 1=0,1, A morphism from (M,M',u) to
(N,N',v) is a pair of morphisms in U(G), f: M —> N, and f': N' —> M' such that the

following diagram commutes

N' A M 1dAf >N' AN
f' Aid v
A\ oo‘/n

M' A M > Ex (S AG+) o
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A morphism (f£f,f') is called an h-equivalence if both f and f' are h-equivalences.

By lemma 1,8, there are two suspension functors ZR (resp. Zr): Gy —> Dun+1(c)

given by suspending M (resp. M').

We are now going to compare the two settings for duality. Let X denote a con-—
nected simplicial set, and let G be its loop group in the semse of [7]. Let E

be a universal G-bundle. There is an adjoint functor pair (cf. [16]):

oy hR(X) ~——————> hU(G)
¥,r,s) b——m>Y xXE/E
Yo hi(G) ———> hR(X)
G G
Mp—————> (Mx E Z *¥x E),

Let € again denote the trivial fibration X xS°, The spaces WGZ(Exw(Sn'AG+)) can be
used as Thom spaces Thn(e) in the sense defined above,

Here G, is considered as an object of U(G xG).

Define a functor

Do : hOR? (X) ——————> HDU"(G)
(Y,Y',0) k> (8, (Y),0,(Y"),u"),
where u' is the composite
0 (Y1) A0y (¥) —> & 5(Th () = @XZWGZ(EX‘”(sn AG,)) —> Ex (ST AG,) .
Similarly,
DY : hDU™ () —————> hDRI;(X)

(u: M AM' —> Ex (5" AG,) —> (10D A Y ) —> WGZ(EX”(SHAG+) = Th_(e)).

Proposition 1.14. D® and D¥ are mutually inverse homotopy equivalences.

Proof: We first remark that D® and DY are not adjoint. Let f: hDRE(X) —_— hDRE(X)

be given by (Y,Y',u) —> (Yo(Y),Y,u), where u: ¥o(Y) A Y' -—> ¥o(Y AY") Egigl~>
W@W(Exm(sn AG+)) _ (Exw(Sn‘AG+)) and ® (resp, ¥) is short for @X (resp. TG)Q
Similarly, £' is the corresponding endofunctor of hDRg(X) defined by a condition

on Y', There is a natural transformation from the identity to f, and another one

from £' to the identity. Since DY «D® = f'f, the composite DY «D® 1is therefore homo-

topic to the identity; similarly with the other composition, o

This proposition shows that both settings for duality are actually equivalent. In
the next proposition it is shown that the choice of duality data is in fact a "con-

tractible choice'".



291

Proposition 1.15. The forgetful functor

e : 1lim hOU™(G) ——————> 1im hU. _(G)
> > hf
ZR’Zr z
M,M',u) ¢ > M

is a weak homotopy equivalence.

Proof: To prove the assertion we need a stronger finiteness condition on the objects
of WDU™(G). We adapt an argument of [19] to show that this condition may be assumed

without loss of generality.

Let hDUn(G)' denote the full subcategory of U™ (G) of those objects (M,M',u)
which satisfy that M' is actually finite, not just finite up to homotopy.
The inclusion WOU™(G)' < WDU™(G) is a homotopy equivalence. To see this we introduce
two further subcategories. Namely, let hUUn(G)Kan denote the full subcategory con-
sisting of those objects which satisfy that (the underlying simplicial set of) M' is
a Kan simplicial set; let hOU™(G)" be the full subcategory of those objects of
WDU™(G) which lie in either WDUP(G)' or hDU™(G)y, . The inclusion HDU™(G)" = HDU"(G)
is a homotopy equivalence. This may be seen from the existence of the functor Ex”.
Ex” extends to a functor hUUn(G) — hDUn(G)Kan. There is a natural transformation
Ex” —> Id, given by the canonical map M' —> Ex'M'. This shows that hUUn(G)Kan C
U™ @G) is a homotopy equivalence. By the same argument hDUR(G)" < hDU™(G) is a homo-

topy equivalence.

The next step is to show that the inclusion 1i: hDUn(G)' —_— hDUn(G)" is a homo-
topy equivalence.
We use Quillen's theorem A, cf. [10]. So we have to show that the right fibre
(M,M',u)/i over any object (M,M',u) of hWDU"(G)" is contractible.
It suffices to prove that any finite diagram D —> (M,M',u)/i in the fibre is con-
tractible.
Let (fi,fi): ™M,M',u) —> (Mi’Mi’ui) represent such a diagram. If M' is already fi-
nite there is nothing to prove since the diagram then has an obvious initial object.
So assume M' is Kan. Since M' is also finite up to homotopy, one can find a diagram
M >> M << M', where M is finite and M is obtained from M by filling horns.
Since the Mi are all finite, one can find another subset ﬁ of M contgining the images
fi(Mi) of all the simplicial sets M{ and which can be obtained from M by filling fi-
nitely many (G)-horns. Hence ﬁ is itself finite (as a G-set).

Since M' is a Kan set one can find a retraction M —> M', This gives a map q: M—->M',

Define a duality map u as the composite MAM —> M AM' ——> Exw(Sn'AG+). Then the ob-
S ~

ject ((M,M,u); (id,q): M,M',u) —> (M,M,ﬁ)) of the fibre is an initial object for

the diagram D, Hence the diagram is contractibe, whence i is a homotopy equivalence.

This in turn implies that the inclusion WUt @Gy < U™ (G) is a homotopy equivalence.

We are now reduced to proving that the restriction of the map ¢ of the proposition
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to the subcategory lim hDU™(G)' is a homotopy equivalence.
Again we use theorem A of Quillen., Let N be an object of lim huhf(G). We have to
show that the right fibre N/e is contractible. Let D: I —> N/e be a finite diagram

. . . 1 . ' o &I o . =
in the fibre. D is represented by (Mi’Mi’ui'Mi AM; —> Ex (87 AG); a;: N — Mi)iEI.

By proposition 1.13. there exists an m-dual of ¥ for some large m. We may assume that
n is large, and in particular that there exists an n-dual of N. Let v: NAN' ——>

Ex (S" AG.) denote an n-duality map with N' EUhf(G). Assume that N' is a Kan set.

Consider the following diagram

_ A
e A
— v
// v
'// n
Mi bi > FG(N)

A . . .
where v denotes the adjoint of v, and bi is the composite

A
u. a’-k

' 1 n 1 n
Mi > FG(Mi) > FG(N) o

A
Here u, 1s the adjoint of uy and a; is induced from ae

Let n > 2 max {dim Mi’ dim N}. Further assume that dim Mi < n. By coro. 1.10, the

map 9 is (2(n-dim N) - 1)-connected, hence by assumption on n it is at least n—con-
nected.

Since dim Mi < n, and N' was assumed to be Kan, by obstruction theory therefore there
exist liftings up to homotopy gt Mi —~—> N' of bi as indicated by the broken arrow

in the diagram. For each i choose a specific homotopy hi: Mi X Al —> FZ(N) such that
b [M} x 0 = Ve, and b |M} x 1 =b, . )

The map bi is at least n-connected since a; is a homotopy equivalence and us is n-con-
nected. Since Mi and N' have no G-homology in dimensions >n, and by the Hurewicz

theorem, c. is therefore a homotopy equivalence,

Let N§ denote the pushout of the following diagram

dlecj 1

N' <———— 11 Mi X 0 ————> 1i Mi x A,
. A§ § n . A ' ' 1
There is a map v : N° —> FG(N) given by v on N', and hi on Mi x A", Further there
is a commutative diagram
N§ S > EXW(N§)
A
d. v§
1 At
v v
' n
M bi > FG(N)
' ' ' 1 § At . A§ .
where di: Mi = Mi X 1 —> Mi x A° —> N, and v 1is some extension of v° (which

exists by the Kan condition on FZ(N)).
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Since Exm(N§) is Kan, the inclusion U di(Mi) c Exm(N§) factors as
i

U d, (M!) > N > Ex (N,
i 1 1

where the second arrow is a homotopy equivalence and N is obtained from U di(Mi) by
attaching of finitely many G-cells., Now this union is a finite G-set. Therefore N is

also finite. The map
1 > U d;(M!) o> N
P A |

f.: M!
N 1

1

o2

is a homotopy equivalence, since its composition with N ——> EXW(N§) is one,

A = oo§‘/7\+n = B ® oo
Let v denote the composite N —> Ex (N) > FG(N) and let v: NAN —> Ex (S AG+)

denote the adjoint of this map. By construction v is an n-duality map. The object
(N,ﬁ,%) of HWOU™(G)' maps to the diagram (Mi’Mi’ui’ai) by (ai’fi>' Hence
((N,ﬁ,G); id: N —> N) is a cone point for the diagram D.

This proves that any finite diagram in N/e is nullhomotopic, as was to be shown.
o

Remark: Just as in the case of the categories R(X) (resp. URE(X)) certain sub-
categories Uﬁ(G) (resp. QUi’m(G)) of U(G) (resp. DU (6)) may be defined. By restric-

tion to a connected component one obtains from proposition 1.15. another homotopy

équivalence
lim WOUL ™ (G) ' > 1im bl (G).
> k . > k o
2,m %

Proof of prop. 1.6.: There is a commutative diagram

hDRI;(X) Do > hOU™(G)
6l le
hR . (X) ° > bl (6) .

® is a homotopy equivalence because it has an adjoint, D® is a homotopy equivalence
by prop. l.14,; € becomes a homotopy equivalence after passing to the limit by

prop. l.15., therefore so does §, as was to be shown.
u]

As a corollary to proposition 1.6. and 1.15, one obtains the following descriptions

of AX).,

Corollary 1.16.

AG) =z x |lim  WORCT |

~Z x |lim hvuii’““(c;)|+

(G = G(X)). o
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Appendix
In this appendix we first prove that the categories DRE(X) are covariantly func-
torial in X. Then we use this result to compare the concept of Spanier-Whitehead

duality developed in this paragraph with other concepts of duality.

Let gi denote a d-spherical fibration (with a section), i =1,2. Let f: g — gz

be a map covering f: X, —> X,; f induces a map X1 U gl —> X2 % 52 , and hence

_ ! 2 X 2
a map f: Th(E]) —_ Th(gz).

Proposition 1.17. In this situation there is a functor

> DRY (X )
&9

£y DR (x )

3 ' -
given by (Y Y],u ) B> (Y U XZ’ Yl gl XZ’UI)
1

where Gl denotes the composite

' 2 2 __
VU %) A (U X)) = (AT U Xy > T g (6) U)Xy —> Th (6
1 ! X X

the last map being induced by f,

Proof: The fact which requires proof is that u, indeed defines an n-duality map.

1

Let G, = 7, X, i=1,2, We have to show that the map

. ' PR ¢ ™ |
: Hq(Y U X,,X%,3 Z[Gz]) >H (Y, )lé] X5, X, z[G D
1
. . . . d .
given by slant precduct with a certain class t in H (Th(El);Xf; Z[Gl]) 1s an.

u)

isomorphism for all q < n .

Let C, = C*(?l,gl) (resp. Cy = C (?',% )) denote the chain complex of the universal
cover of the pair (Y ,X ) (resp. YI’X )). Define Dy = HomZ[G ](C _x? Z[G 1). The chain
complexes C4,Cy , and D* consist of free Z[G l-modules of f1n1te rank., There is a
(degree 0) map Cj —> Dy, given by c¢' —> z/c , where c' €Cy , and z is a cocycle

. ' . . . *
in HOmZ[G XG ](Cn((Y]’XI) x (Y ,X])),Z[Gl]) representing the image under u] of the

class t in H"(Y /\Yl,Xlxxl, Z[Gﬂ). Using this map define a map of double complexes
9 1 Fy® C' —> F, ® D,
G
1 1
where F, denotes a free Z[GI]—resolution of the Gl-module Z[Gz]. There a spectral
sequences associated to these double complexes which are given by

1

E = F H (CL) = F H (Y!,X,;
P»q P(é)] q( *) P ?1 q( X3 2l D
P,rq(C,,g ®] zlc, D = HPJrq(Y1 }Lé X,,X,3 Z[G, 1),
1

and
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gl

5.4 F %}1 H, (@) F, cé)] H (HomZ[G]](C*, zlG, 1)

F ® Hn—q(YI,Xl; zlc, 1)
p Gl

s - .~ (p*q) .
> Hp+q(D* C(?I zlg,I) = H (¥, }Lé] X,:X,5 Z[G,1).

By assumption u, is an n—-duality map, therefore Oy induces an isomorphism

E; q L E;lq . Hence we obtain an isomorphism of the abutments as was to be shown.
b >
o

The proposition has the following immediate consequence. Given an n—duality map
u: YAY' —> Thn_d(g) in DRE(X) the induced map

= ' 2 n n

U: Y/X AY'/X >Th _.(e)/X° = S AKX > S

n-d +

is an ordinary n—-duality map.
Indeed, this is the special case X1 = X, X2 = % of the proposition.

The concept of duality is closely linked with some sort of finiteness condition.
The definition of duality used in this paper requires that the cofibre of the in-
clusion X —> Y 1is finite (at least up to homotopy). In view of this the concept of
duality defined here might be called 'cofibre-wise' duality.
A different finiteness condition would be to ask that the fibre of the retraction
Y —> X be finite. The ensuing concept of duality would accordingly have to be called
'fibre-wise' duality. In the theory of 'fibre-wise'Spanier-Whitehead duality one
starts with a space Y over X, satisfying that the structural map Y — X is a fibration
with fibre homotopy equivalent to a finite complex. The Spanier-Whitehead dual is then
defined by taking fhe ordinary dual of each fibre, cf. [8], [9], [20].
In contrast with prop. 1.17. it turns out that this kind of duality depends contra-

|

variantly on the base space. Moreover, one has an 'operation' of 'fibre-wise' duality

(X)

on 'cofibre~wise' duality. This is induced from the action of the category Rfib
on R(X), cf. the definition after lemma 1.1,

The concepts of cofibre-wise duality and of fibre-wise duality are different in
general: Even if both kinds of duals are defined, they may not coincide. As an example
consider the case where X 1is a compact n-dimensional manifold with boundary 3
Let Y =xx5°. Y is a space over X via the projection. Under these circumstances

both concepts of duality are defined. A fibre-wise n-dual is given by X x s" , whereas

a cofibre-wise n—-dual is given by XE;X , the double of X , as one may see from the

geometric description of duality given below in lemma 2.8.
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§ 2. The canonical involution in the algebraic K-theory of spaces

One of the reasons for studying algebraic K-theory is that it gives information

about the concordance spaces (or synonymously: pseudo-isotopy spaces) of manifolds.

Reacall the definition. Let X be a compact manifold with boundary 3X. Let C(X) =
Aut (X x [0,1] rel X x O U 3X x[0,1]), where Aut(...) denotes CAT-automorphisms of X.

There is a canonical involution t: C(X) > C(X) given by

L(f) = (id xr) of o (id xr) 0 ((f[XXI)_] xid),

where r: [0,1] —> [0,1] denotes the reflection at the midpoint. This involution on
C(X) gives (after localizing away from 2) a splitting up to homotopy into the two

eigenspaces of u:
Cx) = C° x Cm?,

where C(X)S (resp. C(X)a) denotes the symmetric (resp. anti-symmetric) part of C(X).
The interest in this splitting comes from the fact that the factors have a meaning of
their own, and can be treated with different methods, cf. [4].

There is a stabilization map

r: C(X) > C(X x I)

given by product with the interval (or rather a technical modification of this, be-
cause of the condition of standard behaviour at the boundary). The stable concordance

space of X is defined as C(X) = lim C(x XIk)u By [4], C(X) is a homotopy functor.
k
It is this space that can be related to the algebraic K-theory of X. Following [18],

we shall describe this relationship. Let X denote a compact manifold of dimension d
with boundary 3X; I denotes the interval [a,b]. A partition is a triple (M,F,N),
where M is. a compact codimension zero submanifold of X xTI, N is the closure of the
complement of M, and F = M N N, F is to be standard in a neighborhood of 3X xI, i.e.
there exists a number t € I such that F equals X xt in this neighborhood.

Let P(X) denote the simplicial set in which a p-simplex is a (CAT-) locally trivial
family of partitions parametrized by the p-simplex AP, Let H(X) denote the simplicial
subset of P(X) defined by the condition that M is an h—cobordism rel. boundary be-

tween X X0 and F. H(X) is called the h—cobordism—space of X,

Proposition 2.1. H(X) is a classifying space for C(X).

Proof: To prove this, we construct a free action of the simplicial group C(X) on some
contractible space E(X) such that the orbit space is the component of H(X) containing

the trivial cobordism, Let E(X) denote the space (=simplicial set) of embeddings

X x[0,1] > X x[a,b] restricting to the identity on X xa., This is a space of
collars and hence is contractible. C(X) acts on E(X) by compositionof maps. E(X) may
also be viewed as the space of trivial h-cobordisms together with a given trivializa-

tion. The action of C(X) then just changes the trivialization., Hence the orbit space
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is indeed the O-component of H(X), as was to be shown. o

There is an obvious involution on the space H(X), given ty turning a partition upside

down. One may ask what is the relation between the involutions on C(X) and H(X).

Proposition 2.2. The involutions on C(X) and on H(X) = BC(X) agree up to homotopy.

Proof: Define a map ¢: C(X) —> E(X) by o(f)(x,t) = a(f(x,t/2)), where a: X x[0,1] —>
X x[a,b] is the canonical linear isomorphism. Similarly, let y: C(X) —> E(X) take f
to P(£f): (x,t) > a(uv(f)(x,t/2). There is a natural map p: E(X) —> H(X), defined

by forgetting the product structure of a collar:

> (Im(f)yeee) &

f: xx[0,1] —> Xx[a,b] —

Let tv': H(X) —> H(X) denote the involution on H(X). We obtain a pull-back diagram

C(X) L4 > E(X)

0 L'p
v \

E(X) > > H(X) .

Clearly the involution on C(X) can be described by interchanging the corners of the
diagram and applying the involution v' on H(X). In view of prop. 2.1. the diagram is
also homotopy cartesian. This proves the proposition because from the diagram one

obtains homotopy equivalences

EX) x,,  E(X) = EX) x,, . HE)T F(X) <2 QHX)

H(X) H(X) “H(X)

which are compatible with the involutions if the middle term is given the involution

defined by
(f,w: T —> H(X),g) ——> (g, v' owor,f), r: I —> I the reflection map.

On the simplicial set of partitions P(X) define a partial ordering by letting

M,F,N) < (M',F',N'") if firstly M is contained in M', and secondly the maps

F' > M'-(M-F) < - F

are homotopy equivalences. This defines a simplicial partially ordered set, and hence
a simplicial category which will be denoted hP(X). We have a particular partition
given by attaching k trivial m—handles to X x[a,a'] in such a way that the complemen-—
tary (d-m)-handles are trivially attached to X x[b,b'], a <a' <b' <b. Let hPi’m(X)

be the connected component of hP(X) containing this particular partition, (& = d-m).
An (anti-)involution on hP(X) is defined by the contravariant functor

T': hP(X) > hP(X), (M,F,N) b——> (N¥,F¥ M*),

where M* (resp. N*) is the image of M (resp. N) under the map id xr: X xI —> X x1I,

It restricts to a contravariant functor
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', %,m e > %
T': WP T(X) > hPIlZ x) .

In [18] it is proved that the categories hPﬁ’m(X) approximate A(X). To fit these
approximations together one needs a stabilization process, There are two ways to
stabilize a partition (M,F,N), namely taking the lower (resp. upper) part to its
product with an interval., These disagree because of the condition of standard behav-
iour near the boundary. We have to consider a technical modification of the various
spaces of partitions. We fix some standard choices. Let X' < Int X be a submanifold
of X such that C1(X-X') is a collar on 93X, Similarly, let J denote an interval con-
taining two subintervals J',J" such that J' < Int J, J" < Int J', further let [a',b']
be a symmetric subinterval of I.

Let P(X) be the simplicial subset of P(X) of those partitions satisfying that
Foxx[a',b'] ; FN (X-X") xI = (X-X") xa',

The inclusion E(X) < P(X) (resp. hE(X) < hP(X)) is a homotopy equivalence. Define

the lower stabilization as the map

o, hP(X) —————> hP(X xJ)

which takes the lower part of a partition (M,F,N) to
MxJ" U Xx[a,a'] xJ € XxIxJ,

The upper part of a partition is mapped by o, to the fibrewise suspension of N con-

%
sidered as a space over X,

The upper stabilization is the map
g, hP(X) —————> hP(X xJ)
defined by

Ml—> MxJ" U X' x[a,b'"] xC1(J'=J") U Xx[a,a']l xJ € XxIxJ,

The involution T' does not restrict to a map!E(X) — E(X) (because of the stand-
ard behaviour near the boundary). So a slight modification of T' is necessary.
Choose a map j: P(X) —> P(X) homotopy inverse to the natural inclusion
i: E(X) —> P(X)., Letting T = jT'i define a map T:.B(X) ->.B(X) (resp. a contra-

variant functor T: hP(X) —> hE(X)), and one verifies

. . . . . 2 .
Lemma 2,3, (i) T is an involution up to homotopy, i.e. T = id;

(i1) ouT =~ TOR 3 (i11) Tcu o OQT . o

2+m—d

Now consider the limit 1im hP(X xJ ) where the maps in the direct system are
imnr

2,m
given by o, (resp. cu)o Uéing a mapping cylinder argument, T can be defined as a map

lim hPX x3¥™dy s 1im nPE x 3V
- - > -
2,m 2,m

and from lemma 2.3, we have
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Lemma 2.4. T is a weak involution in the sense that the restriction of T? to any
compactum is homotopic to the restriction of the identity; in particular, T induces

an involution on homotopy groups. o

In [18] it is proved that a connected component of A(X) can be obtained by performing
the + construction on the space

2+m-d

lim h_F_’Ji’m(XXJ )| .

+
k,2,m
Hence lemma 2.4. provides a weak involution on A(X). We continue to denote this in-

volution with the letter T.

The relation between algebraic K-theory and concordance spaces may be described

by a certain commutative diagram

Lim H(x x %™, > 1im PYT(x x g2y
> - - —k
2,m k,2,m

v v
lim hH(x x 327y > lim WPYT(x x 3V
-> - > —k
2,m k,2,m

where H(...) denotes the intersection of H(.v.) with P(...), hH(...) is the simplicial
subcategory of hP(...) with H(...) as simplicial set of objects. The vertical maps of
the diagram are the natural inclusions, and the horizontal maps are given by the iden-—
tification of H(...) (resp. hH(...)) with fﬁ’m(eou) (resp. hfg’m(..o))u In [18] it

is shown that after performing the + construction the diagram is homotopy cartesian

in a range of dimensions. Further the term in the lower left cormer is contractible,

Each of the terms in the diagram has a description in terms of spaces of partitions,
Further the operation of turning a partition upside down gives an involution on each
of these spaces, The vertical maps in the diagram are compatible with the involution
by definition of the involution on the categories hE(X), resp., hﬂ(X). The horizontal
maps are given by the canonical map from a member of a direct system to its limit.,

They are compatible with the involution because the involution is defined on each of

the spaces in the direct system.

Our next goal will be to relate the involution T to another one defined in a
quite different manner. We return to the setting of § 1. The description of A(X)
given there (in particular cor. 1.14,) provides a natural involution on A(X) in a
straightforward way. The details are as follows.

Let X be a simplicial set, £ —> X an (orientable) d-spherical fibration (with a
section); Th(£) is a Thom space of & in the sense of § 1. Let p, denote the self map
of S™ given by the following permutation of factors:

Sn = SI A S1 A coo A S1 «§L> S] AS
i 2 n n

LA L. As!=sm,
n—1 1
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Define a contravariant functor

n n
T hURg(X) e hDRE(X)

x,Y',u) b—————> (Y',Y,Tg n(u)),

~ - Pog Mt -
where Ty NOMRS AY > Y AY' F 8T d ATh(e) 24— P d ATh(E) = Th _,(8).
2
By lemma 1.1, this is a duality map again. Clearly, T% n = id. The map L in this de-
?
finition ensures that Ten is a map over X XX, and the map P—d is introduced to
2

guarantee compatibility with the suspension functors. Indeed, one easily verifies that

(1) = 7 =

2%E,n Tg,n+lzr , (ii) It

r £,n - TE,n+122 :
Therefore one has a well-defined functor

t.: 1lim hOR®(X) —————> 1lim HORZ(X)°P ,
3 > £ -> g
ZosE, L,Z,

and in particular T restricts to a functor

L oas 2 ,m . 2,m op
Ty 1im hURk (X) o> lim hDRk (X) .
2,m Lam

By cor. 1.16, the categories hDRﬁ’m(X) approximate A(X). So one finally obtains an
involution Tg on A(X) depending on the spherical fibration &§. By prop. 1.17..
this involution is natural for maps of pairs (X,&) —> (X',&'), where £ —> g'
covers X —> X',

We now want to investigate the dependence of the involution t, on the spherical fi-

bration £. :
Recall from § 1 that there is an operation of (spherical) fibrations on spaces over X,
given by (Y,&) —> & »Y. Let £+: A(X) —> A(X) denote the map induced from this
operation. Let E—l denote an inverse of &; € is the trivial spherical fibration

X x8° —> X,

Proposition 2.5. The following diagram commutes up to homotopy:

T

A(X) £ > A(X)
T
L. 3 ‘.
A\ v
A(X) - S A(X)
€

Proof: We prove that the right triangle commutes up to homotopy. The proof for the
other triangle is entirely analogous. By cor. 1.3. there are maps ¢

e s e (resp. wg):
hDRg(X) —_— hDRg (X) given by

g

(YQY"U) P (g 'Y’Y',(E AE) *u)

(resp. (Y,Y',u) b———> (Y,E *Y',(e AE) *u)).
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Let ég: hDRZ(X) —_— thf(X) denote the forgetful functor (Y,Y',u) > Y. There is

a commutative diagram

$ T 8
€ 7 € n €
thf(X) Loreeee hDRE(X) ————> hDRE(X) ————— thf(X)

| e loc 2

n+d n+d

Restricting to the connected components of 'spherical objects', and passing to the
limit gives homotopy equivalences GE (resp. Gg) by prop. 1.6. together with lemma 1.5.,

and also ¢, (resp. wg) by lemma 1.5. The upper row of the diagram represents the in-

g

volution T, on A(X), the lower row represents Teo This proves the proposition. o

0f course, an involution on A(X) can also be defined using simplicial sets with

group action., It is induced by the contravariant functor, also denoted T»

hou™ (¢) ——————> noU™ (),  (M,M',u) b—>> ', M, T_(u)),

where Exw(p AL)

a > Ex (S" AG,) —————> Ex (5" AG,),

> MAM' —2

.
Tn(u). M'A M

-1
(L: G, —>G,, gb—>g¢g Yo

One easily verifies that the functors D® and DY are equivariant with respect to this
involution. By prop. l.l14. this involution is therefore the same, up to homotopy, as

the involution T, defined just before.

In the following it will be convenient to have a slightly different description
of the categories hDRg(X) available. Namely, instead of working with simplicial sets
one could as well use spaces having the homotopy type of CW complexes and continuous
maps throughout to define the categories hDRZ(X). Geometric realization induces a

functor hDRE(X)

> hDRg()X|) which is a weak homotopy equivalence.
In the following the symbol hDRE(X) will have either of these two meanings depending

on whether X is a simplicial set or a topological space.

To compare the involution defined on hP(X) with that defined on hDRg(X) one has
to relate both categories. Now hDRg(X) is a category while hP(X) is a simplicial cate-
gory. So to compare both one has to make hURz(X) a simplicial category as well,

Let hURE(X)P denote the category with objects locally trivial p-parameter families

Y,Y' of objects of thf(X) together with a p-parameter family of n-duality maps

1 , P
YAY > Thn_d(g) X A

N

Similarly, morphisms are given by p—parameter families of morphisms of hDRE(X)Q

o

(Here Y AY' denotes a p-parameter version of the fibrewise smash product over X,
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namely

YAY = YxY'U X x AP xx )

AP (XxAP) x Y' U Y x (xxaP)
AP AP
The categories hDRg(X)p assemble to a simplicial category which is denoted hDRg(X). .
Forgetting part of the structure we also have a simplicial category thf(X). .
Identifying hDRE(X) with hURg(X)O , the total degeneracy map gives an inclusion

hDRg(X) —> hURg(X)., and we have

Lemma 2.6. The inclusion hURg(X) — hDRg(X)u is a weak homotopy equivalence.
Proof: 1Indeed, this follows from the fact that the maps hDRg(X) — hDRg(X)k are

weak homotopy equivalences.for all k. o

Now let X denote a compact (orientable) manifold of dimension d. There is a map
hE(X) —> hR(X). given by (M,F,N) ——> M, where M is considered as a space over
X Xa. We want to lift this toa map hP(X) ~—> hDRg(X)O (for suitable & and n) in such a
way that it is compatible with the involution on both terms. To do so one associates
to a partition (M,F,N) a duality map as follows. Let M' = M~-F, N' = N-F. The

inclusion
i: M' x N!' ———> (X X[a,b])2 - diagonal

induces a map over X XX

XZ
X2 x[a,b] xb UX2 xa x [a,b]

it M' AN > (X x[a,b]D? = n) U

(A = diagonal).
If (M,F,N) is a p-parameter family of partitions, one replaces the product M' x N' by
the fibre product M' x N', and M' A N' by the p-parameter version of the smash-product

. AP
defined above,

Let Z denote the target of the map j. Z is an object of R(XZ) by the obvious

projection map, and the inclusion given by

X x X > X xa xX xb

> Z .

Let £ denote the tangent microbundle of X (resp. an R"-bundle to which it corresponds
. + . . . . e .
by the Kister—Mazur theorem). Let £ denote the fibrewise one-polnt-compactification

+ . . : . . . . .
of £, & 1is an orientable d-spherical fibration with a section. Convert the map

7 ——> X? into a fibration Z' —> X2,
Lemma 2.7, Z' —> X2 is a Thom space of £+ in the sense of § 1,
Proof: We first show that Z ——> X2 is in the same component of hR(X xX) as the ob-

ject X xX UX t*., We represent £+ as follows, Let n denote a neighborhood of the diag-
onal in X XX which is an Rp—bundle; n' is a smaller neighborhood satisfying the same

requirement. Then £+ =7 Un'n'X° We have the following chain of homotopy equivalences

2' <S> 7 < (®x[a,bD? - & < X x[a,bD? - U
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U =n'xA'", A' = diagonal of [a,b] x [a,b])

= (x2-n") x[a,bl?2 U X2 x ([a,b]2 =A")

(X2 -n") x ([a,b]2 -A")

2 _ .1 2 a0 — y2 2
> (X -n") Umﬁ—n')xsox xS X UXZ-n'X
= X% U X2 - (X?-n) = x> U .
(X2 -n'") - (X2 -n) ( n) n=n' "
Now the inclusion n-n' > X2 is homotopic to the composite n=-n' BELEN X‘~é—> X2,

as one sees from the diagram

where the left triangle is commutative, and the right triangle commutes up to homo-
. T . . ..
topy since n~Jl—> X 1s a homotopy equivalence, Therefore X2 Un_n, n 1s in the same

connected component of hR(X?) as the object
pushout (X2 <— X < n=-n' —> 1) =

2 = w2 +
X% Uy (X Un_n.n) X2 Up g .

Define a map v: Z —> Z by (x,x',s,t) pb—> (x',x,r(t),r(s)), where s,t €[a,b] and
r: [a,b] —> [a,b] is the reflection map. Clearly, v? = id. It induces a map
L't Z' ——> Z' with the same property. Therefore Z' has all properties required of

a Thom space of E+ . o

Lemma 2.8. The map j is a d—-duality map.

d+1((X x[a, b2, (X x[a,b])2 ~A) be a Thom class of the tangent micro-

Proof: Let t €H
bundle of X x [a,b]. The exact sequence of the triple ((X x[a,b]l)2,Z,X2) identifies t

with a generator t' of Hd(Z,Xz)g There is a commutative diagram (q <d)

[o %4 — -
H (N, X xb) J > 1979, x xa) ~ HOT9(M, X xa)
i ~
v d+1- Vv
H (X [a,b]l -M, X x[a,b] =X x[a,b)) - > BT TN x[a,b), M)
t

where uj(z) = j*¥(t')/z. (All homology groups have Z[WIX] —-coefficients,) The vertical
isomorphism on the right comes from the exact sequence of the triple (X x[a,b],M,X xa).
The bottom map Ye is the usual Alexander duality isomorphism. (One has to be a little
careful, since the assumptions of the duality theorem are not quite satisfied here,
e.g. Xx[a,b) is not compact, and, more seriously, M is not contained in the interior
of X x[a,b]. But in the special situation at hand this does not affect the result be-

cause the intersection of M with the boundary of X x[a,b] is homotopy equivalent
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to X.) Hence aj is an isomorphism as asserted.

The last two lemmas provide a map

f: hPX)

> hDR2+(X).
(M,F,N) ——> (M',N",])
which is compatible with the involutions T' (resp. tT). Of course, f restricts to a map
£ hPOT(R) ———> WORT(0) . (tm=d).

We would like to stabilize this map with respect to dimension. In order to do so one
first has to replace the categories hpi’m(X) by hfi’m(x). Secondly, one modifies the

suspension maps on the catefories hDRg(X). Namely, let

', n n '
ZQ. DRg(X) > DRE(X xJ")

Y,Y',u' t——> (Y xJ' U Xx3J',Y' xJ',.0e0),

Y x3J!

and similarly with Zr“ (J' denotes some interval). We obtain a diagram

2,m f L,m
hEk (X) > hDRk (X).
02 Zr
v v
2, 2,m '
hEk’ (X xJ) 1 > hDRk (XxJ").

where f' takes a partition (M,F,N) in hP(X xJ) to

L - 1 | . 1
™' -F UX><J XxJ', N' -F UXXJ XxJ'seus), and
and X xJ —> X xJ' is given by some fixed isomorphism J -Z.5 J'. This diagram com-
mutes up to homotopy since there is a natural transformation er _ f‘oz which

is given by

MxJ'} >MxJ' U Xx[a,a'] xJ

A ) |
NxJ' Uy oo X x0T > Nx T Uy oo gy X337
There is a similar diagram with ) (resp. Zr) replaced by o, (resp. Z‘Q)o

Hence one obtains a map in the limit

2+m-d f+m—d

. . %,m . L,m '
f: lim h—Ek X xJ ) > lim hDRk (X xJ ) o
k,/Q,,Il‘l st/am
which is well-defined up to homotopy. Standard mapping cylinder arguments now show

that f is compatible with the involutions up to weak homotopy, i.e. the restrictions

of tf (resp., fT) to any compactum are homotopic.

Lemma 2.9, The map f is a weak homotopy equivalence.,
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Proof: Composing f with the forgetful map

. . 2,m y 2+m—d . )
g: 13m hDRk (X xJ ). > lim th(X

k,2,m ' k,2,m

><J,5&+m—d

)e

gives (up to a minor modification) the map proved to be a homotopy equivalence in
[18, prop. 5.4.]. The map g is a homotopy equivalence by prop. 1.6. and lemma 2.6.

Hence f is also a homotopy equivalence, as was to be shown. o

Corollary 2.10. The involutions defined by T and T on A(X) agree up to weak homotopy.

o
Our next goal is to show that the involution on A(X) gives upon 'linearization'
the usual involution on the K~theory of (group) rings. We first have to explain the

meaning of this statement. Let R be a ring., We define the K-theory of R to be
K(R) = Z x BGL(R)" ,

that is, we replace the class group by Z in order to make the analogy with A(X) more
transparent. Let R be equipped with an anti-involution ": R —> R. Fora typical example
let R = Z[G], the group ring of a group G, and the anti-involution being defined by
g > g—], g € G, There is an induced involution on le(R) given by A > (Kt)_l, the

conjugate transpose inverse of A. This defines the usual involution on K(R).

There is a canonical map A(X) —> K(R), called 'linearization', where R = Z[WIX],

cf. [16], In order to define this map we use a slightly different description of K(R).
Namely, let isoFk(R) denote the category of free (right) R-modules of rank k and
their isomorphisms., The canonical inclusion le(R) —_— isoFk(R) is an equivalent of

categories, This allows one to define

KR) = Z x |lim isoF, ®)|" .
k

The linearization map is induced by the functors
3 .
huk(G) — 1soFk(R)
M —— HG(M) ,
2
k,2 > 0, G = G(X), the loop group of X.

Proposition 2,11, The linearization map A(X) —> KCZ[ﬂlX]) is equivariant with

respect to the involution on both terms.

Proof: Let R = Z[ﬁ]X] = Z[NOG]u Let isoDFk(R) denote the category of triples
(A,A',u), where A and A' are free (right) R-modules of rank k, and u: A® A' —> R

is an R ® R —map defining a non-singular pairing. (R is a right R®R -module by
letting r. (s ® t) = trs.) A morphism (A,A',u) —> (B,B',v) is a pair of isomorphisms
f: A—> B, f': B' —> A", such that u(f'®id) = v(id ®f). The category isoDFk(R)
has an involution defined by (A,A',u) > (A',A,u). The canonical inclusion

le(R) — isoDFk(R) is compatible with the involutions on both terms. Further there
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1s a functor
hDUi’m(G) ——————> isoDF, (R)

' G G, G
(M’M ’u) > (HQ(M)’ Hm(M ), HQ,+m(u))'

The category isop?k(R) was designed in exactly such a way as to make this map equiv-

ariant with respect to the involutions. Altogether we obtain a commutative diagram

hDUé’m(G) > i50DF, (R) < G1,_(R)

2 . ‘
huk(G) > 1soFk(R) <—f~«—-——--G1k(R).

The middle vertical map is an equivalence of categories; the vertical map on the left
becomes a homotopy equivalence after passing to the limit with respect to £ and m by
prop. 1.13. Therefore the upper left arrow is an approximation to the linearization

map. We have seen above that the arrows in the upper row of the diagram preserve the

involution. This proves the proposition. o

Remark: The linearization map considered above is actually a special case of a more
general natural transformation from the K-theory of spaces to the K-theory of sim—
plicial rings in the sense of [16]. The K-theory of a simplicial ring R can be de-
fined from the category of free simplicial R-modules in a way formally quite similar
to the construction of A(X) from the category of free pointed simplicial G-sets. The
natural transformation is then given by the map A(X) —> K(Z[G]) (G=simplicial loop
group of X), which associates to a free pointed simplicial G-set M the simplicial
ZIG]-module %[M], theunderlying simplicial abelian groupof whichis freely generated by the
non-basepoint elements of M, Now in the context of simplicial Z[G]-modules the con-
cept of duality can be defined in complete analogy to the 'non-linear' case, and
K(Z[G]) can be constructed from a larger category of Z[Gl-modules by including dual-
ity data. This again leads to an involution on K(Z[G]), which by its very construction
is compatible with that on A(X) via the linearization map.

The composition of the linearization map A(X) —> K(Z[G]) with the map

KZlcl) —> K(Z[NOG]) = KCZ[WIX]) induced from the connected component map G —> m G

is identical with the map of proposition 2.11,

§ 3. The splitting theorem

In this section we apply the concept of duality developed in the previous sec-—

tions to give another proof of the splitting theorem, [17], [18]:

Theorem: The canonical map Qwsm(X+) ~> A(X) is a coretraction up to weak homotopy.

The theorem will be proved by constructing a splitting map A(X) —> QwSm(X+)o To

make the proof more transparent we give an informal preview of the argument.
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Recall the category hOR™(X) from § 1. We agree that duality is taken with re-
spect to the trivial spherical fibration € = X x S° if no spherical fibration is
mentioned explicitly. This category approximates A(X) in a sense which was made pre-
cise .there. To define the splitting map, the category hDR™(X) will have to be re-
placed by a certain simplicial topological space. This is done in two steps. First

a simplicial set DR"(X). isconstructed together with a chain of homotopy equivalences
hDRn(X) > hDRn(X). < DR™(X) .

where hDRn(X)0 is a certain simplicial category combining both hDRn(X) and DRn(X)e o
In a second step each simplex of DRn(X). is replaced by a certain contractible space.
This gives a simplicial topological space, which is denoted QBn(X). . It is on this
space that the splitting map is defined.

To show that the map constructed is a retraction up to homotopy we consider the

following diagram: (For simplicity let X = %)
DR (¥), ———> Q8%
’ l
e (=]
~
- n
BZOo > DR (%), .
The lower horizontal arrow represents the inclusion Q%¥S$” ——> A(*) before the + con-

struction., It is shown that this arrow may be lifted as indicated by the broken arrow,
and further that the composite BI  ——> Q”S° agrees up to homotopy with a map de-
scribed by Segal, [12]. Hence, after performing the + construction it gives a weak
homotopy equivalence,

To make precise the way these spaces approximate A(x) (resp. A(X)) one has to stabi-

lize them in various ways.

Finally let us mention that from the description of the splitting map given
here it is not clear how this map is related to the splittings constructed in [17]

and [18].
We start by giving the precise definitions now. Define a simplicial set R(X).
: T
by stipulating that a p-simplex be given by an object Y’zgi X xAP  of Rhf(x x AP)
such that for each face inclusion a: A% < AP the following conditions are satisfied:

(1) o*y := a-](Aq) is an object of Rhf(X qu), where a is the composite
Y —E> x xAP -PE 5 AP

(ii) the following diagram commutes

X x A% > 1d xa > X x AP
SJ/ ls
a*Y > Y
rl lr
X x A4 id xa > X x AP
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(iii) o*Y >—> Y is a weak homotopy equivalence.

The face maps are given by the obvious restriction maps. This definition can be modi~-
fied to include duality data. Concretely, let DR(X). denote the simplicial set a
p-simplex of which is given by a tuple (Y,Y',u), where Y and Y' are objects of

R

hf(X)p and

us: (Y U X) A (Y' U X) —————> Thn(a)

XxAP XxAP
is an n~duality map in R(X). (Hence, for each a: A9 < AP the restriction of u to

. *k. . _ .
Ya' a' Y UXqu X is also an n-duality map.)
The simplicial set DR™(X). and the category hDRn(X) described earlier can be

combined into a simplicial category hDR™(X). . By definition the objects of hDRn(X)p
are given by DRn(X)po Let (Y,Y',u) (resp. (Z,Z',v)) denote a simplex of DRn(X)pq

A morphism (Y,Y',u) > (Z,Z',v) in hOR™(X)  is a pair of weak homotopy equivalences
b 2 p

f: Y—>Z, f': Z' ——> Y' satisfying that the following diagrams commute
(i) X x AP ‘}XAP
VAN N\
Y’~**j;~"w> Z , Z! ~~—»f~—«-~—-> y'
(i1) for each : A% < AP
* 1 '
o*y fla ¥ > o¥z A f la Z > o¥7!
T T
Y ——m———> YA YA > Y!
f Aidd
Y AZ! ° > Z AZ'
a’ T a’ To
id Af! v
o a
v v
Y AY! > Th (g) .
a’ o u, n

The simplicial category hDR™(X). contains both hDRn(X) = hDRn(X)o and DR™(X). being

its simplicial set of objects.,
Lemma 3.1. The inclusions

DR™(X) , ————> hDR"(X)., < hDR"(X)
are weak homotopy equivalences.

Proof: Let s: hOR™ (X) —> hDRn(X)m denote the degeneracy map; let d be the map in
the other direction given by restriction to the m-th vertex of A™, Define a functor f

|
from hDRn(X)m to itself by mapping (Y P Am, yr By Am, ses) toO
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pTr 1
2 5 A",y P A" L.) . (Here v denotes the m—th vertex of A™)

-1
(p (v ) x a"
Similarly f' is the endofunctor of hDRn(X)m given by

] _ PT
(¥ —2s A" vt P A ) > (¥ 2> A", p 1(vm) A® 2 s A ).
Clearly sd = f'f, Define another functor g: hDRn(X)m'v~—> hDRn(X)m by
m m m T m m
(¥ —> A", v — A" ) > (Y x AT B AT ¥t — AT,
There are natural transformations given by the inclusion p_l(vm) x AT —> Y x Am,

—£i§l22~> Y x A", This proves that f is homotopic to the identity.

resp. by the map Y
By a similar argument the functor f' is homotopic to the identity, Since ds = id any-
way this proves that s is a homotopy equivalence. This is true for every m, so by the
realization lemma (cf. e.g. [16]) the right arrow in the lemma is a homotopy equiva-—
lence.

To show that the left arrow is a homotopy equivalence we employ a variant of Quillen's
theorem A, [10]. Let i. denote the arrow in question. We show that the left fibre
i./((Z,2",v);[m]) over a fixed object in degree m is contractible. Since DR™®(X). is

a simplicial set the fibre will be a simplicial set, too, rather than a simplicial

category. A p-simplex of the fibre is given by
(a: [p] — [m]l; (Y,Y',u) EhDRn(X)P, (a,0"): (Y,Y'u) > a*(z2,2",v)).

There is a simplicial subset F. of the fibre defined by the condition that Y' = a¥*z',
and the structure map a*Z' —> Y' is the identity. In fact, F. is a deformation re-
tract of i./((Z,Z2',v);Im]). To see this let j: Fo. —> 1i./((Z,2',v);[m]) denote the

inclusion map. There is an obvious retraction

k: i./((z,2',v);[m]) > F,
given by
(a; (Y,Y',u), (a,a'): (Y,Y') ——> (a*z,a*z"))
- > (a3 (Y,a*2"), (a,id): (Y,a*zZ') ——> (a*z,a*z')).

We describe a simplicial homotopy from the identity map on i./((Z,Z2',v);[m]) to the

composite jk by specifying a family of maps hq: ie/((Z,Z',v);[m])p >

i./(2,2",v)50m]) L, 4= 0,..e,p.

Let x be a p-simplex of i./((Z,2",v);[m]) as described above. Let T(a') denote the
mapping cylinder of the map o': a*Z' ——> Y', There are canonical maps over

AP x Al B: T(a') —> Y' x Al, and y: a*z' x Al s T(a'). The map hq is defined to
take the p-simplex x to the (p+l)-simplex of i./((Z,Z',v);[m]) given by

(ao s [p+1] —> [m], (oF(Y xA‘>,¢§<T<a'>>,uq>,

(agpo): (R xA‘>,m;<T<a'>),uq) —> (as)*(z,2',)),

where (i) @q: Ap+1 —> AP xAl are the characteristic maps of the non-degenerate

(p+1)—-simplices of AP XA], q = 0,004sP0
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(ii) o, are the surjective maps [p+1] —> [pl, q =0,...,D;

(iii) uq is the composite ¢Z(Y XA]) A QS(T(u')) S>>

(YxA])ATNaW #@Jﬁl>(YXA5 A(Y'XAU >
A u .
YAY > Thn_d(e),
* 1 @:(B Xid) x /% 1) *
i : Y xA e e Z XA = Z
(iv) aq wq( xAY) > ¢q(a* . (aoq)
| ¢q(v x1id)
agi (@0 )*(@") = 9r(z! x4 —————> 0q(TC@) .

One checks that the maps hq assemble to a simplicial homotopy from the identity map

on i./((Z,Z2',v);[m]) to the map kj. Hence F, is a deformation retract of
i./((2,2",v);[m]). By an argument which is very similar, one proves that the canonical
map F. —> A™ is a homotopy equivalence., Hence i./((Z,2',v);[m]) is contractible, and
by an application of theorem A we conclude that i. is a homotopy equivalence as

asserted, a}

Remark: The homotopy equivalences of the lemma restrict to homotopy equivalences of
the subcategories DRi’m(X). (resp. hDRﬁ’m(X)g) defined by restricting the homotopy
type of the spaces involved.

There is a (left) stabilization map

DRi’m(X). ——— prthm

X).
given by
(T,Y",0) > (8" xa®) A v,¥', ).
AP xxAP
Similarly, there is a right stabilization map, by suspending Y', and finally, in the

k-variable, one stabilizes by taking the wedge sum with an f-sphere (resp. m—sphere).

In view of this remark, the algebraic K-theory of X may now be described using the

simplicial sets DR{:’m(X)0 in the following way:

Corollary 3.2. AX) ~Z x | 1im DRﬁ’m(X).|+
>

k,2,m O

Let us now specialize our arguments to the case X = point. The general case will

be delt with afterwards.

Recall that an n-duality map was defined to be a pointed map u: Y A Y' —> s
satisfying a certain non-singularity condition. It is also possible to describe this
duality by a certain map v: S" —> Y A Y', Namely, given the map u, define

WiYAY' AYAY ——s " A"

by
(a Aa' AbAD") p——————> (u(a AD') Au(b Aa')) .

It is easy to check that this defines a 2n-duality pairing. Define v to be the dual
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of u with respect to the duality w. Equivalently, v is characterized by the condition

that the following diagram commutes up to homotopy

n v

S >Y A Y!
(%) ia* W
*
Map (s7,8%™) —% > Map(Y A Y',8°%) .

Here Map(A,B) denotes the space of pointed maps from A to B. The vertical arrows in

the diagram are given by the adjoint of the identity (resp. the adjoint of w).

Let * denote the one-point space. We are going to construct a certain simplicial space
from the simplicial set DR(*). by including further duality data.
Let x be a O-simplex of DRn(*). which is represented by the n—duality map
u: Y A Y' —> s%, Let Ex denote the space of pointed maps
3
s holim(Y A Y' ¥ > Map(Y A Y',5°T))
satisfying that the following diagram commutes

3

§" > holim(Y A Y' —%—> Map(Y A Y',Szn))
.é—
Y 2 Y 2
Map(Sn,S n) >  Map(Y A Y',S n) .
In other words, a point of EX is given by a map v: " —> Y A Y making diagram ()

commute up to homotopy, together with a specific homotopy commutativity

h: ST AY AY' A[O,]]+ > S2n between the maps

SnAYAY'—-vM—];g-——>YAY'AYAY'———W———-—> S2n
and
ST AY AY' 1d Au > g™ A s Szno

The space EX is the same up to homotopy as

SZn

Qn(fibre(Y'AY' —> Map (Y AY", )) .

The map w# is (2n-1)-connected. Therefore, EX is (n—-1)—-connected, Similarly, if x de-
notes a p-simplex of DRn(*)p represented by Y,Y' and the n—-duality map
u: Y/AP A Y'/AP

> Sn, we let EX denote the space of pointed maps

*
— Y > Map(Y/AP AYT/AP,S%TY)

st /\AE —> ho(];im(Y/Ap AY/AP
satisfying that

(1) the following diagram commutes
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s™ A aP > holim(Y/Ap AY' /AP > Map (Y/8P AY' /8P, 5%))
or |
Sn
1d#l
*
Map (s7, 52 4 > Map(Y/8P AY'/AP,$%D

> Map (Y/AP A Y'/AP,SZH)

(ii) the map §" AAP > holim(Y/AP AY' /AP
.(—-

- > Y/AP AY' /AP is a map in the category R(*). , i.e. for each face inclu~-
sion a: A% < AP there is a commutative diagram
A eM— 5y Ay
+ a o

id Aa
nV
§T A AP ——— y/aP A vraP

Again EX is an (n-1)-connected space. For every p let DRn(*)P be the disjoint union of
the spaces EX for all x €DRn(*)p.In view of condition (ii) this defines a simplicial

space DRn(*). . There is a canonical map

DR™ (%), > DRT(%).

E l———.—m> X .
X

This map is (n—1)=-connected, since it is (n—1)-connected in each simplicial degree.

Of course, one can again restrict the homotopy type of the spaces involved in the con-
. . .. . . .. 2,m

struction of these simplicial sets., Thus one obtains simplicial spaceslggk’ (%) o

There are three stabilization maps. For example, stabilization with respect to £ is

given by
2,m 2+1,m
DR (M > DR T

n+1 n+l

(s“'AAE —> Y/0P AYT /AP > 8) s (57T AP —> n(v) /8P AY' /8P > s,

One therefore has a well-defined map

. 2,m . £,m
lim EBk’ (%), > 1im DRk’ (%). o
2,m £,m

This map is a weak homotopy equivalence since by the above it is the limit of
(2+m~1)-connected maps. Hence one obtains still another description of A(%*):

+

Proposition 3.3, A(¥) =~ Z x | lim DRi’m(*)o
, im - DR
k,2,m

> A(%)., By the theorem of Barratt-

We now give a description of the map @ S
Priddy-Quillen-Segal, cf. [13], there is a weak homotopy equivalence BZZ o Qmsm(o),

where I_ denotes the infinite symmetric group, and Q8™ is the O-component of

(0)
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stable homotopy. We define a map BI -> lgm DR (*). which induces the map

0,00 . . . . n
Qs > A(*) in view of the description of A(x) afforded by cor. 3.2.. We need a

suitable model of BI_.

Consider the following configuration space.

Let Cég’m = (CRQ')k - (fat) diagonal) X ((]Rm)k - (fat) diagonal). (Recall that the fat

diagonal is defined by the condition that at least two vectors of a k~tuple of vec-
tors are identical.) This space is (min(%,m)-2)-connected. The symmetric group Zk

acts freely on Ciz’m via the diagonal action. Let Ci’m be the orbit space of this

action. It follows that the spaces Ci approximate BZk . The space Cﬁ’m

a deformation retract the space D&’m defined by thickening the points of a configura-

’m .
contains as

. . 2,m . . . . m
tion in C’> to unit discs, one in Rg, the other one in R,

k
Let ¢ = (ai: Dz —~>iRQ L,m

s ai: D" —> Rm)i€I be a point in D, ’ . (I denotes an index set

k
. . . . . +
of cardinality k,) To this point there can be associated a map Pt S£+m== R& ™y {=}
+
— S2+m of degree k as follows., Choose a fixed degree ! map f:(DQXDm,B) — Sg m
Define
£((a, xa) 1)) if x€(a, xa!) (@' xD™
i i i i
o, (x) =
* otherwise,

. . + . .

Taking c to 9. defines a map ¢: Di’m'—~> Qz+mSQ m(k)o The subscript 'k' on the right

refers to the component of degree k maps.

Lenma 3.4. The map ¢ induces a map

L,m, + 2+m_2+m

(1im D, ) ————> Q" S

k

(o)

which is (min(%,m)—-2)-connected.

. . . . . . . . 2
Proof: Consider the usual configuration space of k disjoint particles in R”., Denote

this space by the symbol Di . There is a canonical diagonal map Di —> Di’z , which

is (f2-2)-connected, More generally one can define a map Di —> D&am if m> 2.

Further there is a map Di — QQSR(k) and a commutative diagram (m > )
2 2.4
Dk > (08 (k)
v v
2,m f+m, L+m
It is proved in [12] that the upper horizontal map induces a weak homotopy equivalence
. L+ . 2.2 2.2 . . .
> o
(1im Dk) > 1§m Qs (x) Qs (0) The vertical maps in the diagram are
(2-2)-connected in the case that m > 2. The other case follows since Dﬁ’m o DE’Q .
o

Let S(Dﬁ’m) denote the singular complex of Di’m . Define a map

S(Di’m) — DRi’m(*)o
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in the following way. Let c =(ui: AP ><D2 —_ Rg, ai: AP xp™ —> Rm)iEI represent a
p-simplex of S(Di’m). Consider the spaces s* A T+ (resp. S™ A I+), where T is con-
sidered as a discrete topological space. There is an obvious duality pairing

> SR+m

L m
u (s7 A I+) A (S A I+)

which is induced by the map I xI —> S° which takes exactly the complement of the
diagonal to the base point of S°. Associating to the configuration ¢ the tuple con-
sisting of the spaces (Sz A I+) x AP (resp. (s™ A T+) X Ap) and the canonical duality
of these spaces induced from u, defines the required map. We would like to lift this
map to the simplicial space Q§ﬂ+m(*). . Let f: (DQ XDm38)-w~> (SQ A Sm,*) be as be-

fore, and let

. | L m P
v': S A A+ > ST AS A I+ A A+
f(ocixai)—](x) AL As if x €(a;xal)({s} xD¥ x {s} xD™)

X A s fp—>

* otherwise .

(Again, s¥*M g regarded as RY xR™ U {=}.)

Let v, denote the composite of vé with the diagonal map
L m P L P m P
S"AS A I+ ADL, ———> (87 AT A A7) A (ST A I+ A DY)

It is clear that v, is a duality map and that v, is dual to u, in the sense defined
above, at least up to a sign depending on the parity of m. Since we eventually have
to pass to the limit with respect to £ and m anyway, we may assume m even without

essential loss of generality.

Next we have to define a certain homotopy

24m >‘SZ(SL+m)

h : (S

P L p m p
. AA+) A (S AI+_AA+) A (S AI+ AA+) A[O,l]+

which is part of the data of a point in 252+m(*)° o

We proceed as follows., A point (ui,u{) of a configuration ¢ determines a map

L+m 2+m

o xui: Dz x AP xpm x AP > R and hence a map of degree 1 SQ AAE ASHIAAE — S

1

Letting the radius of the disc p? (resp. D™) grow to infinity defines a canonical

2+m

homotopy between this map and the projection SQ AAE ASHlAAE — S . For each 1 € 1

define
2+m 2+m

.o P4 P M P
h.: S AL AST AN AS AA+A[0J]+——-—~>S AS

to be the projection on the first two factors, and on the other factors the homotopy
determined by ai,ai just described. Define the map

v, QLtm o p L P m ) L+m 2+m
hl: s ADLAST AT AN AS AL, AD AlO, 1], —> S AS

*  if i # j
(x As Ax'" AL As" AX" AJ AS" AL) —>

hiOcASAX'AS'AX"AS"At)if i=7j,
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Compose the homotopy hé with some standard homotopy between the map

L L L 2

S ASTAS  AS® > 8 AST AST AT

(xAX'" AYAY") > (x AY' AY AX")
and the identity map. Such a homotopy exists because of our assumption on the parity

of m, This defines the required homotopy hc .
Taking the configuration ¢ to (uc,vc,hc) gives a map
. L,m L,m
(-1-) S S(Dk ) —> _D"Bk (*)o .
Let D, := lim D°™
k 5 7k
f,m

the singular complex of D, - Passing to the limit with respect to & and m in (+) hence

. By lemma 3.4, this is a classifying space for Zk. Let S(Dk) denote

gives a map

. 2,m
BZk > lim QBk (%),
2,m

which, after passing to the limit in k and performing the + construction gives the

map QS ——> A(¥),

We now describe a splitting of this map. Associate to any p-simplex (uc,vc,hc)

of DRi’m(*). the composite

> g

This defines a map
2,m 2+m p L+m
DRk (*)p ~ —3> Map (S AA+, S )(k)
resp.

. L,m L+m . L+m
r: DRk (x), > Map (S AA+, S )(k) .

(Again, Map(...) denotes the component of degree k maps).
(k)

. .. . . . + +
The simplicial space on the right is the singular complex of 92+msl o Map(Sg m;SQ+n5

considered as a simplicial space in the natural way. Checking the restriction of r to
the subspace S(Di’m) of Qgi’m(*)0 immediately reveals that this is nothing else but

the map ¢ described above. Hence one obtains:

Lemma 3.5. There is a commutative diagram

2,m , 9 f+m_L+m
S(Dk ) , > S(27 7S (k))
s
M L,m r , E+m 2+m
DRk (*). > S(Q S (k))° s

+ + . . . . .
where S(QR mS2 m)g denotes the singular complex considered as a simplicial space, and

the vertical map on the right is the natural inclusion.,

After passing to the limit with respect to k,%, and m and applying the + construction,

the map ¢ becomes a homotopy equivalence by lemma 3.4. The vertical arrow on the right
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is a homotopy equivalence anyway, and the + construction does not change the terms

on the right. This proves that the map

00 o0

4
l = QS

| 1im DRV,
k,2,m

> 1lim S(2°S
.»-

).
z (k)

(o)
is a retraction up to weak homotopy, and hence the theorem of this paragraph in
the case X = * ,
The modifications required for the general case are straightforward: To a duality
(Y U

X) A (Y' U X)

. n
> Thn(e) in DR (X)p

XxAP XxAP

there is associated another duality in DRn(*)p, which is given by
Y/X xAP) AY' (X x AP) s Thn(e)/X2 =s"Ax, —>s"

(cf, prop. 1.17.). This defines a map DR®(X), ——> DR™(*). . Define the simplicial
space DR™(X). as the pull-back of the following diagram.

DR™(X) . , > DR (%).
A\ v
DR™(X). > DR (%) .

Similarly define Dgf’m(X)g . Hence a p-simplex of QEP(X). (resp. Qgi’m(x)c) consists

of a certain n~duality (resp. (2+m)-duality)

(Y U X) A (Y' U X) ——> Thn(a)

XxAP XxAP

over Ap, together with a map S" A AE-w> Y/X xAP A Y'/X xAP, and additional data.

Associating to such a p-simplex the composite

" AMP > Y/X x AP A Y'/x xP > Th(e) /X = s AX,

defines a map

L+ 2+m82+m

DR (X). —> Map(s” T Al s T AX,) = S( (X))

By the same argument as in the case X = * this map is shown to be a retraction up to
homotopy after passing to the limit with respect to k,%,m, and performing the
+ construction,

This ends the proof of the theorem,
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