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. THS OBSTRUCTION TO FINDING A BOUNDARY FOR AN

@

g‘ OPEN MANIFOLD OF DIMENSION GREATER THAN Five
g Laurence C. Siebenmann

%

i s

For dimensions greater than five the main theorem gives nec-
gssary and sufficient conditions that a smcooth opsn manifold W
be the interior of a smooth compact manifold with boundary.

The basic necessary condition is that each end € of W

be tere. Tameness consists of two parts (a) and (b)s

(a) The system of fundamental groups of connected open neighbor-

hoods of ¢ is stzble. This means that (with any base points and

f £

connecting paths) there exists a cofinal sequence G < 1 G2 <l

~

ees SO0 that isomorphisms are induced Image(fi) < Image(fz) < ee s

(b) There exist arbitrarily small open neighborhoods of e +that
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are dortinated each by a finite complex.

Tameness for ¢ clearly depends only on the topolozy of W.

g e L T

It 35 shown that if W 1is connected and of dimension 2 5, its

i

. . s 1 . . . .
ends are all tame if and only if W >< S~ is the interior of a smooth

L e

cormact manifold. However examples of smooth open manifolds W are

constructed in each dimension > 5 so that W itself is rot the

p . . . . . 1 .

4 intexrior of a smooth compact manifold although W >< S 1is.

A

3 when (2) holds for e, +the projective class group Ko(nis)
:

; ol :rl(e) = g'] Gj is well defined up to canonical isomorophism.
3 .

“Wnen € is tame an invariant o(¢) € Ko(nle) is defined using
; the smoothnsess structure as well as the topology of W. It is clesely
reiated to Wall's obstruction to finiteness for C.W. complexes {(Annals

of Yath. 81(1965) pp. 56-69).
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n>5, is the interior

Main Theorem. A smooth open manifold W ’
of a smooth compact manifold if and only if W has finitely many
connected components, and each end ¢ of W is tame with invariant

¢(e) = 0. (This generalizes a theorem of Browder, Levins, and Livesay,

A.M.S. Notices 12, Jan. 1965, 619-205).

For the study of «(€¢), a sum thoorem and a product theorem

are established for C.T.C. Wall's related obstruction.

" Analysis of the different ways to fit a boundary onto W

shows that there exist smooth contractible open subsets W of i R

n odd, n>5, and diffeomorphisms of W onto itself "that are

smoothly pseudo~isotopic but not smoothly isotopic.

The main theorem can be relativized. A useful consequence is

Provosition: Suppose W is a smooth open ranifold of dimension

>& and N is a smoothly and properly imbedded submanifold of co-

dimension k # 2. Suppose that W and N separately admit com-

vletions.

If k=1 suppose N 1is l-comnected at each end. Then

there exists a compact manifold pair (W,N) such that W= Int W,
N=1Int¥.

r W

vwhaera M 4s a

is a smooth open manifold hembémorphic»to M >< (0,1)
closed connected topological {n~1)-manifold, then

W has two ends € and ¢, , both tame. With nl(e_) and TT1(€+)
idéntified with vl(W) there is a duality o e+) = (~1)n-10:.(—€::7
where the bar denotes a certain involution of the projective class
group %’o(n11~l) analogous to ons defined by J.U. Milnor for Whitehead

groups. Hers are two corollaries, I M is a stably smoothable

closad topological manifold, the obstruction o(M) to M having
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the homotopy type of a finite complex has the symmetry o{l) = (=1)"+().

If ¢ is a tame end of an open topological manifold W and €4

€, are the corresponc?ing smooth ends for two smoothings of W,
then the difference 0’(61) - 0‘(62) = ¢, satisfies oy = (-1)n.6% .
Warnming: In case every compact topological manifold has the homotopy
type of a firite complex all three duality statements above are
0 =0, ' |

It is widely believed that all the handlebody techmiques used
i;“z this thesis have counterparis for plecewisse-linear manifolds.
Granting this, all the above results can be restated for piscewlise-
linear manifolds with one slight exception. For the proposition

on pairs (W,N) one mist insist that N be locally unknotted in W

in case it has codimension ona.
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: Introduction -
The starting point for this thesis is a problem broached by
W. Browder, J. Levine and G.R. Livesay in [1]. They characterize
those smooth open manifolds W', w > 5 that form the interior

of some smooth compact manifold W with a simply commected boundary.

5 C{ course, manifolds are to be Hausdorff and paracompact. Bayond

this, the conditions are

(A) There exist arbitrarily large compact sets in W with i-con-
nected complement, .

(B) ' Hy(W) 1is finitely generated as an abslian group.

I extend this characterization and give conditions that W
ba the in‘s:erior‘of any smooth compact manifold. For the purposes
of this introduction let W' be a commected smcoth apen manifold,
tkat'*‘&s one end -~ i,e. such that the complement of any compact
set has exactly one unbounded component. Tnis end -~ call it ¢ -

-- may be identified with the collection of neighborhoods of &

in W, € 1is said to be tame if it satisfies two conditions analogous

to (A) and » (B): L
a) Sy is stable at ¢,
b) There exist arbitrarily small neighborhoods of €, each dom-

inatéd by a finite complex,

hen € is tame an invariant o(e) is defined, and for this
definition, no restiriction on the dimension w of W 1is reguired.
The main theorem states that if w > 5, the necessary and sufficient

conaitions that W be the interior of a smooth compact manifold

are that € be tame and the invariant o (e) be zero. Examples are

R . e
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constructed in each dimension > 5 where € is tame but o (e) #0.
or dimensions > 5, ¢ is tame if and only if W X S1 is the
Lnterior of a smooth corpact manifold,

The stability of m, at € can be tested by examining the
funcdamental group system for any convenient sequence Y1 ] Y2 D e
of open connected neighborhoods of e with N closure(Yi) =¢.
If m, is stable at ¢, m(e) =Zim m(Y,) is well defined up

to isomorphism in a preferred conjugacy class.

Condition b) can be tested as follows. Let V be any closed

connected neighborhood of € which is a topological manifold (with

boundary) and is small enough so that nl(e) is a retract of 'rrl(V)
-~ i.e. so that the natural homomorphism nl(e) —_— ni(V) has a
left inverse. (Stability of = 4 at ¢ guarantees that such a neigh-
torhood exists.) It turns out r‘t.hat condition b) holds if and oﬁ!.y
£ v is dominated by a f:Ln:Lte complex, No condition on the horotopy
type of W _can replace b), for there exist contractible W such
that a) holds and ™ (e) is even finitely presented, b.ut € is,

in spite of this, not tame. On the other hand, tameness clearly
cepends only on ths topologzy of W ..

| The invariant o (e) of a tame end ¢ is an element of the
sroup ?50 (—.-r1 ;a) of stable isomorphism classes of finitely generated

trojective modules over 'ni(e) . If, in testing b) one chooses

se neighbornoed V of ¢ (above) to bs a smooth submanifold, then
o(e) = r, (V)

where (V) € Ko(r.'iv) is up to sign C.T.C. Wall's obstruction [2]

to V having ths homotopy type of a finite complex, and 1, :’Lsr
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3ii
induced by & retraction of TTl(V) onto 'n'l(e) . Note that o(¢)

4

- . !
seems to depend on the smootimess structure of W. For example,

\

“every tame end of dimension at least 5 ::; has arbitrarily small'open

neighborhoods each homotopy equivalent to a finite complex ( 'usé‘B.é_“&"}

P

6.5) The discussion of tameness and of the definition for of€)
; is scattered in vazious chapters. The main references are: 3.6,
4,2, k.3, b.b, 6.11, 7.7, pages 107-108, 11.6.

The proof of the main theorem applies the theory of non-simply-

connec;ted handlebodies as expounded by Barden [31] and Wall [3]
to find a collar for € -- viz. a closed neighborhood V which is
a smooth submanifold diffeomorphic with Bd V>< [0,1) « In dimension
5, the proof breaks down only because Iﬁﬁ.tney's famous device fails
'to un"cangle 2-spheres in L#-manifoids (c.f. page 40). In dimension
2, i';ameness alone ensures that a collar exists {see Kerekjarto [26,.
p. 171]. Ii seems possible that the same is tm§ in dimension 3
-(mo_dulo the Poincard Conjectﬁre) - c.T, Wa'li [30]5 Dimension %
::.sa complete mystery. . | _ |
There is a siriking parallelism betwsen the theory of tame
ends developed heré and the we;]_l known theory of h-cobordisms. For
exarple the main theorenm coﬁesponds to the s-cobordism theorem of
3. z"lazur [347(3]. The relationship can bs explained thus.b Fc-ar a
time end € of dimension > 6 the inv#riant a(e) € Eo(nle) is
the obstruction to‘ finding a collar. Vhen a collar exists,parallel
families of collars are classified relative to a fixed collar by |
torsions T € W}_i(nie) of certain h-cobordisms (c.f. 9.5). Roughly
stated, O is the obstruction to capping € with a boundary and

T then classifies the different ways of fitting a boundary on.




iv

Since 'v.'."n(r.1 €) is a quotient of Kl(nle) (17], the situation is
very reminiscent of classical obstruction theory.

A closer analysls of the ways of fitting a boundary onto an

open manifold gives the first counterexamples of any kind to the

conjecture that pseudo-isotopy of diffeomorphisms implies (smooth)
isotopy. Unfortunately open (rather than closed) manifold are involved.

Chapters VI and VII give sum and product theorems for Wall's

obstruction to finiteness for C.W. complexes. Here are two simple
consecuences for a smooth open manifold W with cne end e, If

¢ is tame, then Wall's obstruction @(W) 1is defined andA (W) 7=
1,0(e) where i: 111(6) — nl(W) is the natural map. If N is
any closed smooth manifold then the end € >N of W ><‘ N dis tame

if and only if € 4s tame. When they are tame
o(e >< N) = K(N)j,s(¢)

vhere J is the natural inclusion nl(e) —_ ni(e > N) = ni(e)
><m, () and X{N) 1is the Euler characteristic of N. Then, if
X{}¥) =0 and W>}N has dimension > 5, the main theorem says

that W >< N 4is the interior of a smooth compact mznifold.

The sum and product theorems for Wall's obstruction mentioned
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2bove have counterparts for Whitehead torsion (pages 56, 63; [19]).
Likewlse the relativized theorem in Chapter X and the duality theoren
in Chapter XI have counterparts in the theory of h-cobordisms.

rolfessor Miinor has pointed out that examples exist where the standard

Guality involution on K, () is not the identity. In contrast no

N AR A NI ARV ) PR

Yl

R PR SRS

such exarmple has been given fox .Wh(m). The examples are for =n = '

2229 and 2257 s they stem from the remarkable research of E.E.

Zurzer. (See the appendix.)
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It is ry irpression that the P.L. (= piecewise-linear) version
of the main theorem is valid. This opinion is based on the general
consénsus that hendlebody theory works for P.L. manifolds. J. Stallings
seems to have worked out the details for the s-~cobordism theorem
in 1962-63. B. Magzur's paper [35] (to appear) may be helpful. The
theory should be formally the same as Wall's exposition [3] with
P.L. justificaéions for the individual steps. |

For the same reason it should be possible to traﬁslate for
the P.L. category virtually all other theovems on mamifolds given
in this thesis, However the theorems for pairs 10.3-10.10 rmust be
re-sxamined since tubular neighborhoods are used in the proofsand
i, Hirsch has recently shown that tubular neighborhoods do not gen- |
erally exist in the P.L. category. For ‘10.3 in codimension >3
it seems that 2 more complicaled argument employing only regular
neighborhoods doss succeed. It makes use of Hudson and Zeemen [35,
Cor. 14@, p. 73]. It also succeeds in codimension 1 if one assﬁmes
that the given P.L. imbedding N'1e, W? is locally unlmotted [38,
v. 72]. I do not know if 10.6 holds in the P.L. category. Thus
10.8 and 10,9 axe uhdecided. Bat it seems 10.7 and 10;10.can be
salvaged. | |

Professor J.W. Milnor mentioned to me, in November 1964, cer-
tain grounds for believing that an obstruction to finding a boundary
shoﬁld Yie in E%(nle) . The suggestion was fruitful. He has con-
trituted materially to miscellaneous algebraic questionse. The appendix;
Jor exampie, is his ovm idea. I wish to express my deep gratitude
Tor 211 this and for the numerous interesting and helpful questions

nhe has raised while supervising this thesis,
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I have had several helpful conversations with Professor William

Browder, who was perhaps the first to attack the problem of finding
a boundary [51]. I thank him and also Jon Sondow who suggested that
the main theorem (relativized) could be applied to manifold pairs.

I am grateful to Dr. Charles Giffen for his assistance in preparing

the manuseript.
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Zicel manifold ... Hausdorff and paracempact topological manifold.

Some 3} 1

ciffeomorphism,.

horotopy egquivalence.

inclusion map of X into Y.

frontier of the subspace S.

boundary. of the manifold M.

mapping cylinder of f.

universal covering of X.

Zuler characteristic.

the class of Hausdorff spaces with the homotopy type of a
. complex and dominated by a finite C.W. complex.
finitely generated.

Grothendieck group of finitely generated projective modules
over the group m. |

group of stable isomorphism classes of finitely generated
projective modules over the group .

the stable isomorphism class of the module [P], -

m2n ... contirmous map such that the preimage of every con-
paect set is commact.

rse Dimetion ... Morse Tunction such that the value of eritical

points 1s an inersasing function of index.
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Chapter I. Ends in General.

The interval (0,1) has two (open) ends while [0,1) has
one;. Wo must make this idea precise., Following Freudenthal [5]
wa deline the ends of an arbitrary Hausdorff sp‘ace X in terms of
open sets having compact frontier. Consider collections ¢ of sub-
sots of X so that: ,

(1) Each G ¢ ¢ is a comected open non-empty set with come
pact frontier bG = G - G :

- (31) If G, G’ € ¢, there exists G" e ¢ with "c Gn G ;
(121) N (G | ce Y =¢.

Adding to ¢ every open connected non-empty set , Ho X with
bi compact such that Gec H for some G & ¢, we produce a collec-
tion ¢ satisfying (1), (1), (ii1), which we call ths end of X

determined by €.

Iomma 1,1, With € as above, let H be any sot with compact frontier.
Thon there exists G & ¢ so small that either Gc E or GAH=@.

roof: Since bH is compact, there exists G e € so swall that -

‘g

GAbE=¢ (by (i1) and (3ii)). Since G is comnected, GcC H

or else GN H=¢ as asserted. {J

‘It follows that if €, D ¢ also satisfies (1), (33), (i31),
then every member H of €, contains a mezber & of ¢, i.e.
H&e', For, the alternative GN H =@ in the lemma is here ruled

out, Thus €'> €D € sand so we can make the more direct

D2finition 1.2. An end of a Hausdorff space X 1s a collection
€ of subssts of X which is maximal with respect to the properties

(1), (1), (iii) abova.

S i e B
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" Sroz this point epsilon will always denote an end.
; Defindtion 1.3. A peishborhood of an end € is any set NC X
iaat contains some member of €.
As the neignborhoods of € are closed under intersection
f and infinits union, the definition is Justified. Suppose in fact
é we add to X and ideal point w(e) for each end ¢ and let

}/3 e e} be a basis of neighborhoods of w(¢), where 6—'—'- G
v fw(e') } Gé€ e'} . Then a topologicsl space i results. It is

Zausdorf{ bacause
Lezza 1.4. Distinct ends ¢, ¢, of X bave disjoint neighborhoods.,

reofs If G € ¢, by Lemma 1.1, for all sufficiently small G,

€ az t 295 either G1 > .52 or Gi N .62 = ¢ ° The first alternative

does not always hold since that would imply €2 S hencs € = €y a
Coservation 1) If N is a neighborhood of anend € of X,

——

GC N for sufficiently small G € ¢ (by Lemma 1.1). _Thus €

deterzines a unique end of N.

Cogewwztion 2) If Y X is closed with compact fromtier bY,

and €' is anend of Y, then ¢' determines anend € of X,

. e caiean LN DTGNS 0 e TE L REREY T T g g A Ry
S0 R R v L TN R X O L T P I a2 I i A I PR R P e N I S BRI ARSI R
sy S R R R N AR DR R A R I R PR I SRR A AR s T R P S A ke AN LRI SR N TR IR eI

urther Y 1s a neighborhocd of € and € dstermines the end

¢ of Y as in Cbservation 1). '
(Zxplicity, if G € €' is sufficiently small, the closure

o G (in Y) does not meet the compact set bY. Then as a sub-

2%

sst of X, G 1is noh-empty, open and connected with bBG coﬁpact.

24
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Tafinition 1.5. An end & of X is lsolated if it has a member

L +that belongs to no other end.

From the above observations it follows that H has one and only

ors end.

Exarmle: The universal cover of the figure 8 has ZXo ends,‘ none

Cbsexrve "chat a compact Hausdorff space X has no ends. For,
as f\iG{ G &€ } ¢, we could find G € ¢ s0 small that GN X = )
which contradicts ¢ # GC X. Even a noncompact connected Hausdorff
space X may have no ends -- for example an infinite collesction
of ccpies of [0,1] with a1l initial points identified.

\
Eowax}er according to the theorem below, every néncompact con=
rscted manifold (separable, topological) has at least one end. For
exaxple R has two ends and o , n>2, has one ende Also a
compact manifold M pmirus k  connected boundary components Ni”"’ﬁk
has exactly k ends. c(Ni),...,e(Nk )+ The neighborhoods of e(Ni)

' k

ara the sets U_'UNi where U is a neighborhood of Ny in" M.
J= .

Trnooren 1.6 (Freudenthal [5]). A non-compact but ¢-compact, commected

- Ezusé@orf?f space X that is locally compact and locally connected

has at least one exd.

Po—azks -Notice that the above exarple satisfies all conditions

R
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excopl local compactness.

Proof: By a familiar a}gumant ona can produce a cover Ul,Uz,UB,..'.

so that ﬁi is compact, U'l is comnected and meetls only finitely

marny Uj' 35#i. Then f\nVn=¢ where V. =T UT U ....

Each component W of Vn apparently is the union of a certain sub-
collection of _the connected open sets U ’Un+1"" e In particular

W is open and BW ANV = $. Then bW is compact since it mmst

e in X-V C U U...ul , whichis compact. Now bW # ¢

or élse W , being open and conneéted, is all of the connected space X.
If wW#é, ;oma Uj CW meets U,V +c0u Un' » By construction

this can happen for only finitely many U j° Hence there can be .
only finitely many components W in Vn o It follows that at least

ona componant of Vn ~= call it W -- 1s unboundsd (i.e. has non-

compact closure).
Tow Wp Vnﬂis a undon of some of the finitely many components

of V o So, of these',' at least one is unbounded. It is clear

row that we can inductively defins a sequence

(*) Ce WO WD W D,

whore wn is an unboundasd component of Vn « Then € satisfies

(3), (ii), (iii) and determines an end of X.

The above proof can be usad to establish much more than Thsorem

1,6. Very briefly we indicate some

Coroilaries of tha proof: 1.7. It follows that an infinite sequence
in X either has a cluster point in X, or olse has a subsequonce

that converges to an end determined by a sequence (*). Also, an
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inTinite sequence of end points always has a cluster point. Assuming

now that X 3is sevarsble we sss I)\( is compact. One can see thatl
evafy end of X 1is determined bj a soquence (*). Then the end points
Z=3X-3X are the inverse limit of a systen of finite sels, namsly
the unbounded components of Vn , N =1,2,¢ee.+ From Eilenberg

and Steenrod [6, p. 254, Ex. B.1] it follows that E 1is_compact

and totally disconnacted.

‘With X as in Thoorem 1.6 let U rango over all open sub-
sets of X with U compact. Let e(U) denote the number of non-
compact componants of X - U, and let e denote the rumber of ends
of X. (Wo don't distinguish types of infinity.) Using Freudenthal's

thaorem it is not hard to show:
Terra 1.8, Iuwdb ‘e(U) =6,

Assume now that X is a topological manifold (always separable)
.or else a locally finite simplicial complex. Let H;(X) be the
conozology of singular cochains on X modulo cochains with compact

support. Coofficients are in some field.

e pimagt—

Treorom 1.9.  The dimension of the vector space H:(X) is equal

to tho nuzber of ends of X or both are infinite.

Trne proof uses the above lemma. (See Epstein (7, Theorem
i, p. 1101). | _

The universal covering of ths fizure 8 is contractible, but
for panifolds, infinitaly many ends implies infinitely generated |

hozology.
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Theorem 1.10. If W is a connscted combinatorial or smooth manie:

fold with compact boundary and’ e ends,
© < rank [E__,(W,Bd W] + 1.
(Again we confuse types of infinity.)

Proofs Let W be W compactified by adding the end points E

(c.f. 1.7). Fr_om the exact Cech cohomology sequence
> B () —> 2(E) -—>~Hj‘.(&.E) ——

we deduce
‘e = rank (z) Srank Hi(ﬁ,g) +1,

since F? .is commected and E 1is totally discomnected. By a form.
of Alexander-Lefschetz duality

. 1'1\ ~
- BB TR (W8 W)

with éech cohomology and singular homology. This gives the desired
result. ‘ '

To verify this duality let U1 c Uz C ++¢ be a sequence of
coxpact n-submanifolds with Bd W ¢ Ui y W= Ui 5 let VWI)"D be

o - Int Un o« Then the following diagram commtess

1,4 e 1 P  fr
H (W,Vi) => H (Ui,Bd Ui) —_—> Hn-i(Ui’Bd W)

L

1 6 1 P
H (ﬁ,viﬂ) ~£—> B (U,,,B U,,,) —>—>E__ (U, ,,Bd W)

) ) » ‘
where e is excision, P 1s Poincare duality and 4i,, 3 are induced

i

% N
it
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42
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, | ,
| by inclusions. Now 1im, EX(¥,¥...) ¥ BMW,E) by the contimuity
; . gl. i+l

J , - .
of Coch theory (6, p. 261]. Also _li_:i Hn-i(Ui’Bd W) ¥ Hn-i(w’Bd W) .

. Taes (T) is established. {J
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Chapter IT. Cormlatiens. Gallars and 0-Nedohborheods.

et

Suppose W is a2 smooth non-compact manifold with compact

possibly exply boundary Bd W,

Definition 2.1. A cormletion for W is a smooth izbedding i3 W—> W
W 4nto a smooth compact manifold so that W - i(W) consists

of sozme of the boundary ccmponents of We
Now let ¢ be an end of the manifold W above.

Definition 2.2. A collar for ¢ (or & collar noizhborhood of &)

is 3 connected neighborhicod V of € which is a smcoth submanifold
of V' with compact boundary so that VX B3I V><[0,1) (= msans
"is diffeomorphic to").

L
prgs

The following proposition is evident from the collar noighe

borrood theorem, Milnor (&, p. 23]:

Propositicn 2.3, A smooth manifold W has a completion if and only
if Bd W is compact and W has finitely many ends each of which
has a collar. {J

N

Thus the question whethor a given smooth open manifold W
is diﬁ‘eéz:nrphic to the interior of some smooth compact manifold
is ré&.zced to a question about the ends of W, namely, "When does
a given end € of W have a collar?” Our goal in Chapters II
to V is to anzwer this quastion for dimensions greater than 5.
V8 romark immediately thal the answer is dsterminsd by an arcitrarily

srall reighborhood of €. FHence it is ns loss of gensrality to

i T o | <AL S O S0 ST P AAAS, A R B THB e




assume alwavs that € 4s an end of an open manifold (rather than
a non—c§mpact manifold with compact boundary). .

lo will set up progressively stronger conditions which guare
antee the existence of arbitrarily small ne'ighborhoods of e that

share progressively more of the properties of a collar.

Remark: "Arbitrarily small" means inside any prescribed neighbor-
hood of ¢, or,' eguivalently, in the complemsnt of any pi‘escribed

corpact subset of W,

Dofinrition 2.4, A O-nzighborhood of € is a neighborhood V of

¢ which is a smooth connected manifold having a compact connected

bourndary and just one end.

Remark: We will eventually define k-neighborhoods for any k > 0.

Roughly,b, a k-neighborhood is a collar so far as k-~dimensional homotopy

type is concerned.

Theorem 2,5, Every isolated end ¢ of a smooth open manifold W
has arbitrarily small O-neighborhoods.

Proof: Let K be a given compact set in W, and let Gé ¢ be

a member of no other end. Choose a proper Morse function f: W —> [0,%),

231nor [8, p. 36]. Since U, £71(0,n) = W there exists an integer

n so large that (KU bG) N £™M[n,®) =P. 4s £ 1[0,n] is compact,

ore of the components V_  of f.ifn,w) is a neighborhood of €.

4s V_ is cormected,necessarily VnC_ G, and so V_ has just one end. |
If E Vn is not comnected, dim W > 1 and we can Join

wo of the componants of E4 Vn by an arc ID1 smoothly imbedded in Vn

that mests B4 Vn transversely. (In dimensions > 3, Wanitney's
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imbedding theorem will apply. In dimension 2 ons can use the Hopf=-
Rinow thoorem -- see Milnor [8, p. 62].) If we now excise from
‘fn an open tubular neighborhood T of D1 in Vn and round off
‘crza corners (see ihe note below), the resulting manifold V;l has
ono less boundary component, is still cornscted with compact boundary
and satisfies V! n K = ¢ . Hence after finitely many steps we obtain

a O-noighborhood V of ¢ with VA X=6¢.0

Yote on roundine corners: In the above situation, temporarily change

the smoothness structure on Vn - T smoothing tha cornoers by ths
mothod of Milnor [9]. Then let h: Bd (Yn - 1) >< [0,1) —>(V_ - 1)
ba a smooth collaring of the boundary. For any % € (0,1),

h(Bd (V_ = T) >< 2] is a smooth submanifold of Int (v, -DcwW.
Wa dofine V;x = (Vn -7 - thd (Vn - T) > [O;l)} + Clearly Vr'1

is d:‘x:i‘feomorphic to Vn - T (smoothed). And the old Vn -TC W

y

is V;x th a topological collar added in W.

I;ﬁ‘ one wishes to round off the corners of Vn - T so that
the difference of Vn - T and V;l lies in a given neighborbood
N of tha corners there is an obvious way to accomplish this with
the collaring h anda smooth function Q: Ed (V - T) —> [0,1)
Zero \outsida N and positive nsar ths cornor set.
Henceforth we assums that this sort of dsvice is applied whensver

rounding of corners is called for.

e S R
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Chavter III. Stability of m, at an End.
£y £,

Dafinition 3.1. Two inverse sequences of groups G, <—— G, <—= ...,
=

1
by -4
C;'r1 <L G‘2 <2 ees are conjugate if thore exist elements g € Gi
so that £'(x) = g4'~'1f. (x)g, » (Vo say £! is conjugate to £,.)
By a subsequence of Gi <-1‘- ("z2 <2 see WO mW3aN a soquence
! fe
1 2 .
G D —— aw > * -
“ni an < eesy By <m, < eee 5, Whele fi is thoe composed |
zap 'Gﬂ < G, from the first sequence.
[ S & |
' £y 5
For two ssquances g: G1 < G2 < eee and

£? b . ,
L C-:'l < Gé i .. consider the following three possibilities.

S
6d and 5' are isomorphic; ihsy are conjugate; one is a subsequsnce

of the othsz.

Dafinition 3.2. CLonjugate soulvalenca of inverse sequences of groups

is the squivalence relation generated by the above three relations.
Thus % is conjugate equivalent to %' iff thore exists a finite
~hade = = L] 3

chain % 51, 52, sae, gk 5 of :mvazge sequences so that adjacent
saquences baar am?\;@\e of the above three relations to each other.

> s oo s - PR oW et
RO R L e LS ORI VT (300 B R T i 15 " bag: o B et an -
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Supposa X is a separabls torological manifold and ¢ is

o o il 8l 4
anend of X. Let X1 2 XZD coe y Yl 2 Yza eee bo two sequences

of patheccunected noighborhoods of € so.that N 1 i‘i =g = ni.fi .

Caoosing the bass points %5 € Xi and base paths xz;_ +1 to X, in

4

. wo gol an inverse ssquence

3

-

g: ﬂl(xl,xl) A G ﬂi(XZ,zz) " eve o
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Lawra 3.3. g is eonjugate eguivalent to H .

Prsof: This is easy if Xi = i; hence also easy if f Yif is a

subssquence of {Xi’i « For the general case wa can find a sequence

Z oYX DX DY‘JC’., r
I % T2 %

1<r2<..¢. 31<82<oo¢.

Tris sequance has the subsequence {Xr } in common with { Xi} and

the subsequence {Ys { in common with ZYi?, . The result follows. (]

i
f1 ‘ fz
Definition 3.4, An inverse sequence G1 < GZ < ees OF
b4 £y
groups is stable if thore exists a subssquence GI; <——1-— Gr <2 ove
1 2

so that isomorphisms Im (f}) <— Inm (£3) <= ... are induced.

Pomarks I Gl < G2 < ese 1is stable it is certainly con-

jugate equivalent to the constant sequence Im (i‘;) <— In (fé) <= eees

o TSR TR T

The leozma below implies that conversely if G1 G2 = eee
conjugate equivalent to a constant sequence G <id G <L cee

1

-

£
i
I'}.
”
<
e
¥
2

then G, <=~ G2 T eus ’g}stable.

£, A £ £
Lot §: 6, <= g <%= ..., 4's ¢ < <-—?ﬁ-.‘..

e two inverse saquencas of groups.

Lor7a 3.5. Suppose g 1s conjugate eguivalent to 5' . If %

is stable so is 5' and
hmg’z lim & .
O . S

Droofs IT g is isomorphic to 5 ' or g is a subsequencs of

?

o

or g' of g » the proposition is obvious. So it will suffice

g

prove ths lemma when g is conjugate to 5 ', Takingz subsequences
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w3 may assuma that g induces isomorphisms Im (i‘ ) < In (f ) <'—— ces o
ind we still have fi(x) = gifi(x)gi for some g € G, (= Gi) .
-1 -1
Yow Im (£ ) g, (fi)g1 , and Im (fé) = g,Im (i‘z)g2 . Clearly

£, 4s (1-1) on Im (£}); so £} is also. But fi.(Im (fé))--m (£,)

i 1

sizes T,(g)) € In (£) . Thus 2](In (£2)) = g Tm (£,)g,™ = Inm (£3)
Tris establishos that £} induces Inm (i") <"—" Im (f ) o The same
arzoment -eo-}'a for f' fé, etc. Then g is stable and

" Uaf =In(£,) =In (f]) = nmi".ﬂ

e

2zrarks IS g is conjugate equivalent to g' o but not necessarily

tabls lim é will in general not bs equal to 1inm ? Her; is
T S Cannand

a sirple example contributed by Professor Milnmor. Consider ths sequence

F1 o] Fz-') F3 D eee

wasra F_ is freo on generats XX pqreee and y. Ths inverse

1i2t (= intersection) is infinite cyclie. Now consider the cone |

juzate sequence

£ £ by
1 2 3
Fl < F2 < FB < eoe
wasTo i‘_l(é—) = x %x -1 o Fach rap is an imbeddings conssquently

ths o L ¥ 3! . o
the inver 5 1ixit is f\ flf by Frzi-i < Fl e Now an element n e F1
s i -1

. r =1 -
[WSes=0rvt 1iOS ln fiJ. ”’f F 1 has th@ fo?m xlxztooanxn 00-3:2 xl
where é € F_4q+ 4s & does not involve XygeeesX ~the (unique)
>ediced word for 1 certainly involves Xyseeesk, oOF olse is tha
identit No reduced word can involve infinitely many generators.

<525 ths second inverss limit is the identity.

e M 8 s et S kit A o S o e ini




;
1
i
#
£
€
£

R R IR S
)A i N B
.

14
Azain let € ba an end of the topological manifold X.

Dafinition 3.6. ™ is gtable at € if there exists a ssquence of
path connected neighborhoods of ¢, X1A DX, 0 e with f\fi =¢
such that (with base points and base paths chosen) the sequence
fy fa
. ni(xi) < ﬂ1(12> <= ...
induces isomorphisas

Im (fi) <— In (fz) S aee @

Lemmas 3.3 and 3.5 show that if y is ste;ble at € and
¥, DY, 2 ... is any path comnnected sequence of neighborhoods of

€ 50 that /\-i"i = ¢ ,then for any choice of bass points and bass

g g
poths, the inverse sequence q:- ni(Yl) P ni.(YZ) e eee is

stable. And conversoly if § iagtable 7, is cbviously stable
2t ¢, Herce to msasure stabiliiy of wy at ¢ we can look at

271y ons Soquence g ‘o

D:linition 3.7. I us

is stable at ¢, define ni(é) = lim
for soma fixed systom g as above.

e

Lormas 3¢3, 3.5, m,{€) is detesrmined up to isomorvhism.
b ] b 1 &
I %’ is a similar system for €, one can show that thaore is a

preferrad conjugacy class of isomorphisms 1lim g —> 1im §' such
<o L
thal If V is any path comnected nsighborhood, the diagram

-

lim >lim%'

| j\‘ ‘ /;—'

. n.‘i(V)
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commutes for suitably chosen J, j' in the natural conjugscy classes
dotermined by‘ inclusions. This shows for example that the statement
that '»'-‘1(€) —_— rrl(V) is an isomorphisam (or onto, or 1-1) is in-
dapendant of the particular choics of g to define .ni(e) « The

proof uses the icdeas of 3.3 and 3.5 again. I omit it.

- >< >< ><
mwmewles I %, is 2 < 2 < 2 < = ees 4 OT

to to nto
Z, R, SR 2.,

iy carnot be stable at ¢, The first sequence occars naturally:

Tor the complement of the dyadic solenoid imbodded in S, n > k.

Twimsle: If W is formed by deleting a boundary component M from
2 compact topolozgical manifold ﬁ, then ™y is stable at tha ona

ead ¢ of W sinca Xl, XZ, ese Ccan be a sequence of collars ine

msected with W. (See itho collar theorsm of M. Brown [15].)

[}

Furihsr ™, (e) =n (’I) is finitely presentsd. For M, being a
corpact absoluto neignbo rhood retract (ses [16]) that imbeds in
cucliccan space, is dom.nated by a finite complex. Then nl(H)

:s at least a rotract of a finmitely presehted group. But

Lz-=2 3,8 (proved 1_»—1 Wall (2, Lemma 1. 3]). A retract of a fimitely

srosented group is finitely pressnted. []
Lzt W ba a smooth opea manifold and € an end of W.

-

Nimitisn 3, 9. A i-neichhorhood V of € is a O-naighborhood

-

suchx thats
1) Tho ratural maps nl(e) —_— (V) are isomorph:x.sms,

2) BAVCYVY gives an isomorphisnm 'ni(Bd V) —> ni(V) .
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Hors is the important result of this chapter.

coren 3.10. Let W be a siwoth open manifold, n >5, and

€ an isolated end of W, If U is stable at € and ni(e)
is fimitely presented, then there exist arbitrarily small l-neighborhoods

of €.

Problems Is this theorem valid with n=3 or n=47

Izarole:  The condition that = 1(e:) be finitely presented is not
rodundant, 4 Given a countable presentation { x;rf .of a non-ﬁzd.te]y-;
prcsentable group G wa can comstruct a smooth open manifold W
of dizension n 25 with one end so that for a suitable ssquence
of path comnected neighborhoods %, O X, 2 ..o of ® with NX, = .

ino corresponding sequonce of Pundazmental groups is G <-ii G <-j-“-d- veo @

Cxo simply takes the n-disk and attaches infinitely nany i-handles
cnd 2-handies as the présantatio;; X3 r} demands, thickening at each
stop. (Keep the growing handlsbody orientable so that product neighe
borhoods for attaching 1-spheres always exist.) If we let X be
the complemont of the ith handlebody, ﬂi(xi) —_—> 1(W) G is an

isomorphisn bocause to obtain W from X, we attach {cual) handles

of dimemsion (n-2), (n-1) and one of dimension n.

Deaa ~F Pl e ]

> of Trzorem 3.10¢ Let V1 2 VZ D +es» be a ssguance of O-naigh-;

Lortood e with NV. = and V. . 3 ;
cds of with s $ and spq St V, . Sinee mw, is

ctcblo at e, aftor choosinz a suitable subsequence we may assume
bif £ *
1 2 . - :
7, (V) <—=—m (V) <—== ... is such that if H =fw (V, )¢ m (V)
St %

ik tho induced nmaps H1 Lre H2 < ..» are isomorpaiscks,

Fartner 4f X is a preseribed compact set in W we may assum
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NV, = $ o We will produce a l-neighborhoed V of € with VC v, .

sartisn 1) There exists a O-neighborhood V' CV3 such that the

irzgs of ( a V) —>7 (V ) contains (equivalently, the
b4

izags of ( ) —>m (VZ) equals Hz)'

2zeof: V' will be V) rmodified by 'trading i-handies' along Bd VL}.

For cor.vanience we may assuxe that the base points for Vi""’vlln

ero all the one point * € Bd V. Ey a nicoly izbedded, based 1-disk

in V3 attached to Bd V), we will mean a triple (D,h,h') consisting

of zn oriented smoothly irbedded 1-disk D im Int V3 that neets

22V, inits tio end points, transversely, and two paths h; h'

in 2aV, from * to the mnegative and positive end points of \ D. -
- Iet {’yi.lg be = finite set of generators for HB gﬁi(e) .

Clearly eacn ;:;'yi can ba represented by a dis}c (Di,'hi ;hi) that

is ricely izbeddsd excepi possib& that Int D:‘,:_ meets BEd Vl:— in

Jimitely zany - say T, == points; transversely. -Eut then it is

clzax how to give Ty + 1 nicely irbedded 1-disks representing elements
(1) AF3+d) 5 ;4 = oV, WFav)
g ,...,u in 171(./’3) m.th Ty = ug Ceeeny

In this way we obtain finitely many nicely imbeddad based

lelizks in VB attached to Ed Vh_ reprosenting elemeats in w ( )

i .
3.
3
3
&"
o9
[}

'the* gorerate a subgroup containing H Arrange that

3°

a3 A--—c_-.s%.s are disjoint and then construct disjoint tubular neighe-

Lorizods 2’1‘.? for tbam, each Tj a tubular neighboriocod in Vi,

orin "-’3 ~ImtV,. I T 5 is in VL subtract the opon tubular
o
nilzitoriosed T, £y V,e If T, dsidn YV, -IntV, = .
ooaJ*o::z Js*xBInL,'dd'l.‘a
~ V. . Eaving dona this for each T szooth the resuliing sub-

j ’
memileld with cormers (c.f. p. 10) and call 4t V'. Apparently

VU oaaa

s tze Casirod proparties. [
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Assortion 2) Thero exists a O-neighborhood VC Int V, such that

‘ﬂ‘i(Ei V) —> nl(Vz) is (1~1) onto H,; and any such V isa
i-m3ighborhood of €.

~

P=oof: Vo bogin with the last statement. Since nl'(Bd V) —> E, —>
—_— B C wi(Vi) is (1-1) oanto H, 'nl(Bd V) —> 111(371 - Int V)

and nl(Bd V) —> rri(V) are both {1-1); so by Van Kazpen®s theorenm
'ﬁi(V) —_— "1(V1) is (1~1). Eat, since BAVCV, 'nl(V) —_— "1("1)
is onto H, . Thls establishes ‘ -

i
1) ni(v) "'"">11’1(V1) is (i-1) onto Hi
2) ':11(}3&- V){3-—-> rri(V) is an isomorphism.
Choose k so large that Vk CV,. Then as H1 < Hk ’

wo see m (V) —>m (V) sends H (1-1) omto m,(V) wsing ). So

1) Ths mp-;_rrl(e) —_— 'ni(v) is an isomorphisﬁ. |

“his establishss ths second state:§nt.
The neighborhood V will bd obtained by trading 2-handles

along B3 V*, whore V' is the neighborhood of Assertion 1), The

following lemma shows that
n onto
8: 'n’l(Ed ve) > HZ C ni(VZ)

will bocoms an isomorphism if we 'kill' just finitely many elexzenis

Tyyeee,2, 0L the kernsl.
P i

Ior-n 3,11, Suppose &: G —>H 1is a hozomorphism of a group
G onto a group H. Lot [x; r} and fy; sﬁ e pressatations for
G and H with |x| gemerators for G and |s| relators for H.

fon Kormel (9) can be expressed as the least normal subgreup

o
-

containing (i.s. the normal closure of) a set of |x| + |s| elements.
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Proof: Lot % be a (suitably indsxed) set of words so that O(x) =

=&(y) in H. Sinco O 4is onto thore exists a set of words n

so that y = Yl(g(z)) in H. Then Tietze transformations give the

Zollowinz isomorpnismse

s} = frys x = By, ()

x5 x = &(y), s(y), =(x), ¥y = ’l(x)} |
T fxy; x = £(q(x)), s(n(x)), r(x), y = Il(x)}
T I ox = §0), 50, *(x)}

I

Sirco 6 is specified in terms of the last presentation by the cor-
respondence x > x, it is clear that Kornmel (§) is the normal

closure of the |x| + |s| elements E((x)) and s('rl(x)) -0

Paturning to tho proof of Assertion 2) we reprssent z, by

on oriented circle S  (with base path) irbodded in Bd V' . Since

5(z,) =0 and BA V' is 2-sided we can find a 2-disk D imbedded

in V, so that D intorsects Bd V' <transversely, in S = Bd D

-

3

3 Zinitely many vcircles in Int D.

If wa are fortunate, DN E4d V' = BA D. Then take a tubular
nelgiSorhood T of D in V' orin V, - Int V' depending on
weero D o lies.e IZ D is in V¢ subtract % from V¢, If T
2 V,-Int V' add T to V'. Round off the corzers and call
iy rozuli V; « Toxr short we say we have traded D along B3 V',
W Wo hovs the commmtative diage

: LY

3. 3
7, (23 V) — nl(Bd V')/(zi) = wl(Bd V' u D) < ﬂl(Bd ve)

1
. |

L (VZ)




N e o e ane e e oemoan v

.20
~horve tho maps are indzced by inclusions and (21) denotes the nor-
uol closure of Zy . Sirnce n =5, ji* is an isomorphism. Hence
fornol (i,,) is the normal closure of QZ,seee,q7, in w,(Bd v;);

Ry

wheTe q = ji*'ij* . Trus 2, has bsen killed and we can start

1
over again with Vi .

If wo are not fortunate, Int D mests 23 V' 1in circles
S1 ""’82; anci soxza proliminary trading is reguired before Zy can
o killed. ILet S1 bo an innermost circle 1n Int‘D so that S1
tounds a disk D1C Int D, Trade D1 along Bd V', This kills
tn element which, happily, is in ker §, and changes V' so that
it moots. D in ons less circle. (D is unchangsd.) After trading
% tizos we have again ths more fortunate situation and D itself
can'i“nally ba traded to kill zy or; mora exactly, tho image of

1 in tho now ni(V") .
Vaen Zyseeesy have all been killed as above we have produced
z manifold V so that
7 V‘ ——> T v
w (V) ——> 7, (V)
s {1-1) oxm ‘E, . This completes the proof of Assertion 2) and
Tacoxrem 3.10. O
Eore is a fact abont i-nsighbornoods of the sort wo will often
ceecpt without proof.

orr .12, I ‘Vl, Vz are l-neighbornoods of ¢, VZ < Int V1
than with i = V1 - Int VZ , 811 of the following intlusions glve

7., ~isomorphisnss Vz G, Vi,' ic Vi' B4 V1 ¢ X, Bd V2 G X
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2ol 0o commtative diagram

3 ‘ Ty (V) < m (V)

~

ol

~

’Ti(e),

5 stows that V, ¢V, gives a w,~iscmorphism. The vest follows easily. {]

L PR e S
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Chavtor IV. PFindinz Small (n-3)-Neighborhoods for a Tame End.

Fn;m this péﬁ:zt 1:.*3 will always be i:prking with spaces which
aro toplogical msnifolds or C.W. complexes. So the usual theory
of covering spaces will apply. T w1l regularly denote a vrnivarsal
covorine of X with projection p: X —> X. If an inclusion Y & X
is a i~squivalence then p'i(Y) is a universal covering Y of Y.
In this situation we say Y G X is k-comnocted (k 22) if E, XD =0,
0 <4<k, with integer coofficients. If f: ¥' —>X is any
i-cquivalence we say that £ is k-éonnacted (k >2) i Y' ¢ M)
is k~commected where M(£f) is the mapping cylinder of f. Hoté

that, 1f £ 1s an inclusion, tha dafinitions agree.

Zomark:  Homolozy is more suitable for handlebody theory than homotopy.

So w3 usually ignore higher homotopy groups.

afinition §.1. A space X is dowinated by a finits complex X

- e A,

il thore are maps K <__z°__> X so that i 4s homotopic to the
i .
1dzntity i}i .- ag' will denote ths class of spaces of the homotopy

tyze of a C.W. cozmplex, thal are dominated by a finite complex.

Lot ¢ be an isolated end of a smootn open manifold W .
2>5, so thet o is stable at ¢ ard Trl(e) is finitely prosented.

Ty Thcorem 3.10 there exist arbitrarily small 1-raighborhoods of €.

Lofivdition 4,2, € is called taws if, in addition, every 1-meighborhood

. .
ol € 33 in p@o ’

RN

Zrowits It would ba nica if tameress of the end € ware guaranteszd

Taep

S7 somo restriction on the homotopy type of W, If w 1(e:) =1,
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ihis 13 the case. Tho restriciion is that H,(W) be finitely gonerated
(see Theorsm 5.9). Howaver :{n ChaptorVill (pazed3) we constract
contractibleo smooih manifolds W, (m>8) vwithore end € so

that 7, is stable at ¢ and w%.{¢) is finitely prescnted and
i 1 v

1overthaless ¢ is not ta=me.

To clarifyy tho notion of tamsness one can prova, rodulo a

Tzsoren of ChapierVL, the

Provosition #.3. With W and ¢ as introduced for the definition

——

ol tarsness, there are implications 1) ==> 2) => 3) => 4) where
1)yeee k) avo tha statemonts: (Reverso implications 1) <= 2) ==
<= 3) <= &) are obvious.) | - o

1) Trhere exisis an opan ;conziected raeighoorhood U of ¢ in 9 :
suen “hat the natural map i: W 1(8) — -rri(U) has a laft inverse
T, With wei = 1. (Since u is stabls at e, r will exist whenever
U is sufficiently small.)

2) OCne 1-neighborhood of & is in ,@.

of € is in 09. ¥ors generaliy, if V
is a nzighbornood of € which is a topological ranifoid so that

=2V is corpact ard V has ons end, then V 2,9.

-

2237 Anply the following Theorem. In praviaz 3) => 4) use

& triangnlation of Int V=V such that a l-nsighvorhcod VIC Int V

%
m

SstZecomplex, snd racail that every compact topologiecal manifold

(]
)

so that (It V- Int V)e O .

~~
S N .

b - T ,
o (Complozont to tha Sum Thasoxex 0.6 ).

(O]

upposa a C.W. complex
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X is tho union of two subcomplexes Xi, KZ with interssctim XO .
(a) Xy, %, X,€8=>x€ B;
(0) %, 18 = X, X, €D provided that (%) —>m (%) and
Wi(Xz) —_— nl(x) have left inverses (i.o. ni.(xl), “I(XZ)
are retracts of w,(X)).[]

Aftor tho above proposition we ean give a conciss dofinition

of taroness, which we adopt for all dimensions.

Cﬂ*bguad a7 iriticm “%be An end € of a smooth open manifold W
is tarme if

1) 7, s stable at € -~ viz, thero is a sequence of connected
opon zoighborhoods X, D X, D «es of € with (\i X, =¢ so that

(:ith somo base points and base paths)

> q

I

m (X)) <—— -1(12)<—--

~

I‘—(f)<; " (fz) <_'..—'_'_.....

2) Thero i3 a connected open neoighboracod V of € in O so

czall that VC XZ .

Hotably, ti;.e hypothesis that 'n'i(e) bo finitoly prasanted
Lo loeidng., But as Vo Ly ?'.-'1(63) = In (fi-) is a rotract of the
Tritaly p'*c:cnt,d gTouD i'rl (V) hence is necossarily finttaly pro-
“ented by 3.8, Also, by Theorem 1,10, V¢ D has oxly finitely many
€283, 85 ¢ st bo an isolated end of Yo

Suppose € 4s an end of a smooth open manifold W, such

whn ﬂl is stable at g.

o~

= TEEen 4.5, A noighborrood V of € is a k-naighborhood (k>2)

A L o e LI o e i,
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if it is a l-neighborhood and E (V,Ba¥) =0, 0<i<k.

Tz main rosult of ithis chapter is:

zorom 4.9, IT € is a tame end of dimension > 5, thors exist

aroitrarily small (n-3)-neighborhoods of €.

smarist It turns out that a (n-2)-neighborhcod V would be a collar
rzigiborkood, t.e. V= Bd V >< (0,1) . In the next chapter we show
that, 47 V is an (n-3)-neighborhood, H ,(V,B4 V) is a finitely
generated vrojective module over ﬂl(e) and its class modulo free

=y (e}=-zodules is the obstruction to findihg a collar neighborhood of e.

Iz 4.6 Let 1 K -4—> X be a map from a finits complex to
L& that is a l~squivalenco. Suppose £ is (k-i)-connected,
win k2 2. (Thls adds mothing if k =2). Then H _(¥(f),K)

iz 2 f.3. ﬂ;(}’.)-r:adule.

Ze20%: Lot L=X5"0 3f k>3 or K2 if k=2, Then LCK
15 a l-ecquivalence arnd (k-1) conrected. Thus the composition

P
—> X is (k-1)-comnected. Up to homotopy itype we may

vy
P
N
N
b

aczzme £ is an inclusion. According to Wall [2, Theoren A] %{(X,L)

2.5, ovor m(X). But for the triple (X,K,L) we have
§_(X,1) —> B_(X,K) —> B,_q(K,L) =0
“iieh imilies E (X,X) T H (4(f),K) is f.g. over (. 0

.

20207 of Trzazmas .51 Suppose inductively that the following prop-

©ililen P holds with x=k -1, 2<k<n-3. (Notice that




-

Pw:"' There exist arbitrarily small x-neignborhoods of €.

Civen a coﬁpact set C wa mist construct a k—na:.ghbor cod that does

not maat C. Choose a (k-1)-neighborhood V with Vn C=¢.

2y Lomma 4.6, }LK(’{",Bd V) is a f.g. Trl(e)-modzﬂ.e. So we can take
a i‘inite generating sst fxi,,,.,x '§ with the least possible mun-
ver of olements. Vo will carve = th:xc toned k-disks from V to

produce a k-noighborhood.

Dafimition %.7: A nicely irbeddad baszd k-disk reoresenbing x €

£ (V Bd V) is a2 pair (D,h) ccnsistlng of a smoothly imbedded
oriented k-disk A‘D C V that intersects B4V in Bd D, transversely,
2nd a2 pata h from the base point to D, so that the lift DcV
of D bty Lk represents x. | (Since D isa smoothly irmbeddsd

oricnted k-disk in V with BEd DC Bd V, this makes good sense.)

funderontal Lemwa 4, 8 I7 V is a (k-1)-meighborhoed, 2<k<n-3,

?.( . implies that thore is a nicely irlbedded k-disk *epmsentinv

Kom !

cry givon x € .k(V, 3 V)

Co—mlation of praof of Theoven 4.5 (assuming 4.8): Let (D,h) re-

A

srcooat ::1 , <a2ko a tubular reighborhiwod of D in V, subiract
is opon tubular neighborhood from V  rounding ths corners,and call
tho restit Vv, Wowmay suppose VI C Int V so that V-~ Int V0 =

=4y ans BAVUD as édoforzation retract.

first note that V' dis at least a 1-naighborhood. For V

fas ViPU D? as doformation roiract where D' is a {a-k)-disk of

T tramsverze to D.  Since (n-k) >3 ni(V") —_— ﬁi(V) is an

":o.::::o‘zism so that 'ni(e) — ﬂl(V') is too. Further BA V' ¢ U
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and B4 VG U give w,~isomorphisnms. (Whem k=2 D is trivially
attacked). . This easily implies "ni(Bd V) ——> ni(V') is an
isomorphisn.

Next we establish that V* is really better than V.

H*(E,Ed '\‘(') szi(e) , and (D,h) represents a generator ;1 such

that i,,‘:c.1 = x4, *i: (E,Bd .’;) G (?I.,Bd 7) . From the sequence of

(V,0,24 V) wo see that H,(V,U) = E,(V*,Bd V) is zero in dimensions

<k and in dimension k is generated by the (m-1) images of xz,...~,an

wder 3,, 3§ (V,BaW) G (V,0). '
Thus V' s a (k-1)-neighborhood and E,(V,Bd V) has (a-1)

gonerators. After exactly m staps we obtain a k-neighborhood.

This establishes Pk and completes the induction for Theorem 4.5 D
3

Proof of ths Fundarental Lerma 4.8: We bagin with

Assertion: There exists a (ke1)-neighborhood V! C Int V so small

that x 4s represented by a cycle in U mod Bd’\‘l', vhere U=V~ Int V',

Proof: x 1is represented by a singular cycle and the singular sime
plices all map into a compact set CC V., Thers exists a '(k-l_)-
neignborkood V' C Int V so small that the projection of € lies

in U=V = Int V. Then E contains C and the 'gsserti‘on follows. [J

Yow the exact sequence of (V,'I;,Bd ?I,) shows that BA VQ U
1s (k-2)-comscted. Hence there exists a nice Morse functioh £ |
and a gradient-like vector field 5 on the manifold triad ¢ =
= (U;éd V, Ba V') with critical points of index A, max{2,k-1) <
S A <n-2 only. See Wall (3, Theorem 5.5, P 24}, - In other wordﬁ

e=c¢ e c where ¢, = (U.:

k1% * *%1u3%ne2 N ) 4s a triad having

w BreBaeq

\
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critical points of index A only and By 1s a level manifold of f.
is a product 1f k=2.

Vo roeall now somxe facts from handlebody theory using the
language of Milvor [4]. For each eriticzl point p. of index A
o "roft hand? A-disk DL(p) in U, dis formed by ths f—trajec‘bories
soing to p, and a 'right hangd’ (n=N)-disk DR(p) in Uy is formed
oy the s-trajoctories going from p. According to Milnor [&, p. 46]
vo nay ssswmo that in B, each left hand sphere BEd D(p) = S.(p)
r.20ts cach right hand sphere BEd D;'i(q) = SR(q) transversely,
in & finite nurber of poin* .

Choose a 1ift ¥ € U of the base point * € U; chooss base

paths from #* 1o each critieal point of £33 and choose an orien~

&

tztion for each left hand disk. For P(¢ Si(p) n SR(q) the chare

"iovistle olomont g, is the class of tho path formed by the base
h o* o p(', tha trajectozy p to g through P and tha reverssd
bzea path q to *. (Sse Figure 4.1). With naturally defined ori~

L

entations for the normal bundles of the right hand disks thers is

an intzesoction mumber e = 1 of SR(q) with SL(p) at P.

%
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Yotice that H*( ’B‘k) is a fres m,(U)-zodule concentrated
in dimensiomn ™ and has basis elexents that corraspord naturally

' to tio based o~fented disks {DL(p) p critical of index 13 .

/
Aceording to Miimor (4, p. 90], if wo defins C.)\« ‘A‘ B ) and i
/
" d ~ -~ '/
: &y —> c - vy H ( B ) (Ba) ‘,\ 1(U‘A_1,B%_1) ,

than n*(U Bd V) H€,(C). Fu.r‘bher, by Wall [3, Thoorem 5.1, p. 23]

Y is e:r.pressea geox s»ncally by the formila

W) =L, epgpn}j“i(qu»n

Vaers D;‘\p) Iy ‘(q(P)) stand for the basis elements represented
Lty thess based oriented disks and PE€ SR(q(P) yn s (p) ranges over
all interse ction points of SL(p) with right hand sp’;*.eres. _

| Yare is a fact wo will use later 6n.‘ Supposa an orientation

is szecifisd at * € U. Then using tke base paths we can natuarally

Tont 211 ths right hand disks, and give norral bundles of the loft

nznd dislks correszonding orientations. With this systen of oriene
“ations there is a now intersection mumber el', -determined for each

?€5,(a)n S (). It is straightforward to verify that
€2 = (1) siz(g.)e
P SN 8p/ 8

vizre A= index p ard sign{g.) is +1 or -1 according as

g5 15 oriéniatiocn preserving or orientation reversinz. The new.

< . , . -1
weristic elexant for P is clear o
: P P

~ -

Iet %€ = (3,5 V) satisiy ix=x€ Hk(V,Bd V) and re-
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where p Tangos over critical points of index k and r(p) € Zn (U) .

Iniroduce a complementary (=auxiliary) Pair Py, 9 of eritical

)

coints of index k and k +1 using Milnor (4, p. 101] {(c.f. Wall

(e

{3, pe 17]). Tre efi‘act on C, 1is to introduce two nsw basis elements

(pok € ¢, and DBlqy) € Gy so that 9D (qy) = D (py) (with
table bass pa.uhs and orientations) while ¥ dis otherwise unchangad.

L-P‘

’A‘
Rivy

particular BDL(pO) =0 so that x is r°pre.>ented by IlL(po) +ec.
Now wa cam apply Wall's Handle Addltlon Theoren {3, pe 17] repeatedly
chay vzg the Morse function (or handle decomposition) to alter the
basis of Ck so that tke new based oriented lefi-hand disks represent
::;,__‘ (pc) + ¢ and the old basis elemesnts DL(p) with p # Py (Ve
roto that the proof =< not the statement —— of the *Basis Theorex’
of ilror [4, p. 92] can be strengthened to give this result.)

Wa xow have a eritical point p, so that DL(pl) 'is a eyele
mcorosonting X.o If k = 2, the rost of ths argument is ®asy.
(Iz 2 =5, the only case in questionis 2=k =n - 3,)
Tmox ths outset, thare were no critical points of inda;; < 2. ‘fnis
23ans that the trajectories in U going to Py fora a disk D’:(pl)
wiich is D (3,) with a collar added. It is easy to see that DI(p,)
with the oxicontation and base path of DL(p1 ) dis a ni caly irbeddad
2055k trat poprosents X € HZ(E?,Ea V) and honce =€ H,(V,Ea V).

vwooually, for k=2, orsven 2k + 1 < n,one can iibed a suitable

nedisk directly, without handlebody theory.)

K
w
A
~

<n~3, {and hence nz > 8) .argue as folilows.
-inco éD,(p1) 0 the points of interseciion of DL<p1) with any
L=t hand sphere in B, can bs arrangsd in pairs {P,Q) so that

>F 8y and & = € (sse ths forzula on page 29). Take a loop -
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L consisting of an are P to Q in SL<‘D) then Q to P in
z{a) . It is contractible in B becauss 8p =&y So L can

be spanned by a 2-disk and the device of Yhitney permits us to elirdnate
ths two intorsection points P, Q by deforming SL(plj e Theoren
8.6 o Xilnor [4] explains all this in detail.
“hen in finditely many steps we can arrange ‘that S (pi) roots
5 right kand spheres {c.f. Milror [4, 8 4,7]). Now observe that

the trajectories in U going to Py ‘-fon.n a disk D' (pl) which

is 'DLQDI) plus a collar, D (pi) is & based oriented and nicely

iroedeed k-disk that apparently represents =x & H, (U Bd V) ard hence
= £€3 (V,Rd V) U
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Chapter V. The Obstruction to Finding a Collar Nsighborhood.

This chapter brings us to the Main Theorem (5.7), which we
have baen working towards in Chapters II, III and IV.. What remains
of the proof is broken into two parts . The first (5.1) is an ele-
rmontary observation that serves to isolate the obst;mcticn. The
second (5.6) proves that when the‘_ obstruction vanishes, one can find
a collar, It is the heart of the theorem. .

As usual € 4s an end of a smooth open maniféld w.

Propgsition 5.1. Suppose n>5, ﬁi jis stable at €, and ni(c)
is finitely presented. If V is a (n-3)-noighborhood of ¢, then

B(V,BdV) =0, 1#n-2 and H _,(V,B4V) is projective over m (o).
Paparks If ¢ is tame, by 4.6 Aﬁn_z(’;,Bd ’\\f‘) is f.g. over 'nl(e).

Corollary 5.2. If V is a (ne2)-neighborhood of ¢, H*('\?,Bd 'S}‘) =0

so that Bd VCV is a homotopy equivalencs., If in addition there
are arbitrarily small (n-2)-neighborhoods of €, then V is a collar

naighborhood.

Prz0f of Coroliarvs The first statexment is e¢lear. The second fol~

lowis from the invertibility of hecobordisms. For n =35 this seens

L regquire the Engulfing Thoorem (sese Stallings [10]).

Pm

r20% of Prorositiont Since BA VG V is (n‘3)~conn§cted Hi(V,Bd '{T‘) =

=0, 1<n-3. It remains to show that Hi(V,BdV)=O for
1 2n-1 and projective over m,(s) for 1=n-2.
By Thoorem 3.10 we can find a ssquence V = 'VO D Vi’D Vz D eee
of 1= i ) =
rneighbo f’xoods of ¢ with f\nVn $, and Vi_'.1 C Int Vi .

s e Ml i i £ e T 1 R S 1 007
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Ir U =V -Int V deic;U and BdVi+1QU given1-

i 1+1 7
isozorphisms. Put a Morse function f,1 U, %2> [1,4+1] on each
triad (U384 V,,Bd V,,,).

Following the proof of Milnowr [4‘,- Thaoren 8.1, p. 100] we
can arrange that fi has no critical points of index 0, 1, n and
n-1., (This is also the effect of Wall [3; Theorem 5.1]s) Plece
the Yorse fnnct:.ons fO’fi’f yeee togother to give a proper Morse

fi v onto

2> [0,%) with 1) =Ba v,

It follows from the woll known lemma given below that (V,RBd V)
is hozotopy equivalent to (K,Bd -V|) where K is Bd V with cells
of dizension A, 2<ASn-2 attacked. Thus H ,(V,Ba V) =0,

> n- 1 . Fhr'hher the cellular structure of (K Bd V) gives

fras "1(3)'-c0n=plex for H,‘,(K,Bd‘ v)

Since the homology is isolated in dimension (k-2) it follows easily
that Ek_Z(K,Bd V) 4is projective. []

Lzra 5.3. Suppose V is a smooth manifold and fi1 V —> [0,=) |

is a propsr orse funciion with f"l(O) =P V. Theﬁ thove exists frmm
a C.4. cozplex K, consisting of B ‘V (triangulated) with one

¢s1l of dikonsion A in K - B4V for each indax 2 critical point,

and such that there is a homotopy equivalence f3 K —>V fixing Bd V.

20l Let a, =0< a < a, <o be an unbounded sequence of

roneritical points. Sinca f is proper £~ [ ] is a smooth

8393541
cozpact manifold and can contain only finitely many critical points.

Adjusting £ slightly (by Milnor [¥, p. 17 or p. 37]) we may assume

L3




thas eritical levels in [a. ] are distinct. Then there is a

193441

<b2< s Of a <a <0'. 50 that b

rofinenent -bo =0<Db 0 1 5

1

is noncritical and f'i[bi,bi +1] contains at most one eritical point.

Ve will construct a nested sequence of C.W. complexes Ko =
= Bd VCK1C K, Ceeoy K= UK, , and a sequence of homotopy

—>K, U =1700b], 25=1

aquivalance§ .fi: Ui 40 5 0 Ba v S°
that fi_’_i}Ui ‘agrees with f, . Then f,,f,,f,,... define a con-

tinmuous map fi1 V—>K which induces an isomorphism of all homotopy
gzoups., By Whitehead's theorem [11] it will be the required homotopy

equivalence.

b b1+13

contains no critical point it is a collar and no problem arises.

Suppose inductively that f,,.K, are defined. If £[b,,

Qtharwise let ¢ Ui +1 — Ui J DL ‘be a deforaation retraction
vhare D 1s ‘the left hand disk of the one ¢ritical point (c.f.
Minoz (&, p. 28}). By Milnor (8, Lemma 3.7, p. 21] £, extends

to a homotopy equivalence

' SR fi: Uiu DL——')KiU(g

whore D isa copy of D attached by the map fi!Bd DL =4,
If p*' =Y dis a cellular approximation, by [%, Lemma 3.6, p. 20]

the ideatity map of Ki extends %o .a homotopy equivalencs

oY el = ? = L)
ine Ki+1 Kiu?, D-L_andlet fi+1‘ gafir. Then fi+1 is

)
Yy

a homotopy equivalence and fi +1‘Ki agrees with fi . 0

Naxt we prove a lemma needed for the second main proposition.

Lot 4, B, C ‘be frea f.g. modules over a group 7w with preferred

o
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bases a, b, ¢ respectively. If C= A @ B we ask whother there

exists a basis c; ~e (1.0. ¢; 1s derived from ¢ by repeatedly
adding to ons basis element a Z[n]-miltiple of a different basis
ele::.aht.) so that some of the elemant# of o' generate A and the
rest generate B. This is stably true, let B' = B9 F where
r 1s a free m-module with preferred basis f, lat C' = A& B

ard let the enlarged bases for B' and C' be b' =bf and o =cf,

Ierma 5.4, If rank F > rank C there exists a basis o ~ e’ for
C' such that some of the elsments of c" genérate A and the rest

gonerate B* ., _ )

Proof: The matrix that expfesses ab' in terms of the basis o

looks like

Hoti_ca;‘that miltiplication on the right by an ‘elementary’
matrix (I + E) where E is zero but for one off-dfxagonal elexent
in 2[n] and I is the identity, corresponds to adding to one |
basis elexment of c' a Z{n]l-mltiple of a different basis element.

Suppose first that rank F= rank C. Then

w0t oo i 0
k =
\o I) 0 M

) « But ths right hand side of
0 X L

e B L S e 2R - Sra A e

e e e
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nrt oo\ /N[ 1 o\[T -I I 0
\ = 1 is clearly
0 M 0 I I-M IL\O I/\I-NM I

a product of elemsntary matrices. So the Lemma is established in
this case. In the gemeral case just ignore the last [rank F - rank C]

olements of . [J

Dofinition 5.5 Iet G be a group. Two Gemodules A, B s&a.s stably
isomorphic (written A~B) if A@ FX¥B®F for some f.g. fres .
G-module F. A f.g. G-module is called stably free if it is stably

isomorphic to a free module.

Proposition 5.6. Suppose € is a tame end of dimension n2>5.

If V is a (n-3)-neighborhood of €, the stable isomorphism Vglass

of Hn_z('\}‘,Bd Ti.) (as a wl(e)-qutﬂ.e)'is an invariant of €. If |
Hn_z(";,Bd "}') is stably free and n > 6, there exists a (n-Z)-néighborhood
V,c It V.

Any f.g. projective module is a directi summand of a f.g. fres
module, Thus the stable isomorphism classes of f.g. G-modules form
an abelian group. It is called the projective class groumo EO(G) .
Apparently the class containing stably free modules is the zero elemente
Corbining Proposi.tipn 5.1, Corollary 5.2.and Proposition 5.6

ws havs our

Y2in Theoren 5.7. If € is5 a tame end of dimension > 6 there is

an obstruetion (e¢) € Ec(nls) that is zero if and only if & has

a collsr,

In Chapter Yl we construct examples where o(e) # 0. At

the end of this chapter we draw a few conclusions From 5.7.
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Proof of Proposition 5.6: The structare of Hn_z(V,Bd V) as a 'ni(c)-

rodule 1s detormined only up to conjugation by elements of "1(8),°

Tras if one action is denoted by juxtaposition another equally good " ,
action is g.a = x'igxa where x & ﬂi(e) is fixéd. and g ¢ ﬂl(c) ,
a & Hn_z(?;,Bd 7) vary. MNevertheless the new .ﬂi(c)-module structure

‘ds isomorp.ic to the old under ths mapping

a ——> x" 15,

Ws conclude that the isomorphism class of Hn_z(?l',Bd .\7) as a wl(e)-
rocdule is independent of the particular base point of V and covering
base point of v , and of the éarticular isomorphism ni(s) —_— "10’)
(in the preferred conjugacy class). We have to establish further
that the stable isororphism class.of H_,(V,BdV) is an invariant -
of €, i.ei does not depend on the particular (n-3)-neighborhcod V.
Tnis will become clear during the guest of a (n-2)-neighborhood |
V' € Int V that we now launch. |

Since Hn_é(;,Bd ’\7) is f.g. over ﬂiée} , there exists a
(n-3)-neigtborhood V' C Int V &0 small that with U=V - Int V* ,
¥=24V and N=BAV', the map |

| e

is onto. By ir.épscting the exact sequence for (V,U,M)

. I~ P~ i ~ P~ P~ o~ d ~ r~ '
0 ——> K 21 X 4 —— —t
E (0,5 >H (V1) —> 1 (V,0) <> Hn.B(U,H) —>0

w9 gea that 4 , and d are isomorphisms., Since the middle terms -

ars f._g. pmjac‘giva ni(e)-modnles 50 are Hn_z(U,M), Bn-B(U’M) .




Since McC U is (n-4)-comnected and N4 U gives a ni-iso-
morphism we can put a self-indexing Morse function f with a gradient~
like vector field % (see Milnor [4, p. 20, p. 44]) on the triad
c = (ﬁ;M,N) so that £ has critical points of index (n~3) and (n-2)
only {Vall [3, Theorem 5.5])

n-3

Mo U

Figum‘j.i.

N

Vo pmﬂda f with the usual equipment: base points *
for U and ¥ over * for E; base paths from * +to the eritiecal
points; orientatlions for the left hand disks. And we can assume that
left and right hand ?s;":"eres intersect transversely (4, 8 4.6].

Now we have a well defined based, free "1( ¢)-complex C,
for m(’i,ﬁ) (*based® means with distinguished basis over nl(c) Yo

L may be written

)
vee <""""0<"""Cn_' <'—"‘Cn_2<"—‘0<"'"‘o..
VYA
B3 he3 L
/N N
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We have shown En-3 1s projective, so Bn-B is too and
C.3 HE, 598 4, C_, ='Bn.3 ® H , (the second sumands natural).
It follows that B, ~H_,, hence K _,(V,5aV) ~ B (V" ,Ba V")

(~ denotes stable isomorphism). This makes it clear that the stable

isozorphism ciass of Hn__z(“?,Bd ’{I‘) does not depend on the particular

(n~3)~neighhortood V. So the first assertiom of Proposition 5.6

is established.

bo?r su?pose Hn_Z(V,Bd V) ~ N Hn-3 is stably free.

Toen B} 4 = B 3 1s also stably free. For convenience identify

B£_3 with a fixsd subgroup in (2n__2
¢ - .

Bn-3 c Cnm3 » and define Hn—BC Cn-3 similarlye Then C, is

that maps isomorphically onto

vee < 0 < Hn_3 & Bn"3 < Bn“B 4] Hn_z < 0<""‘"" sesn

Coserves 1), If we add an auxiliary (= complamantary)pair of index

(n=3) and (n~2) critical points, thken a Z[nie] summand is added

to B
Ti=

and to B! (See Milnor [&, p. 101], Wall [3, p. 17].)

3 3°
2) If we add an auxiliary pair as above and delete the auxiliary
(n=3)-disk (thickened) from V, then a 'Z[nis] surmand has been

addad to Hn.z »

In the alteration 2) V changes. But 1,1 H__(U,H) —> H (V%)
is still onté. For,as one easily verifies, the effect of 2) is to
add a Z[nl €] swmand to both of these modules and extend i, by
making generators correspond. , ‘

From 1) and 2) it follows tkat it is no loss of generality

to assuzs that the stably free mocdules B are actually

and K
po T

3 2
froe. What is wore, Lemma 5.4, together with the Handle Addition

kY
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Theorem (Wall {3, p. 17], c.f. Chapter IV, p. 30) shows that, after
applying 1) sufficiently often, the Morse function can be altered

so that some of the basis elements of ('.‘n__2 gensrate Hn- and the

2

9
rest generate 'Bn-3 . |
We have reached the one point of the proof where we must have
n>6. Let D, be an oriented left hand disk with base path, for
We want

one of those basis elements of Cn- that lie in Hn-

2 2°
to say .that, because BDL =0, it is possible to isotopically da-v
form the left hand (n-3)-sphere S;, = Bd I ‘to miss all the right
hand 2-sphsres in s (n - 2%) . First try to proceed exactly as
in Chapter IV on page 30. Notice that the intersection points oi:
S with any one right hand 2-sphere can be arranged in pairs (P,Q)
sc that gp = 8y and & = 5y * Form the loop L and attempt |
to apply Theorsm 6.6 of Milnor [4] (which requires (n-1) > 5). This
fails bacause tha dimension restrictlons are not quite satisfied.
But fortunately they are satisfied after we replace f by -f and
comépopdingly interchange tangent and normal orientations. We
rote that the new intersection mumbers e%',, eé are still oppo‘site
ard that the new ‘charactaristic elsments gi'), ga are still equal
(s2a Chapter IV, p. 29). For a device to show that the condition
on the fundamental groups in [4, Theorem 6.6] is satisfisd, ses Wall
(3, p. 23283, ° After applying this argument sufficiently often we
have .a smooth isotopy that sweeps SL clear of all right hand 2-spheres.
Change £ (and hence DL) accordingly [4, 8 4.7].
How DL can be enlgrggd by adding the collar swept out by
trajoctories from M to 5, . This givas. a nicely imbedded disk

Tepresenting the class of D in Hn_z(U,:‘:I') (c.f. Dofinttion 4.7).

\
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Now alter £ according to Milror [4, Lemma 4.1, p. 37], to reduce
the level of the eritical point of I to (n = 3D).
When this operation has been carried out for each basis elemant

of Cn-z. in Hn-z y the level diagram for £ looks. like

M u N

X .
[ ]
X e
| ]
X L J
N3l n-3

n-2

'J'XE we?vesev\’t& vao\e’xgn-s eriYicod \ao{v\\
° n-2

Cbserve that U' = f’if-;-,n-'b‘%] U can be deformed over itself e

onto B4 V= M with based (n-2)-disks attached which, in U mod X,

givs a basis for Hn_éU,M) and so for Hn__z(V,M). Thus 1, 1s an

isomorphism, in the sequence of (V,U' M) 3

~ i T e ’ o~ I~ i ~
or—— P— ——L —— - asmam— T} =
e =20 —>E (00 F>E (N0 —>E (V1) —>E (0,0 =0

It follows that E,(V,U0') =0

We assert that V, =V a-IntU' isa (n—2)-neiéhborhood of e,
It vill suffice to show that Vo 1is a ‘i-neighborhood. For in that
casa excision shows &,(?o,Bd ’\?0) = H,,(?,E') =0, YNow Bd VO G Vo

clearly gives a 7, ~1sozorphisn,

L)
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‘C1ai_13: Bd Vof. V gives a nl-isomorphism.
Granting this we see Vo C.V gives a ni-isomorphism and hence “1(€)

—_— nl(Vo) is an isomorphism -~ which proves that Vo is a i-neighborhood.

‘To prove the claim simply observe that Bd VO G U - Int U*
gives a m,~isomorphism, that (U - Int U')C U does too becauss

NCU and NG(U -« Int U) do, and finally that UGV gives a
nl-isomorphism.

We have discovered a (n-2)-neighborhood Vo 4n the interior

of ths original (n-3)-neighborhood. Thns Proposition 5.6 is

established. []

To cohclude this chapter we give some corollaries of the Main
Theorem 5.7. By Proposition 2.3 we haves

Theorem 5.8. Suppose W 13 a smooth connected open manifold of dimension
> 6., If W has finitely many ends Cireves€y s each tame, with
invariant zero, then W 4s the interior of a smooth compact mamifold W.

The converse is obvious,

Assuming l-connectedness at each end we get the main theorem
of Browder, Levine and Livesay [1] (sightly elaborated).

Thoorem 5.9. Suppose W 1is a smooth open manifold of dimension
> 6 with HEW finitely generated as an abelj.a.n groups, Then W
kas finitely many ends €iprers€ o Ir m, is stable at each & »
and n 1(c1) =1 then W is the interior of a smooth compact manifold.

Proof: By Theorem 1.10, there are only finitely many emnds. If V




, 43
is a i~neighborhood of ¢ , nl(V) =1, and H,(V) 13 finitely
generated since HW is. By“an elementary argument, V bhas the
type of a finite complex (c.f. Wall [2]). Thus e, is tame. The
obstruction a'(ei) is zero because every subgroup of a free abelian

group is free. [}

Tosoren §.10. - Let W, n 2 6, bo a smooth comnected manifold
with compact boundary and one end €. Suppose

1) | 53d WG W is (n-2)-connected, _

2) m, is stable at ¢ andA ﬂl(e) —_ nl(ﬁ) is an isomorphism.
Then W' is diffeomorphic to Bd W >< [0,1) .

Preafs By‘5.2',‘ Bd W< W is a homotopy equivalence. Since W

is a le-nsighborhood ¢ dis tame, Since W is a (n-2)-neighborhood
o{e) = 0 (Proposition 5.6). By the Main Theorem, € has a collar.

Tzen §.2 shows that W itself is diffeomorphic to Bd W >< [0,1).e[]

Eamar: The above thedrem indicates some overlap of our result with
5tallings! Engulfing Theorem, which wauld give the same conclusion

Pl
ES

[¢]

£

n>5 with 1), 2) replaced by
1'

~

EA WG W is (n-3)=-connected,
2*) For every compact C<C W, there is a compact D DBd W cone
taining C so that (WD) < W is 2-comnected.

S2s Stallings [12]. A smoothed version of the Engulfing Theorsm
appaars im [13]. .
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Chaoter VI. A Sum Theorem for Wall's Obstruction.

For path-comnected spaces X in the class »9 of spaces of
the homotopy type of a C.W. complex that are dominated by a finite
cozplex, C.T.C. Wall defines in [2] a certain obstruction o(X)

lying in Eo(nlx) ,- the group of stable isomorphism classes {page 36)

of left ni(X)-modulas. The obstruction ¢(X) is an invariant of
the homotopy type of X, and o(X) =0 if and only if % is homo=
topy equ:ivalent to a finite complex. The obstruction of our Main
Theorem 5.7 is, up to sign, ©(V) for any l-neighborhood V of
“the tame end €., (See page 57. We will choose the sign for our
obstruction (&) to agree wi‘:.ﬁ that of (V) . ) The main m«—'
t of this chapter is a sum formula for Wall’s obstruction, and

a complement that was useful already in Chapter IV (page 23).

Recll that K, gives a covariant functor from the category
of groups to the category of abelian groups. If fi: G—>H is
a group homomorphism, £, EO(G) —_— EO(H) is defined as follows.
Suppose glven an element [P] € 'EO(G) represented by a f.g. i)mjec‘civa .
loft Gemodule P. Then f£,[P] is represented by the left H-module
Q = 2{H) ®G P where the right action of G on 2[H] for the tensor
procuet is ihat given by f: G —> H.

The following lenma Justifies our omission of base point in

writing Ko(n1X) .

I27—2 6.1. The composition of functors Koﬂ1 determines up to natural

¢iulvalenco a covariant functor from the catogory of path connactad spacas

thout base point and continuous maps,to abelian groups (c.f. page 61) .

- o e

&
%8
3

Pxaf:  After an argument faniliar for higher homotopy groups, it
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suffices to show that the automorphism 6 of Ko(ni(X,p)) induced

by the inner automorphism g —> <1

gx of m(X,p) is the identity
forall x. If P i3 a f.g. projective, ©[P] is by definition
representad by

= Zn (X,P)] (X p)

where the group ring has the right nl(X,p)-action P = rx,'igx.

From the definition of the tensor product

g®p=1@ xzx"'p.

Tous the map §3 P —>P' given by (P(p) 1®xp, for pcP,
satisfies ¢(gp) =1 ® xg0 = 1 @ xgx"L(xp) = 8 @ = g‘?(p) , for

g € ™ (%,p) .and PE€P. So ¥ gives a ni(x,p)-mochle isbmorphism
P —> P' as required. [ |

1 'If X has path components { 1 we define K (n X) =

¢ Z 1 K5 (rr1 . This elearly extends Ko'n1 to a covariant fuctor -

from the category of all topological spaces and contimous maps. to

abelian groups. Tmis for any X€ as with path cormponents Xi,,,.,AXr‘
we can dofine o(X) = (cr(X ),...,c(X ) 4in K (w 1() =X (ﬂ ) 5< voe
Ceee X%‘O(nixr) « And we noiiecs that cr(X) is, as it should be,

the obstruction to X having the homotopy type of a i‘iniﬁe complex,

For path~commected X £ D the invariant a-(X) nmay bs defined

as follows (c.f. Wall [2])e It turns out that one can find a finite
°°"P18" X% for some n >2, and a n-connected map f3 Kn —_— X
tnat has a homotopy right inverse, i.e., a map g X > . 50 that
§=1y. For any such map Hi(M(f),?’) =0, 1#n+1, and

*
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Hml(;i(f),?) is f.g. projective over 'ni(l() o The invariant o(X)

“is (-1)™) the class of this module in K (mX). (We have reversed

the sign used by Wall.)

We will noed the following notion of (cellu_lar) surgery on
amap f3 K—>X where X is a C.W. complex and X has the bozotopy -
type of ons. If more than one path component of K maps into a
given path component of X; one can join these componants by attaching
l-cells to K, then extend f to amap K v {l-cells} —> X
Suppo#e from now on that K and X are path conmected with fixed
base points. If fxiz) is a set of generators of ‘wl(x) one can
attach a wedge Vi'si of circles to K and extend f in a natural
way to a map gs X u {V isi —> X thaf. gives a ni-epimorphis;n.

If‘ £ gives a ﬂi-epimrphism from thé outset and {yi% is- a set

in w, () whose normal closure is the kernel of a1 7, (K) —> n (X,
then one ca.x; .attach one 2-coll to K for sach s and extand T

o a 1;equivalence Kv Z 2-cells} —> X, MNext suppose f3 X —> X

is (n-1)-comnected, n >2, and f 1is a i-equivalence (in case
n=2). If iziz is a set of generators of Hn(ﬁ(f) ,'E) = nn(’ﬁ(f) ,E) =
= nn(I'I(f) ,K) as a ni(x)-modu]s, then up to homotopy there is a patural
way ‘o at‘t\.ach ore n-cell to K for each z3 and extend f to a
n-cornected map K v {n-ce]ls —> X (see Wall [2; p. 59]). Of

course wo always assume that the attaching maps are cellular so that

LAY fn-caﬁs} is a complex. Also, if X 4s a complex and f 1is

collular wo can assume the extension of f to the enlarged complex

is cellular. (See the cellular approximation theorem of Whitehead [11].)

Here is a lemma we will frequently use.

FE4
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Ler=a 6.2, Suppose X is a connected C.W. complex and f3 X —> X

is a map of a'finile complex to X that is a 1-equivalence. If
K, ( :‘?(f) ,”:Z ) =P is a f,g. projective nl(x)-modtﬂe isolated in one
dimension m, then X€ML and o(X) = (-1)"(P].

Preof: Clearly it is enough to consider the case where K and

X are comnected. The argument for Theorem E of [2, p. 63] shows
that X ds homotopy equivalent to K with infinitely many cells
of dimension m and m+1 attached. Hemce X has the type of

a complex of dirensic max(dim X, m+i).

Choose finitely many generators XypeeesX, for H (M(£),K)

Perforn the corresponding surgery, attaching r -m-cells to K and

extending t to a m~connected map
bk K' = K‘ U{m-cells} —2> X
Up to hormotopy wa may assume that K I(_" C X. Then the homology
sequence of X C 'E' C X shows that H () ,K) = Q where
PoQ=A", A=2zrx], endthat B (K),E) =0, 1f#n+i.
Yotice that Q has class -[P]. |
After fin:;tely many such steps we get a finite complex L

of dizsnsion n = max(dim K, m+1) and a n-connected map 7
gt L' —> X

such that E,(#(g),L) 1s f.g. projective isolated in dimension

n+1 and has elass (-1)‘n+1-m[?] o According to [2, Lomma 3.1} -

g has a bomotony right inverse, Thus 'XE ) and
o(@) = (=0 Py = (%P1, [

Tre following are established by Wall in [2].

\
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Lomma 6.3 [2, Theorems B and FJ. Each X € .,0 is homotopy equivalent
to a finite dimensional complex. '

Lermma 6.4 [2, Lemma 2.1 and Theorem E] (c.f. 5.1). If X is homotopy

n-1

equivalent to an me-complex and f3 L —_—>X, n23, nz2m,

is a (n=-1)~-connected map of an (n-1)-complex to X, then H.,('I:I’(f) ,:é)

K
is a projective nl(X)-mod\:;l.e isolated in dimension n.

The Sum Theorem 6.5. Suppose that a comnected C.W. complex X is

1

a union of two connected subcomplexss X, and Zz oo If X,X1,12 | s
and XO=X1/\XZ areinag, then , : o

.

O'(X) = jiyc(x ) + jz*c(x ) - jo*ﬁ'(x )
where J, 1isinducedby % G X, k=0,1,2.

Complement 6.6, (a) xa,xi,xzéé inplies X€& .,

() Xy,X ed implies x1,22€-9 provided m,(X,) — m (%) has
a left inverse, 1 =1,2. | |

Remark 1: Notice that XO is not in general cormscted. Written .
in full the last term of the sum formula is -

3ge(x ) = 3$() + cnr 38t )

where 3’1,...,7{8 are the components of Xo « We have assumed 'Ehat.
%%, and X, are comnected, Notice that 6.6 part (b) makes sense
only when XX, and X, are connected. But the assumption is une
nocessary fo}.' 6.5 and 6.6 part (a). In fact by repeatedly applying

the given versions one easily deduces the more general versions.
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2omark 2: In the Complement, part (b), some restriction on funda-

rental groups is certainly necessary.

For a first example let X1 be the complement of an infinite
string in R° that has an infinite sequence of knots tied inm it.

Let %, be a 2-disk cutting the string, Then X = X, N X, = st

and X = 11\) Xz is contractible since ni(x) =1, Thus Xo and |

X are in B . However Xl & By because ni(x) is not finitely
gonerated. To see this observe that nl(x) is an infinite free
procduct with amalgamation over 2 '

* G G

e 2%1%2%72°¢

1 %G

™
2 Z L X X ]
(2 corresponds to-a small loop arond the siring and G is the
group of the i-th kmot)., Thus »"1(x1») has an infinite ascending
sequence Hl"? B, ? H.3 7,6_ «ss of Eubgroups. | And this clearly shows
thal nl(Xl) is not finitely generatsd.

For examples where the fundamental groups are all finltely

presonted see the contractible manifolds constructed in ChapterNill .

Cz2stions Is it enough to assums in 6.6 part (b), that ﬂl(Xg) —
n (X) is (1-1), for 1 =1,2%

Proof of 6.5: To kéep notation simple we a#sume for the procf that
XO is connacted. Al the end of the proof we point out ths changes
necessary when Io is not connected. _ '

By Lewma 6.3 we can suppose that Xo,Xi ,xz,x, are a1l equivalent
W complexss of dimension <n, n > 3. ' Using the surgery iaro_cess

with Lemmas 3.8 and 4.6 we can £ind a (n-1)-connected cellular map

Tyt Ly —> Xy «* Surgering the composed map Ky —> X, & X, for

\
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i =1,2, we get finite (n~l)-complexes K K, with K;n K, =K

1’ 0
and {n-i)-connected cellular maps f,3 K, —>X, 1K, —>X, |
that coincide with f; on K,. Together they give a {n~1)-comectsd

map f: X = Kiu Kz -—>X= X1 U XZ ¢+ For f gives a nl-isomorphism
by Van Kampen's theorem; and f 4is (n-1)-comnnscted according to the
homology of the following short exact sequence.

0 —> ¢, (H(z,),Ky) S c; (M(f,),K,) @ C,(M(£,),K,) ~Ls 6, (i(8), D) —> 0

Here 5 denotes p 1(S), pt M(f) —> M(f) being the universal
cover of the mapping cylinder. Also @(ec) = (e,e) and W(cl,cz) =
ey -0yt To be specific let the chain éomplexes be for cellular
thoory. Each is a free nl(‘x)-complex. _ |

let us take a closer look at the above exact sequence. For

brevity write its
B 0 —>C0) —> (1) @ G(2) —>C —>0.
Wo will establish below that

(8) For % =0,1,2, aiE(k) =0, 4#n, and Bn'é(k) is

f.g. projective of class (-1)n:)k*0'(Xk) .

From this the sum formula follows easily. Since we assumed X is
equivalent to a complex of dimension < n, Lommas 6.4, 4.6, 6.2
tell us that Hi("c} = E((£),X) =0 if 1#n, and H(C) is
f.g. projective of class (=1)"¢(X). Tius the homology seq'uance
of () is '

0 —> § C(0) —> E C(1) @ £ T(2) —>H C—>0

ard the sequence splits giving the desired forrula.
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To prove (§) considsr
Lerrz 6.7, C(k) = 2, X]1 @, (x,) o(x) , k=0,1,2, whore k) =

=C ( (J., R K, ) and for the tensor product 2[n X] has the right
nl(Kk) -zodule structurs givgn by qi(xk) —_— 'ni(X).

Now recall that H,(C(k)) 1is f.g. projective of class (~1)"e(X )
and concentrated in dimension n. Then 6.7 shows that Hi(E(k)) = 0,

1#n, and H (T(K)) = 2(m,X) ®"1(Xn) Hn(E(k)) , which is f.g. pro-

jective over nl(x) of eclass (-1)njk*(f(xk) . (Use the universal
coefficient theorem [42, p. 113] or argue directly.) This establishes -

(3) and the Sum Theorem modulo a proof of 6.7.

 2roof of Lemma 6.7: Fix k as 0,1 or 2. The map Iyt "1(Xk‘)

—_— nl(z) factors through: Image(jk) =G. Then

RN (Xl;) C(x) = 2ln,X] @ G ®1(xk) cx) .

Stev 1) ILet (HM(£,),X) be the component of (¥(£,),X) containing
the base point, Apparently it is the G-fold regular covering cor-
responding to ™ (Xk) —~—> G, Then %(k).= C,,(&(fk),}?k) is a free
G-module with one generator for each cell e of M(fk) outside

Lo Crcosing one covering cell e for each, we get a preferred

A ~ ~
tasis for C{k) .  Now the universal covering (M(fk)-,xk) is naturally

A A
& covar of M(fk),,xk) . So in choosing a free ni(xk) -basis for

C{k) ws can choose the cell & over e to 1lie above & . Suppose
a6 bourdary forrula for E(k) reads 6?‘ = }: jn?"i vhere rij
< 27 % J. Then one can vemfy that the boundary formila for‘ C(k)
reads 'é: Z 9( where © is the map of Z[nixk] onto
2al. v inspec ting the definitions we see that this means

u(k) = G (L,) C(k)
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Step 2) We claim C(k) = 2 X118, cex)

‘ C(k) is a free w (X)-modnle and we may assume that the dis-

tinguished cell @ over any cell e in M(f) coincides with

) v
% in M(f Y M(f )+ Then if the boundary formula for C(k) reads

38 = 5,5, 30 sy € 2ol

the boundary formmla for C(k) is exactly the same excepﬁ that

& 5 is to be regarded as an element of the larger ring z[nli .

Going back to the definitions again we see this verifies our claim.

WS

This completes the proof of Lemms 6.7. []
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Ramarks on ths general case of 6.5 where XO is not comec‘tédx

Let X, have components Y,,...,T . We pick base points PE Y

1 =1,.e.,58 and let Py Dbe the common base point for Xi,‘ X, ‘and

X, .Choos_e a path Xi from Py to Py to deofine homomorphisms '
(i): m (1’ ) —> ﬂi(X) s 1=1,..0,8. (By Lemma 6,1 the homomorphism |
(i) s K (n ) —_— %'o(nix) does not depend on the choiecs of & 1).

Now consider again ths proof of 6.5. Everything said np_»"to Lemnma

6.7 remains valid. Notice that

€(0) = ¢, (M(£,),K)) = 8, 2, C,(M(g,),E,)

whara I‘i is the ‘component’ of Ko corresponding to the componsat

Yi of Xo under fo, and g3 L.""—> Yi is the map given by f

o.

For short we write this C(0) =®,5 T(0,1). For k=0, the

i 1
assertion of Lexma 6.7 should be changed to

(%=) ©(0,1) = 2n,x] & (Y ) C(o 1), 4 =1,40.,8

where C(O i) =¢ (H(gi) L ) and for the i-th tensor product, Z[ﬂ1X3
has the right ni(!’i) action given by the map ﬂl(Yi) — ni(x).
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Granting this, an obvious adjustment of the original argument will
establish (8). The argument given for Lemma 6.7 establishes (**) |
with slight change. Here is the beginning. We fixi, 0<ic<s,
and let H be the image of = ( ) - >n1(X).' Then

2w, X] ®"1<Yi) €(0,1) = 2[m,X] &, H ®"1‘Y1) c(0,1) »

Stes 1) Let '(I{X\(gi),%i) be the component of (ﬁ(gi),-fi) containing
the 1ift ;’)‘i in M(f) of P; by the path b’;i from P; to py .
Apparently it is the H-fold regular covering corresponding to | ni(Yi)
9205 1,  The rest of Step 1) and Step 2) give no new difficulties.
They prove respactively that C(M(gi) T ) =H® (Y ) C(O i) "and .
C(o, i) = Zn x] ® C(M(gi) ,Y ), and thus estab]ish ("'*). This com-

pletes the exposition of .the Sum Theorem 6.5. []

Proof of Corp7ement 6.6, part (a): We mst show Xy, X,, Xz )
implies xe,B. The proof is based on

Lerm= 6.8. Supposs X, has the type of a complex of dimension <
ne-1i, n>3; and Xl" XZ have the type of a complex of dimension

<n. 'l"nen X has the homotopy type of a complex of uimans:mn <n.

Pxooft Let K, be a complex of dimension <n - 1 so that there

is a homotopy equivalence foz Ko —> X ® Surgering f. we can

0
enlarge K, and extend £, toa (n-l)-connected map of a (n-i)-— .

corplex f1: Ki —_— Xi e Similarly form fz. K2 — XZ . Accordlng

to Lerma 6.3 the groups Hn(M(fi)’Ki) ot 4= 1,2, are projective

7, (% )-rodules. Then surgering £y £, we can add (ne1)-cells

end n-cells to Ki’ K2 and extend fl’ £, to homotopy equivalences
.. D n___. _
g4% Ly > X5 gt L, > X, (See_ th"; proof of Theoren E

B O T = RIS NI P
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on p. 63 of Wall [2]). Since LynL,=K, and g, g, coincide

with fo .on KO, we have a map g:L-"-L1

which is apparently a homotopy equivalence of itnhe n-complex L

v Lz--—->x_==x1u xz

with X. [

For the proof of 6.6 part (a), we simply look back at the proof of

the sum theorem and omit the assumption that X€ D, By the above
Lemma we can still assume XO’ Xi, 29 X are equlvalent to complexes
of dimension < n, (p23). Lemma 6.4 says that H*('E)' is projective
and isolated in dimension n. The exact homology sequence shows |

that Hn(E) is f.g. Then Lemma 6.2 says X e, d

' Proof of Complement 6.6 part (b)s We must show that Xy» X € L
implies X, Xzé'@ provided ni(Xj) i; a retract of ni(X) ,
i=1,2. ‘Let X, have components Yi""’Ys and nse the notations
on page 52 . _ \
Since RL(X) is finitely presented so are wl(xl), nl(xz)
by Lerma 3.8. This shows that the following proposition Px holds
with x= 1, | ‘ .
(?K): . ﬁ‘here exists a finite complex K~ (or K% if x = 1). that is a wnion

of subcorplexes Kl, K2 with intersection Ko y and a map f3 K —> X

so that, resiricted to Kk , T gives a map fk: Kk ———> Xk s k=

= 0,1,2, which is x~connected 37d a l-equivalence if x =1 .,
Suppose for induction that Pn-i holds, n > 2, and consider

the exact sequence R

0 —> C*(:‘E(fo)’fo) —> C,(K(f,) X)) @ ¢, ((f,) K,) —> C,(u(£) ,X) —>0

where S = p-l(S) , Pt M(f) —> M(£) being the universal cover.

LY
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For stort we write

0 —> C(0) L C(1) © ¢(2) 2, C—>0.
Part of the associated homology sequence is
T00) % [ C S(o) XAy 5 G s o) =
(‘i‘) 5 .¢(0) > E.C(1) o HC(2) > HC —> H _,C(0) =0 .

Now Hn'(g) is f.g. over nl(x) by Lemma 4.6, Similarly,
for each componant Ii of Xo the corresponding swmand Hn(E(O,i))
of Hn(c(o)) (M( ),K ) is f.g. over m ( ) . Since

c(o, i) 2nx) @ (1) c(o 1) (this is (**) on page 52)

3

“and since C(‘O,i) is acyclic below dimension n, the right -

exactness of @ shows that H 'é(o 1) = 2[nx] @, ) H c(o 1) . Hence
E_ C(O, = ei 1}1 (C(0,1)) is ﬁnitely gereratid over "1(X> o Thus
(T) sbows that Hn(C(J)) is f.g. over ni(x) » j=1,2. (This
uses the fact that ¢, is omtol)

We would like to conclude that K C(3) is fug., 3 =1,2.

In fact we have
Cr R = dntle, (g B  5(3)

waere a retraction vi(x) —_— (Xj) makes Z{m X_,] a -'ni(X)'s-"
Y]

nodule., Fo" H C(;}) = Z{=n X]@ (X ) H C(j) and

2, . r i = .
% 1&3} ®ﬁ1 ) Vil 1x] z[nix j] S0 (*) is verified by substihxting

*
o~

ler HnC(j) .
Since HnC(k) are fog., k =0,1,2, we can surger f to

establish P . This completes ths induction. The proof that X

LY
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:(Zé LD is completed as follows. We can suppose that X, and X

- have the homotopy typs of an n-dimensional complex (Lemma 6.3), and

that f3 K ~—> X 1s a (n-1)~comnected map as in Pi1° Thenin |
‘the exact sequence (F) on page 55 H,C(0) and H,,E are f.g. projective
and concentrated in dimension n. It follows that B.‘E( j) is f.g.
projective and concentrated in dimension n for j =1,2. Then

by the argumen-t of the previous paragraph H*’E(j)' is f.g. pro:’;ective
over ni(Xj) and concentrated in dimepsion n, J=1,2. By Lomna

6.2 XjGS s J=1,2., This completes the proof of Complemaht 6.6. [J

In ‘passing we point out the analogous sum theorem for Whitshead

torSionc

Theorem 6.9. Let X, X' be two finite connected complexss each

the union of two connected subcomplexes X = Il 9] XZ, X' = Xi V] Xé .

Lot f: X ~=>X' be a map that restricts to give maps I3 X, —> X3,
L3 X% —>X; andso fpi =X NX, ~—>X=XINX,. If

fo, f1 . fz, f are all homot'opy equivalences then
- . s .(1) ,.(1)

, « ) :
waere i is induced by XkG X, k=1,2, xéi',...,xgs) are

tho components of X, and jéi) is induced by xéi)c; Xy 42 1y00e,8

Comnlement 6.10. If i‘o, fi’ f?. are homotopy equivalences so is f.

Ir f, and f are homotopy equivalences so are fi and f, pro-

. ®
vided that ni(Xi) — nl(X) has a left inverse, 1 = 1,2.

Wo leave the proof on one side., It is similar to and rather
®asier that that for Wall's obstruction. A special case is proved
% Kwun and Szezarba [19].
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With the Sum Theorem 6.5 esfabl:lshed we are in a position
to relate our invariant for ‘tame ends to Wall’s obstruction. Lema
6.2 and Proposition 5.6 together show that if ¢ 4s a tame end of
dizension 2 5 and V is a (n-3)-neighborhood of e, then up to-
sign (which we never actually specified), 0(e¢) corresponds to
o(V) wunder the natural identification of K (ﬂ €) with K (n V) .
Let us agree that O(c) is to be the class (- 1)’“‘2[1{ LNEMIE
€ K (n €) (compare 5. 6). Then signs correspond.

Hore 15 a definition of O'(c) in terms of Wall's obstruction,

€ is a tame end of dimension 25« OSuppose V is a closed noigh-

borhood of e that is 3 smooth submanifold with compact frontier
and one end, so small that

my(e) = (V)

has a left inverse r.

£
Zrovosition 6.11.- 0‘(% = rtﬁ’(g .

Froof: Take a (n~3)-neighborhood V'C Int V. Then V - Int V*
is a compact smooth manifold. So the sum theoren says o (V) = igs((v)
where 1 is the map rri(V') = ni(e) "'-DWI(V) R

= q(e) .D

Since r,i o(V') =
=0(V") we got 1,a(V) = (V) |

A direct consequence of the Sum Theorsn is that if Wn
n=5 isa s.aoth manifold with Bd W. compact that has fi.nitely
many ends

1’00.’63&, mt&me, then '

a(W) = 31x9Ce,) + + jk,,q‘(ek)

wWiere gt "1‘(€s) ——>n1(w) is the natural map, s = 10000k
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Notice that a(W) may be zero while some of o el),...;O'( ek) are

nonzsro., One can use the constructions of Chapter Yl to give examples.

On the oth;ar hand, if there is just one end € c(W) = ;ji*a(e) s

so if ji* is an isomorphism 6(W) determines a’(ei) . In ths
situation 6(&1) 1s a topological invariant of W since o(W)

and Jy4 ave. Theorem .12 below points out a large class of examples.
In general I am unable to decide whether the invariant of a tam_eA

end depends on the smoothness ‘structure as well as the topological

structure, (See ChapterX] )

Thoorozn 6.12. Suppose W is a smooth open manifold of dimension
2 5 that is homeomorphic to X >< Rz where X 3is an open topological
ranifold in ,@ o« Then W has one end ¢ and ¢ 4s tame. Further

j: my(e) —>n, (W) is an isomorphism,

Proof: Tdentify W with X >< B2 and consider complements of sets
K><D where KC X 1is compact and D i1s a closed disk in RZ

The complement is a connected smooth open nelghborhood of o that

is tho union of W>< (R® - D) and (W ~X) >< Rn Applying Va.n
Kampan's theorem one finds that ni(w - K >< D) —> nl(W) is an
isomorphism, We conclude that W has one §nd e, “.1 'is stable

at ¢, and jtw (e) —>m (W) 1is an isomorphism, Since W€D
ni(w) is finitely presented (c.f. 3.8). Thus € has small l-neigh

borhoods by 3.10. By 6.6 part (b) each is in ’g. Hence ¢ is tane, {J
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Chapter VII. A Product Theorem for Wall®s Obstruction.

The Procduct Theorem 7.2 takes the wondarfully simple form
> =
f(xl Xz) f(Xi) @p(xz) if for path conngcted X in a@ L
define the composite invariant su(x) = ¢{X) ® %(X) 4n the Grothen-
dieck group Ko(ﬂlx) '5?{' . X8 Z. I introduce f for assthetic

01
reasons. We could get by with fewer words using o and K, alone.

(¢

The Grothendieck group KO(G) of finitely gonerated (f.g.)
projective m'odules over a group G may be defined as follows. Let
(G} be the sbelian monoid of isomorphism classes of f.g. projective
G-mocules with addition given by direct sum. We write (P*,P) ~ .
(Q',Q) for elemants of P(G) ><P(G) if there exists free .R& P(G)
so that P + Q+R=P + Q" + R, . Thisisanequivalenc;
rolation, and ,.;,',P(G) ><‘15(G)/~ is ‘ﬁha abslian group KO(G) .

Let ©: ?(G) —> KO(G) be the matural homomorphism given
by P —> (0,P) . It is ap»parent> that ‘f'(P) = ¢(Q) if and only
ifr ‘P + F=Q+F for some f.g. free module F. 'Fér convenlence ’

0
to the isomorphism ¢lass of a given f.g. projoctivé module Po .

we will write \O(P) = 'I;; we will even write P. for P _applied

(P:"P(G) —_— KO(G) has the following universal property.

If £32(G) —> A 4s any homomorphism thers is a uniqus homowmorphism

g: X(G) —> A so that f = g, As an application suppose €3 G
—> H 1s any group homomorphism. .There is a unique induced homo-
zorphisa P(G) —>P(H) (c.f. page 44) . Ey the universal property
ol (f thare is a unique homomorphism ©, that makes the -diagram

on the next page commte. In this way X gives a covariant functor

0
{rom groups to abelian groups.

\
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P(G) > P(H)

i b
Ko@) 5> Eo()

The diagram G

T—>1 shows that K (G) ¥ kernel(r,) © Ko (1)
Now 1-mocules are just abelian groups; so K (1) = Z. Notice that

p 1 KO(G) —>Z is induesd by assigning to P € P(G) the rank

of P, i.e., the rank of Z &, P as abolian group (here Z has the
triViai action of G on the right). Next observe that by associating
to a class [Pl e EO(G) the element P = fp € kernel(r,) , where

Fp is free on p = rank [2 &, P} generators,one goets a natural iso-

rorphisa EO(G),Z kernel(r,) . Thus we have
K,(G) =X,(6) @ 2

and for convenience we regard KO(G) and Z .as subgrou;is.

The commtativs diagran

G S o
1

shows that the map 6,3 KO(G) —_ KO(H) induces z map 6,3 EO(G)

— KO(H) ; and the latter detormines the former because the 2
summand is mapped by a natural isomorphism. The latter s of courseA
ths map described on page 44. .
I G and' H are two groups, a palring
Q' KO(G) > KO(B) — KO(G >< H)

A Y
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is induced by tensoring projectives. (Recall that if A @B is

a tonsor procduct of abslian groups, and A has a left G action

while B has a left H action, then A Q@ B inherits a left G ><E

action.) This pairing carries kernsl(r,) >< kernel(r,) “into kornel(r,)

and so & pairing -

1et1. X (6) >< & (8) —> K (G >< H)

is induced. Thus 4T P € P(G), Q € P(H) the class [Pl.[Q] € 'Eo(cxa)

is (P-Fp) @(Q-Fq)V=P®Q-FPQS-PGFq+Fp®Fq,‘
where Fp is fres over G on p = r,(P) generators and F_ is
free over H on a = r,(Q) generators.

' Since an inner automorphism of G gives the identity map of
?(C) (o.f. Lex=za 6,1) and so of KO(G) (ang ’XEO(G) ), it foliown
that the composition of functors Koy (or Eoﬁl) deternmines a |
eovariant functor from path connected topological spaces to abelian
gooups. More precisely we must fix some base point for each paﬂh
cornected space X to dofine K. X (or Eﬂ' X) but a different

01
choico of base points leads to a naturally equiv&le’zt functor. This

is the precise meaning of 6.1 for K

Dafinition 7.1. ,If 1€ O 1s path connected, define ?(I) € K (n X) =

Ky ) @ 2 tobe w(X) @ UX) where ME) = I, (1) rank & , (X)

is the Enler characteristic of X (it is well defined since xev9 e
If X is a space with path components SX 7; we define Konlx =

O, XX . This oxtends x0n1 to a flnctor on sll topological

spacas., Then 4f X € p@ has path components Xl,.'.., , W define

0(1) (?(X ),.vc,g(x )) in Koﬂlx =K “'111 @ eoe O X ﬂlx *«
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Suppose }(1 and XZ _are path connected. Then Xi > xz

is path connected and m, (X, >< Xz) =mn,X, >mX,. Hence we have

a pairing

9'-Konx ><:( 11[2 >Kﬂ(}(1><x2).

This pairing extends naturally to the situation where Xl and Xz

ars not path connectad.

Product Theorem 7.2. Let X, X, and X, ><X, be comnected C.W.
complexes., If Xi, Xz and Xi ><}(2 are in 19, then

(*) PR =K = (%) @ p(x,) .

In terms of the obstruction o this says
@ B2y ><X) = ofXy)ealhy) + (U(K)3,0008)) + KE 3,0} o
Complemont 7.3. If X, X, are any spaces,

X, X, €0 == %, <X, €8,

Remark 1) We can immediately weaken the assumptions of 7.2 in two ways:
(a) Since o m"xd p are invariants of homotopy type, it is encugh
to assume that 'Xl, X, and (hence) X, >< X, are path connected -
spaces in p@ in ordar to get (*) and (T).

(b) Farther, if X,, X, are any spaces in o@ (*) continues to

hold with the extended pairing & (because of the way @ is extendad).
Bat note tuat (f) has to be rovised sinbe K;mX ¥ Eo"ix ® 2 when

X is not connected.

Ramark 2) The idea for the product forrmla comes from Kwun and Szczarba -

AN
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{19] (Jaruary 1965) who proved a product formala for the Whitshead
torsion of £ >< 1X where f3 X1 —_— Xi is a homotopy equivalence
2
of firdts cormscted complexes and Xz is any finite connected complex;

namely
(T) (> 1x2) = X.(Xz)jl,,'t(r)

woers ), 1s induced by X, G X, >< X, . This corresponds to the
basic case of (*) with 0'(22) = 0 ; namely .

(s) u(11 > xz) = 7“"1)51*“("2) .

Steven Gersten [20] has independently derived (S). Eis proof
is purely algabr#ic so does not use the Sum Thebrem. It was Professor
!Airor who proposed ths correct general form of the product formula
ard the use of §« Already in 1964, M.R. Mather had a (purely geo-

metrical) proof that for X €., X >< s -is nomotopy

‘equivalent to a finite complex.

Proof of 7.3t Fortunately the proof of the Complement 7.3 is trivial
(unlike Coxplement 6.6), If X, , 1=1,2, are finite complexes

and r.3 Ki — Xi are maps with left homotopy inversss &y s

i=1,2, r, >< r,t K1 >< KZ — X1 > Kz has left homotopy inverse

5, X5, Tais gzives the implication ===>, For the reverse in-

plicstion note that XI > XZ € »& dominates which implies
Lef, 1=1,2.0 |

v

-
—

zreof of 7.2t The proof is based on the Sum Theorem 6.5 and divides
“starally into three steps. Since YAX, >< X)) = KX )WXK,) , 1t
w41l suffice to establish the second formmla (1) .

“
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I) The case X, = s", n=1,23,.... Suppose inductively that

k

(1) holds for X, =85, 1<k<n. Let "= vl be the

usual dacomposition of s® into closed morthern and southern hemie
' spheres with intersection sh-1 o Thon apply the sum theorem to

n _
the partition X, >< 8" =X >< Dy X >< I} .0

II) The case - X, = g finite complex. Since X, is connected,

wo can assume it has a single O-cell. We assume inductively that
- (1) has been verified for such X, having <n cells. Consider
X, with exactly m cells. Then X, =Y U, D, k21, where
K~1

f: 8°°* ~—> Y 4is an attaching map and Y has n=1 cells. Up

to homotopy type we can assume f 1s an imbedding and Y N IDk is
a (ke1) ~sphere. Now apply the sum theorem to the partition -

Xi><12=xl><YUX1><Dk. The inductive assumption‘and(for

X > 2) the case I) complete the induction. [J

‘Wﬂx'—:w. d

¥

ITII) 1he general case, We insert a lsmma needed for the proof.

Lomma 7.4. Suppose that (X,Y) is a connected C.W. pair with X

:

and Y in /@ » Suppose that YG X gives a ﬂi-isomorphism and
Ha(X,ﬁY’) is ni(x) -projective and isolated in dimension n. Then
. _ n P~ o~ .

MK - (D) = (1) rank {2 %, () 5,(X, 7Y .

Proof: Since Cy(L,Y) =28 (4 C,(X,Y) , the universal cosfficient
1 .
thoorem shows that H,(XY) =2 & (x) H,(X,Y) » ~The lemma now follows
1
from the exact sequence of (X,Y) . (]

Proof of III): Replacing xi, X, by homotopy equivalent corplexes

we rmay assume that Xl, X, have finite dimension < n say,and that
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there are finits (n-1) - subcomplexes KC %, 1=1,2, such that
ths inclusions give isomorphisms of fundamental groups and B,,(xi ’Ei).

are f.g. projective ni(xi) -modules P; concentrated in dimension n.

" Let x;xlxxz.

Since the complex Y = X, >< Kz v K1 > XZ has dimension

1

< 2n, there exists a finite (2n-1)~complex K and a map ft K —> Y,
giving a m,-isomorphism, such that E*(;I'(f) ,'E) is a f.‘g. projective

™ (X) -moduia P conentrated in dimension 2n. Replacing T by
h(i) we nay assume that KCYCX = X > Xz Now the exact

sequence of the triple X XcY¥cX 1s

0 ——> H&&',’g) —_— Hzn(’i','i) —_— HZnG(':f) —>0 —> ...
Il I
P P,® P,
Honce E,(X,K) is P 0(p, @ P,) concentrated in dimension 2n.
But o(Y) = X(X,)3,,0(X,) + X(K,)),,0(X,) by II) and the Sum Theorem,
(71 + [P, ® P,] = [P, ® P,] +{HK,)3,,0(X,) + XK ):iz,,v(xz)}
As an-eguation in KO(X) = K (X) @ 2 this says

Zance C(X) =

@ v@={F8 F, - F, 0 F) + {o(x) 0 Ax,) + LK) 0 o(x,)]

whers r F 111)(2 of the same rank

1 are free madu:_Las over ﬂlxl,

3
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as P,, P

1 Notice that the first bracket can be rewritten

2 L]
(P, - F;) @ (P
But according to Lemma 7.4, (_1)n§i = X(Xi) - X(Ki) , 1=1,2,

Also (_1)n(§i - Fi) = (-1)n[Pi] =0(X,) . Hence on substituting
in (B) wo get '

o(x) = (F, = F,) @ (7, - F,) + o) 8 L) + UX) @ o(X,)

which is the formla (). This completes the proof of the Product

Theorem. [J

Here is an attractive corollary of the Product Theorem 7.2 and
7.3. Let M" be a fixed closed smooth mamifold with X(M) = 0.
(The circle is the simplest example.) Let € be an end of a smooth
open manifold., |

Theoren 7.5. Suppose dim(W >< M) > 6. The end ¢ is tame if
and only if the end € >< M of W ><M has a collar. |

Our definition of tameness (4.4 on page 24) makes sense for
any dimsnsion. But so far we have had no theorems that apply to a
tame end of dimension 3 or 4. (A tame end of dimension 2 always
nas a collar -- c.f. Kerékjirtdo [26, p. 171].) ¥ow we know that
the tameness conditions for such an end are equivalent, for example,
to €< 33 having a collaz.

It is perhaps worth pointing out now thai the invariant o
can be defined for a tame end ‘c of any dlmension. Since ¢ is

1solated there exist arbitrarily small closed nelghborhoods V of
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€ that are smooth submanifolds with compact boundary and one end.
Since ni is stable at €, we can find such a V so small that

‘ﬂ‘l( €) ——> ﬂl(V) has a left inverse r.

Provosition 7.6, V€L and rs(V)e¢ -'Eonie is an invariant of ¢,

Definition 7.7. ¢{e) = ro(V).

Jotice that, by 6.9, this agrees with our origingl definition of

o(s) for dimension > 5.

Proof of Proposition 7.6: We begin by showing that V€. Since

we do not know that - € has arbitrarily small 1-neighborhoods we
employ an interesting device., Consider the end € >X M whex;e M

is a cornected smooth closed manifold so that dim(e >< M) >5.

(35 would always do.) By 7.3 we know that V&0 if #nd only if

v xz&e,é o Also &>< M 1s a tame end of dimension > 5 and so

has arbitrarily small i-neighborhoods. Notdes that ¥ = r >< id(mM)
glves a right inverse for nl(c > M) —> nl(v ><X M) . Applying
Proposition 4.3 we ses that V >< MER . so VE o© by 743

N
To prove that r,g(V) is independent of the choice of V and of r
use 6,5 and the existance of neignhborhoods V'eV with the properties

of V and so small that J: w (V') —>=,(V) has image w,eew (V)

o i e e oo

(~—-whence r.j is independent of the choice of r ). O
Pemarks In Chapter VIII we construct tame ends of dimension > 5

with prescribed iavariant. I do not know any tame end ¢ of dmension

3 or & with 9(¢) 0. Such an end would be very surprising in

dimension 3.

As an exercise with the product theorem one can calculate
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-the invariant for the end of the product of two open manifolds.

Notice that 1f < 1s a tame end of a smooth open manifold W',

n 25, there is a natural way to define
pe) = ple) 8 N(e) € Ky(mye) @ 2 = Ky(m,e)

In fact let A(c) be %(Bd V) where V is any O-reighborhood of .
Notice that ‘)L.(Bd V) =0 for n even a;nd that 4(Bd V) is independent
of V for n odd. Also observe that as n>5, there are arbitrarily
small l-neighborhoods V of ¢ so that X(V,BA V) =0, i.e.

2(e) = UBA V) = KV) . |

Theorem 7.8, Suppose W and W' are smooth cormected open mani-
folds of dimension > 5 with tame ends ¢ and e respectively.
Then W >< W' has a single, tame end € and |

pE) = 1,39() @ plun)] + 1[0 @ Pler)} - 1,70()® p(e-)f
for naturally defined homomorphisms 10*, ii*’ 12* .
Proofs Consider the complement of U ><U' in W >< W' where
V=W«U, V" =W - U' are l-neighborhoods of € and €' with
*e) = V), ¥{e*) = (V') . Then apply the Sum Theorem and Product

Theorem. (The sum formula looks the sama for ¢ and f.) The rasadsr

can check the details, []

Zomaris If W has several ends, all tame ¢ = {ei,...,er}, and

W' has tame ends ¢! =A§ej",...,e;} then W >< W' still has just

one tame end. And if we define f(e) = (f(el),...,f(er)) in Koﬂlel &
cvs @ Xymoe  and ?(e') similarly, the above formila remains valid.
Also, with the help of definition 7.7 one can eliminate the assumption

of dimension > 5.




Chapter VIII. The Construction of Strange Ends.

-

The first task is to produce tame ends ¢ of dimension > 5
with o(¢) # 0. Such ends deserve the epithet stranga because

1

¢ > S' has a collar while ¢ itself doss not (Theorem 7.5). At

the end of this chapter (page 83) we constract the contractible manifolds

prozised in Chapter IV on page 23. |
Ve begin with a ci'ude but simplse éonstmction for strange

ends. Let a closed smooth mamifold M, n > 6, be given togsther

with a f.g. projective m, (M) -module P that is not stably free.

Such a P exists if WI(M) = 223 since .fo(223) #0., (For}a ;

rosune of what is known about K (G) for various G see Wall [2,

p. 67].) Euild up a smooth manifold W® with Bd W=M by attaching

infimitely many (trivial) 2-handles and (nontrivisl) 3-handles .so |

that the corresponding free m, (M) -complex C, for H,(W,¥) has

the forn

d
see ™2 =D Q_ ———D CZ — 0 D e

3
e 1K
F F

waere F is a free my (M) ~module on infinitely many generators,
end © is onto with kernel P, | For example, if P 8 Q is f.g.
and free, é céﬁ be the natural projection FEPO Q6 PO QD ...
—>0&€Q06P8Q8 ... :—:-'.F « The analogous ‘constmction'for h-
coborcisms of dimension > 6 with prescribed torsion is explained
in Milnor (17, 8 9]. The problem of suitably attaching handles is

the same kere. Of course, we must add infinitely many handles.
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But we can add them one at a time thickening at each stage. .Before‘

adding a 3-handle we add all the 2-handles involved in its boundary.

W 1is then an infinite union of finite handlebodies on M. Lerma
8.2 below can be used to show rigorously that K, (W,M) = H*(C) .

We proceed to give a more delicate construction for strange

ends which has three atiractive features:

(a) It proves. that strange ends exist in dimension 5.
(b) The rmanifold_ W itself can provide a (n-4)-neighborhood of €.
(¢) W 1is an open subset of M >< [0,1).

The construction is best motivated by an analogous construction
for ,hecobordismsl. Given -l y n>6, and a d><d matrix
T over z[mM] we are to find an h-cobordism ¢ = (ViM,M') with
torsion = ¢ Wh(nle) _represented by T. Take the product cobordism
M >< [0,1] and insert 2d complementary (= auxiliary) pairs of
eritical points of index 2 and 3 in the projection to [0,1] (e.f.

{4, p. 101]). If the resulting Morse fuction f is suitably equipped,

in the corresponding complex

d
ces > 0 >C3 >C, —>0—>0

d is given by the 2d><2d identity matrix I. By [17, p. 2]

g o b P Y

elementary row or columan operations serve to change I +to -

T 0 :
( 1) . Each elementary operation can be realized by a change
o T ' : :

Fad

of £ (e.f. [3, p. 17]). After using Wnitney's device as on pages

20-31 we can lower the level of the first d critical points of index

T

D T s v

3 and raise the level of the last d critical points of index 2

PRV

so that M >< [0,1] is split as the product of two h ~cobordisus . T"i d4

D —
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¢, ¢' with torsions <(c) = [T] =7 and z(e') = [1T71] = .
The corresponding construction for strange onds succeeds even in
dimension 5 becguse Whitney's device is not used.
Before giving this delicate co;xstmction we introduce
some necessary geometry and algebra. _
Let f£: W~—>[0,2) bs a proper Morse function with gradient-
like vector field £, on a smooth mamifold W having Bd W= £~ 1(0) .
Suppose that a base point * € BA W has been chosen togefher with
base paths from * to each eritical point., At each critical point
p we fix an orientation for the index(p) ~ dimensicnal subspace of
the tangent space mp to W at p that is defined by traject;ries

£

of £ converging to p from below. Now f is called an eguipped

proper Morse function. The equipment consists of £, %, base
paths, and orientations. o

Vhen f has infinitely many critical poin't;s wa carmot hope
to make f nice in the sense that the level of a critical point
is an increasj.ng funetion of its index. But we can st:ll put con-
ditions on f which guarantee that it determines a free m (W)~
complex for | H,,,(";I',Bd "}) .

Defirition 8.1. We say that f is nicely equivped (or that &

is nice) if the following two conditions on & hold:
1) If p and g are critical points and £(p) < £{q) , but

index(p) > index(q) , then no E-trajectory goes from P to q.

-This guarantees that if for any non-critical level a, f restricted

to £73[0,a] can be adjusted without changing £ to a mice Morse
function g (see [lf, 3 4,1]).

- S e
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2)  Any such g: £71[0,a] —> [0,a] has the property that for
every index A and for every level between index A and index
A+1, the left hand A-spheres in g™ (b) intersect the right hand
(n = A - 1)-spheres transversely, in a fiz-ﬁte rmumber of points.
In fact 2) 1is a property of E | alone, for it is equivalent to
the following property 2'). Note that for every {(open) trajectory
T from a critical point p of index A to a critical point g
of index A+1 and for every x £ T, the trajectories from p
determine a (n ~A)-subspace V?;"(p)‘ of the tangent space ™
and the trajectories to gq determine a (A+1)-subspace Vr'i(q)
of TRK. '

2') For every such T and for one (and hence all) points x

in)

in T Vz-%(p)(\ Viﬂ(q) is the line in TW, determined by T.

Pamarks Any gradient-liks vector field for f can be approximated
by a nice one (c.f, Milnor (&, 8 4.4, 8 5,2]). We will not use
this fact. -

We say that a Morse function f on a compact triad (W;V,v')

is nicelv ecuipoed if it is nicely equipped on W - V* in the seonse

of 3.1. This simply means that f can be made nics without changing
Lhe gradient-like vector field and that when this is done left hand
A-spheres mest right hand (n-M1)-spheres transversely in any level
between index A and N+1.

Suppose that fi1 W onto, [0,%) 1s a nicely equipped proper
Yorse function on 'cha.noncompact smooth manifold with Bd W = f'l(o) .
We explain now how ¢ | gives a free ni(W)‘ -~ complex for H*(’P‘I',Bd ?s") .

Let a be a noncritical level and adjust f to a nice Morse function

_ N . ; RTINS -
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f! on f"I[O,AJ without c};anglng € . From the discussion in Chapter
IV (pages 28-29) one can see that the equipment for f complatsly
determines a based, free nl(W) ~complex C,(b) for f' with homology
H,,(p"lf"ll:O,a], Bd '97) , wWhere p: W—>W is the universal cover.
- Then it is claar that C.(a) 1is independent of the particular choice
of v, and that if b > a 1is another non-critical level, there
is a natural inclusion C,(a) G C,(b) of based nl(W) -‘comélexes.
Let 0 = a, »< a, < a, < a3 < »s+ be an unbounded sequence of non-~
oritical levels of f. Then C, = Ui C,,(ai) is defined, and from
its structure we sas that it depends only on the equipment ofﬁ £,
l.0. it is the sare for any other proper Morse fﬁnction with the
sams equipment. There is one genserator for each critical pb:;mt,
and the boundary operator is given in terms of goometrically defined

characteristic elements and intersection rumbers as on page 29.
Proposition 8.2. In ths above situation B, (C,) = H (W,Bd W) .

Proof: Thore is no problem when f has only fimitely many eritical
points. For if a is very large C, = C,(a) and H(C.(a)) = |
H,(p™'2710,a,Ba W) T H,(W,Ba W) where the last isomorphism holds
bacause W 4s f"‘[O,a] wilh an open collar attached., Thus we
can assuri@ from this point that £ has infinitely many eritical
points, _

We can adjust £ without changing % so0 that at most one
eritical point ldes at a given levsl; so we may assume that for the
sequenco  a, < a, < ....'. above f"i[ai,ai_,_i] always contains exactly

- one ocriltical point. Also, arrange that a; =n+ 1.

°
Notice that (C,) ¥ H,(U,(a ) T lim Hy(C(a ) « Wo will
EX '

g s Y b
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show thal the limit on the right is isomorphic to H,(W,Bd W) .

We define a sequence of fo’fi’fZ"” of proper Morse functions
®ach with the same equipment as £, Lst i‘o = f+. Suppose inductively
that we have defined a Morse function fn having the equipment of
f so that £ is nice on f-i[o,an] and coincides with f elsewhers.
Suppose also that the level of f_ for index A in f"i[o,a ]

'is A¥}. Define £, by adjusting £, on £[0,a .1 without
changinz %, so as to lower the level of the eritical point p
in 7la a n+1] o the level index(p) + L. (Ses Milmor [, B
k.1].) By incuction the sequence fO’fI’fZ"" is now well defined.
There is a filtration of £71[0,a o] detemmined by £ ¢

Bd W= x(“)c z<“) C eee C x(n) = dim W, whare x(”) = "1[0 AF1] .

Tze chain complex for the *lifted’ filtration p 1x“ C p'lxg C vee
Cp ‘L‘n of P -1z 1{0 a ]C ¥ is naturally isomorphie with the complex
C*(an) . And the homology for the filtration complex is

a,(p'if”‘[o a 1,A W) . Now notice that the inclusion J: f 10, ]

[O a_,,] respects filtrations. In fact, if the new critieal
+l

point has index A, Xim'i) = Xin) for 1<), and for i >4,
Xiwi) 3 l{in) is up to homotopy Xj(.n) with a A-handle attached.
Ona can verify in a straightforward way that the inducad map J #:
C, (a ) —> C*\a ) of filtration complexes is just the natural

inclusion C(a )(; Cla +1) noted on page 73+ Thus tha commtativit ty of

3
8,(c(a_)) s 5.0, )

~ ~
= =

.V ~ 3
B e70,8,),80 W) > 1,5 0,0, 11522 )

o 5 "
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(vhere the vertical arrows are the natural isomorphisms), tells us
that Ua K(C(a)) = Lm B (o™ r70,a 1,84 W) = 5,(W,Ba W) as
- —_—
required. {J

Next come soms algebraic preparations. Let A be a group
ring «[G] and consider infinite 'elemsntary® matrices E = E(xr;i,3)

in &(A,=) = 1im GL(A,n) that have 1's on the diagonal, the
—— _ : .
n

element r €A in the 1,5 position (1 # j) and zeros elsewhsre.
Suppose F 1is a free A ~module with a given basis « = {"(1’“2""}
incdexed on the natural numbers < N where N may be finite or .,
Then provided i1 and j are less than N, E(r;i,5) determines
ths elementary Qgeration on o that adds to the j-th basis element
of «, = tinss the i-th basis element ~- i.e. E(r;i,3)e = {o( ’
0(2,...,;:(‘_5_-.1’ ,"a% +r¢i, olJ ﬂ,...} o In this way elementéry matrices
are identified with elementary ope rations. |

Suppose Tow that F 3is an infinitely genefated. fres A =moduls
ard let o = {«,,%,,...} and B = [BysBorese] be tuwo bases. It
is convenlent to write the submodule of F generated by elements

Xlgxz,oo. as (xi,xz,..-) ’ ~= with round braCk'atSo

Ierma 8,3, There exists an infinite sequence of elementary operations
Ei’EZ’EB"'" and a sequence of integers 0 = N, < Nl < N2 < see
8o that for each integer X, the following statemsnt holds:

(*) n 2N implies that EnEn_l...EloC coincides with ﬁ for

-at least the first k elements.

Remark: (*) implies that for n > N, E =E(rii,)) with j>k
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(or »=0)., But i< k 1s certainly allowable.

Proof: Supposa inductive]y that No ,N1 gvee ’HX"l and Ei’EZ" os ,Euz.i )

have been defined so that (*) holds for k<x - 1. (The induction

begins with ﬁo =0 andno E's o) Then EN oocElol = 5(51,0:.,

X=1

Bretr¥pr Upgreve] for some ¥ ¥ ,eeee Set ¥y =f., 1=1,

oo X=1, - ' . | _
Suppose that ﬁ < is expressed in terms of the basis EN eseo

B =¥ by Bo=b¥ + .+ b¥ e, y>x. ‘I'hJe(;lthe

cozposed map p¢ (XI,...,Xy) GF -;1—-> (@1""’ﬁx-1’§x) , Where

P; 1is the natural projection determined by the basis B , 1is certainly

onto, Hence (xl"""‘y) is the direct sum of two submodules:

'v‘.(,\‘l’"";y) = (fyseeesp,) @ Ker(p) »

Tnis says that Ker(p) is stably fres. One can verify that the
result of increasing y by one is to add a free summand to Ker(p) .
Thus, after making y sufficiently large we can assume . Ker(p)

is free, Choosa a basis (6’;,_1,...,%’5") for Ker(p) « (Note that
this basis necessarily has rankfz ®A Ker(p)§ =y - x elements.)

tow consider the matrix whose rows express %,...,‘( - in

terms of @1""’§x-1’éx’67'&1""’\6}'

i,oy. ’?7.'"1’@1’Y;t+1,.."x;

{, = 1
i Pl 9 0
: o ‘. °
Xx--l - @x-l , 1
\{x
. R N
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The upper right rectangle clearly contains only zeros., Notice that
elexentary row operations correspond to elemsntary operations on the
basis (1"""‘37 ~- and hence on Y , .

Reduce the lower left rectangle to zeros by _adding. suitable
miltiples of the first x - 1 rows to the last y <x+1. fow
adjoin to each basis the elements xy'*-i" y+2""’xy+xi-1 50 .‘l';hat
the lower right box has the form ( N O) whem. I is an identity

0 I

matrix of the same dimension as N. By the proof of Lemma 5.4 there )

are further row operations that change this box to ( I 0) (and
0 N
don't involve the first x = 1 rows). Clearly ws have producad

a finite sequence of elementary operations on b' R
, i WS 4]

so that (*) now holds for k Sx. This completes the induction. []

What wo actually need is a mild generalization of Lemma 8,3,

Suppose that F= G0 H where G, ike F, is a copy of /\

Pogard G and H as submochzles of F and let "{a(l, 2,...} ,

(5 {Pi’@.?.""i be bases for F and G respect:x.vely.
Lerma 8.4, In this sitnation too, the assertion of Lemma 8.3 is trae.

Proof: Agam suppose induc»ivaly that XN ""’Nx-i

Ey have been defined to that (*) holds for k <n-1. Sinco
X=1

and E

1,'..’

(wa?x-rz'"') OHZ GO HTA" there is a basis f* = ;{51,...,
@x;I’Gx’P;+1’?’;c+z”"} for F. Now we can repeat the argument

of Lexma 8.3 with ' in place of P to complete the inductien, 0

We need a carefully stated varsion of the Handle Addition

PR
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Trhsorem [3, p. 17]. Suppose (W;V,V') is a compact smooth triad
with a nicely equipped Morse function f that has eritieal points
Pysveesp all of index A, 3<A ;gn - 2. The complex C, for

£ bhas the form
ese =D  —~—> C)—"">o —> aee

where Co = H?‘(’P}’,’W}-} is free over wl(W) with one generator e(pi)
for each eritical point P; « Suppose f(pl) > i‘(pz) . Let g
ﬂl('w’) be prescribed, together with a real number £ >0 and a

Sign ii .

Provosition 8.5. By altering the gradient-like vector field
on f‘l[f(pl) -a,f(pl) --26-] only, it is possible to give C, the

basis e(pi),e(pz) ige(pi),e(pB),...,e(pm) .

Perark: A composition of such operations gives any elementary operation

Z(r31,2), ré€ Z[n1W] . fnd by permuting indices we see that e(pi)

and e(pj) - could replace 'e(pl) and 9(p2) if f(p_l) ?f(pj).

Proof: The constzﬁction is essentially the same as for the Basis

Theoren (&, 8§ 7.6]. We point out that the cholce of g€ ni(W)

demands a special choice of the imbedding "9, (0,3) —> Vy" on

on p. 96 of [4]. Also, T is never changed during our construction.

Tue proof in [4, 3 7,6] that the construction accoxplishes what one
tencs is not difficult to generalize to this situation, {J

Finally we are ready to establish

Existerce Theorem 8.6, Suppose given

1) |l sy W25, a smooth closed manifold

PN R
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2) k, an integer with 2 <k <w - 3

3) P, a f.g. projective nl(M) ~modile.
Then there exists a smooth manmifold W" » with one tame end ¢,

which is an open subset of M >< [0,1) with BAW =M >< 0, such that

(a) Inclusions induce isomorphisms

'nl(M.>< 0) E—> nl(W) <‘:=:- nl(e)
®  9(e) = (-1 [P] € K m, (4 >< 0))
(c) M><0G6W is a (k-1)~squivalence., Further Hk('i,Bd 'T;I‘) =p
and Hk(%',Bd:;f) =0, 1#k.

Pomark: After an adequate existence theorem there follows logically
the question of classifying strange ends. It is surely one that
should have some inleresting answers. I ignore it simply because

I havs only begun to consider it.

Proof: By constructicn W will be an open subset of M >< [0,1)

t
onto

that admits a nicely equipped proper Morse function fi W —> [0,-1-)

with £71(0) = M>< 0. Only index k and index k + 1 eritical

points will ocecur. Then according to Theorem 1.10 W can have just

ons erd €. The left<hand sphere of each eritical point of indox | B
k will be contractible in M><0. Tms M><0 W willbea e
(k-1)-squivalence. If k<n =~ 3, n, is automatically tame at

e, and nl(e) —_— ni(W) is an isomoxphism. If k=n- 3 we

will have to check this during the construction. The complex CJ RS Il

for f will be so chosen that H,(C*) = H _(W,Pd W) is isomorphic
to P and concentrated in dimension k. Tms {e¢) will follow. f""‘-*: RH
Then the tamensss of ¢ and condition (b) will follow from (¢) and

Lam 602 [ 4
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With this mch introduction we bagin the proof in serious.

_ Consider the fres A\ = 2[n (M >< 0)] - complex

’..._90_>Ck'+1_§-—>ck—->0_>'...

i I

F F

“where F — A" .and ) corresponds to the identity map of F. There
exists an integer » and a A -module Q so that P& QT AT,
Then £=(P6Qe(P9Q©6...5Po(Q@P)6...TPOF,
Sowe have F=G@P where GZA . Regard G and P as sub-
modules of F and choose bases of =§°'~1,a!2,.'..‘§ and @=7?P1,P2,...}
for F and G respectively. )

Consider the subcomplex of C,

Cut ...-——>-c}'ﬁl-3‘—->c}'<=ck-—>o-—-->...
ge GgggF

whare 9 ~corresponds to the inclusion GG F. Let £ give the

3 £, L . )
basis for Ck+1’ Ck and Ck s and let (5 give the basis for cl'ﬂ-i .
We will denote the based complexss by C and €' (without ).
Sy a segzent of C we will mean the based subcomplex of C corresponding-
to a Seg:ent le’dz,...’dr} of O( .

By Lem=a 8.4 there exists a2 sequence Ei',EZ,E seee Of elementary

operations and a segquence 0 = No < ‘N1 < Nz < «+s of integers so
that, Jor n _>_‘2€S » the first s Dbasis elements ¢f E E 6 ...E,&

n n-1 1

coincice with é‘-’""és » Ve let E,,B,,E,.es acton A as a

basis of C \+1 and in this way on the based complex C. For each

integar s choose a segment C{3) of € so large that @1,...,{355

o

C’ar‘rl(s) and :.1,...,:.NS act on C(s).
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Let C'(s) be the based subcomplex of BN es el C(s) consisting

of C(s) and tna span of 51,...,@' in Ckﬂ(s) (with bas:.s

Fl”"'lgs ). Noa.ce that C'(s) is a based subcomplex of C' and
= US C'(S) .

3 < 8y < a, < ese 0f real nmhbers

converging to %—. We will construct a sequence fl,fz,f ,;v.'. of

Choose any sequence 0 =

nlcely equipped Morse functions
M >< [0,1] 2% g 1]

. ‘1 -
so that, for n>n, f, coincides with £, on £ [O,am] .

based free f.g. ﬂi(M >< 0) - complex for f, is to be Ey ...Blc(n)
' n

and for £ restricted to f;i[o,an] it is to be C'(x) .

Notice that such a ssquence fl,fz,fB,... determines a nicely
equipped proper Yorse function f on W= {J f‘ifo,an] mapping
onto [0 3 and its complex is . C' = U C'(n) . The left hand

sSphere Slg -1 in M><0 of any eritical point of index Xk is con-

- tractible since it is contractible in X><[0, 1] and Mx=<0 &

M><[0,1] is a ‘homotopy equivalence . - Incase k=n -3

we row verify that f 1(3 )G ¥><[0,1] and f"1[0 a ]C,M > [0,1]
give ™, -iso*norn'ﬁio...s. For this easily implies that 7, 1is stable
at the end ¢ of W and that ni(e) — ni(W)‘ is an isomorphism.
Now f;l[o,an] contains all eritical points of T, of index k

so, even when k = 2, f;lfo,an] G M ><[0,1] and f'i(an) Gf’lfan,l]
give m, ~isomorphisms. Also i"ifa ,1] G M><{0,1] gives a n, - '
isomorphism since M ><1G M><[0,1] ‘and M><1G f'lfa ,11 do.

Thus £~ (a )G ¥ >< {0,1] does too, and our veri“lcatlon is complste.

S e e e D gy e
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In view of our introductory remarks on pagze 21 it now remains

only to construct the sequsnce fl’fZ'f ssee as advertized in the

sacond last paragraph above, Here are the details. Insert enocugh

complemsntary pairs of index k and k + 1 ecritical points (c.f,

onto,, {0,1] to get a Morse

{4, § 8.2]) in the projection M >< [0,1]

" function that, when suitably equipped, realizes the segment C(1)

of C. Apply the elexentary operations E i”"’EN to €(1) and
: 1

ter tbe Morse function accordingly using the Handle Addition Theorenm
of Wall {3, p. 17, p. 19]. Now lower the critical points represented 7
in €'(1) C F‘s‘li"'EiC(i) to levels < ay without changing the gradiente
like vector field or the rest of the equipment. This is possible
because all the critical points of index k are in C'(1). Call
the resulting lorse function f1 « Adjust the gradient-like vactor:
field & [k, 8 4.4, 8 5.2] so that £, is nicely equipped.

Next, suppose inductively that a nicely equipped Morse function

f, bas besn defined realizing ENn...Elc(n) on M>< [0,1] and

-

-1 N
C'{n) on . [O,an_.. Enlarge z}}n...EiC(n) to ENn...Eic(mi)

and inser: corresponding complementary pairs in i‘;j‘[an,ﬂ « Now

apply E:q sireeer3y . We assert that the equipped Morse function
n ,

ntl
can be adjusted correspondingly. At first sight this just requires

ths Handle Addition Theorem again. DBut ws must leave fn (and its
equipzent) unchanged on f;;i[O,an] $ So we apply Proposition 8.5.
Any elexzentary operation we have to realize is of the form E(r;i,J)
vhere 3 > n, which means that r times the i-th basis element
e(pi) is to be addad to the j~th basis element a(pj) where Py

liss in f;lfan,ﬂ . Change the present Morse function £} on

- ' - P-)A
RTITI R e T P
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Proposition 8.7. Let m be a i‘:mitely presented perfect group that

has a finits nontrivial quotient group. Then for w > 8 there exists
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la ,1] Ancreasing the level of py S0 that £ (pj) ~-£ =4,

felr
‘L

(€ >0) exceeds f'(p ), a , and the levels of the index k critical ‘
points. Temporarily change f! on f! 1[(}v,d] to a nice Morse function *
and let ¢ be a lavel betwsen index k and k + 1. Applying Proposition
8.5 on f"j'[c,i] wo can now make the required change of basis merely S \
by altering ¢ on f{'i[d,d + %] . By [4, 8 b4, B 5.2] we can as- s

sume that é is stiil nice. Next we can let f!" return to its

original form on f;xfo,d] without changing €, (Tris shows that

¥ didn't really have to change f! on f"'l[o,dJ 'in the first place.)
Lfter repeating this performance often enough we get a nicely equipped
Yorse function ~- still called £} -- that realizes E NOTTD-N Cln+1)

D C'(mr+1) and coincides with f, on £ 1[0 a ]. Changinb £

on f;ifan,i} adjust to values in (a n?® 1) the levels of critical
points of -f! that lie in C'(n+1) but do not 1ie in C' {n) (i.e.'

do not lie in "1[0 a ]). Since a]l index k cntica.l points of

fx'1 .are included in C'(n+1) this is certainly possible. We call ,

r

the resulting nicely equipped Morse function fn+1 .

Apparently f n+1 realizes the complex 'ENn".b C{nt+1) on

%>< [0,1] and realizes C'(mtl) when restricted to f.r,[0,a ey] -
The inductive definition of the desired Morse functions f1’f2'f geoe

is row complete. Tmus Theorem 8.6 is established. G

In the last part of this chapter we construct the contractible
manifolds promised in Chapter IV. That the reader may keep in mind

Just what we want to accomplish we state
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a contractible open manifold W such that ™, is stable at the

one end ¢ of W and "1(6) =n, but 6 1s nevertheless not tame.

Rermarks Such examples should exist with w > 5 at least for suitable w.

Let fz; r} be a finite presentation for a perfect group w, P

and form a 2~-complex x° realizing fx; r} . Since 4 HZ(KZ) mst

bs free abelian, one can attach finitely many 3-cells to Kz to

forn a complex L3 with Hi(L) =0, 4>2., Since -Hl(L) = HI(K) ’
=nflr,m] =1, L has the homolozy of a point, If we imbed L

in 8¥, w27, or rather imbed a smooth handlebody E =1 that

has one handle for each cell of L, then M =s". Int H is a

smooth compact contractible manifold with nl(Bd M) =n. The construction
is due to M.H.A. Newman [27],

Pemarks If one uses a h&mologically trivial presentation, H,,(Kz)
= H,(point) and one can get by with w > 5. Some examples are
fa,bs a® = (ab)? = b7} , which gives the binary icosahedral group
of 120 elements, and Pn = Ia,b; a2 = (_ab)n'i, b3 = (ba'zbaz)z} ,

th n any integer. The presentations 'Pr. are givén by Curtis

and Kwun [24]. For n even > 6 there is a homomorphism of the FR

group P onto the alternating group A on n lotters. (See
Coxster-toser (21, p. €7].) Unfortunately we will actually nsed

w2 8 for different reasons.

let m be a group and 03 M —> Ty, & homomorphism of w ? “

onto a finite group my of order p Fl. Lot L € Z[w] be (g1 +
cee + gp) where Byyeess€, are some Aelements so that Ggi,...,egp

are the p distinct slements of Mg o Consider the following free

(R ers o B 2 S L
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complex C over 2{n]

d : b
C: ¢ >C‘+ >C3 >C2 > 0

waare C2 has one free generator a , C:3 has two free genmerators

b, and b

1 with

2

Bbl = ma (= an integer)

bbz =12a

ard C& has one free generator ¢ with

de =£-b1 - mbz.

Ler—a 8.8. Suppose m is prime to Pe Then Z@n C 1s acyelie,

tut HZ(C) is nonzero.

Proofs Tensoring C with the trivial right memocule Z has the

effect oI replacing each group element in Z[n] by 1. If we let

a =1Q a and define b,, b and ¢ sirmilarly, then

1* ™1
3b1 = ma
35, = pa

ac = pb1 - r.‘oz .
S0 we easily see that 2 @ﬁ C 4s acyclic.
To skow that H,(C) # 0 is to show that the ideal in 2[n]}
generated by m and ¥ is not the whols ring. If it were, there
would be r, s € Z[n] so that rm + s¥ =1, Letting primes denota

images under 63 Z[n] —> Zn,] we would have

mr? + sy =1 € Z[nO] R

N, o
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liow s'3' = k' for some integer k since gs® =£' for each

g é'no'. Thus we have
nr' = 1 - k&'

which is impossible because m (# 1) cannot divide both 1 - k
the coefficient of 1 3n 1 - kf) and also ~k (the coefficient

of other elemsnts of U in 1 - kZ). This contradiction completes
tke proof. J

Kow wa are ready to construct the contractiblie manifold W.

Let m be the perfect group given in Proposition 8.7. .
Take a complex C provided by Lemma 8.8 and let C* be the direct
suz of infindtely mary copies of C. Then Z8 C' is acyclic but
HZ(C) is infinitely generated over 2[rm]. Let MV, w>8 . be

a contractible manifold with nI(Bd M) =m. To form W we attach
ore at a tims infinitely many 2, 3, and 4 -handles to M thickening
after each step, The attaching l-sphere of each 2-handle is to be
contractible. Then W has one end and w, is stabls at e with
nl(e) — ni(w ~ M) =n an isomorphism. The handles are to be so
arranged that thers is a nicely equipped Morse function (see page 72)
£3 V=%~ Int d —> [0,®) with f‘i(O) =E M having associated
frees nl(Bd M) = 7 - complex precissly C'. By Lemma 8.2 HZ('{",Bd 3:1‘)
= EZ(C') . Bt 32(0') is infinitely generated over w and V

is a l-neighborhocd of ¢, So 4.4 and 4.6 say that e cannot be
tama. However H (W,M) = K (V,Bd M) = K,(Z2® C')=0, and the exact
sequence of (W,M) +then shews that W has the homology of a point.

Since ni(w) =1, W is contractible by Hilton [23, p. 98].
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It remains now to add handles to M realizing C' as claimed.

Each %~-handle added is, to be precise, an elementary cobordism of

" index A . It is equipped with Morse function,gradient field,orientation

for the left hand disk,and base path to the critical point. It con-
tributes onse generator to the complex for f. We order the free.
gensrators ZysZpsese of €' so that 25 involves 'o:'ﬂ\v zj with'
j<i, then add corresponding handles in this order.

Sup;;ose inductively that we have constructed a finite handlebody
W' on M and formed a nicely equipped Morse function on W' - Int M
that ma]iéas the subcomplex of C' generated by zl,...,zn:_1 .
We suppose also that W' is parallelizable, that the attaching 1-spheres
for all 2-handles are spanned by disks in BA M and that the 3-

handles all have a certain dsesirable property that we state precisaly

balow.

Since we are building a contractible (hence parailelizable)

manifold we mmst certainly keep each handlebody parallelizable.

Now in the proof of Theorem 2 in Milnor [14, p. 47] it is shown how
to take a given homotopy class in 'rrk(Bd W), k< :2'!" and paste
on a handlo with attaching sphere in the given class so that W'V

f handle} is still parallelizabls. Wa agrea that handles ars
all to be attached in this way.

Without changing the gradient-like vector field £, temporarily

make the Morse function nice so that W' - Int M is a product c'2c3c1+
of ccbordisns €y = (xx;BA_i,BA) s A=2,3, &, with critical points
of one index 9 only.

PNt
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if %, is in dimension 3, an

determines a unique element

(%) =
ds because the 2-handles

Ed

of 32(22 ,?1) :WZ(XZ,Bl) » hence a unique element of "2(32) =

nz{XZ,BI) & m, (Bi) « (The ilast isomorphism hoj
ar® capped by disks in B, =Bi M.) Bealize thig element of nz(BZ)
ere S with base path in B.?. o Slige

“o general position in B, ; translate it along £ .t

g ©
K
5

2-sphere in B, gives a class in the surmang nz(XZ, 1) of 'nz(BZ) .
This is the dosirable feature we mentioned above, Notice that the
new S-handle has this property, We wily need thig Property bresently,

AT the dizension of % ish, 3z gives s unique class
in Z_ XB,BZ) « We want apn imbecded orienteq 3~sphere S
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t (X8, 4 5,(5,) <> 5,(1,) —> 5,(,,5,)
. 2 il
m,(By) —> m, (L) —> m,(X,,B,)

The propsrty assumed for 3-handles guarantees that Image(d) lies
in the swmand H,(X,,B,) of E,(B,), i.e. Image(d) goes (1-1)
into .HZ(EZ’Ei) . Thus 20 zn) = 0 implies d(ﬁzn) =0, From
the exact sequ.encg of (ij’gz) we see that {2z 18 in the image
of in element iﬁ HB(%) . Now the Hurewicz map n3I(B3) = ”B(XB) =
ng(}(j) —_— HB(XB) is onto. (See [23, p. 16?].)‘ So :ha:e is a
horotopy class s in n3(B3) that goes to 5zné H3(X3,Bz) . Since
dim(BBJ =W~ 127 we can represent .s by an imbedded orisented ‘
3-sphere S in By with base path, This is the desired attaching
sphere. - We slide it to general position, translate it to B4 W'
and add the desireci l-handle with this attaching sphsre.

Ve cgﬂclude that with any dimension 2, 3 or & for z, we can
add a handle at Bd W' and e:‘v;tend the Morse function and its equip-
ment to the handle So the subcomplex of C' gsnerated l?y : zl,...;zn
is realized, and all inductive assumptions still hold. Thus the

required construction has been defined to establish 8.7, j

Remark 8,93 M was a smooth compact submanifold of S". It is
~asy to add all the required 2, 3 and 4 -handles to M inside S".

Then W will bs a contractible open subset of S”.




Chapter IX., Classifyling Cormletions.

Recall that a completion of a smooth open manifold W is
a smooth imbedding i of W onto the interior of a smooth compact
manifold W. Our Main Theorem 5.7 gives necessary and sufficlient
conditions for the existence of a completion when dimW>6, If -_
z; completion dées. exist one would like to classify the different
ways éf completing W. We give two classifications by Whitehead
torsion corresponding to two notions of equivalence betwesn completibns
-=- 1sotopy equivalence and pssudo~isotopy equlvalence. As ‘a corollary
we find that there exist diffeomorphisms of contractible open sub-
sets of euclidean space that are pseudo—isotppic' but not isotopice

According to J. Cerf this cannot happen for diffeomorphisms of closed ’

~2-connected smooth manifolds of dimension > 0.

For the arguments of this chapter we will frequently need -

the following

Collaring Uniqueness Theorem 9.1. Let V be a smooth manifold with

cormpact boundary M. Suppose' h and h' are collarings of M
in V -~ viz, smooth imbeddings of M >< [0,1]- into V so that
h(x,o) = h'(x,0) = x for x& M, Then there exists a diffeomorphism
£ of V onto itself, fixing M and points outside some compact

rneighborhood of M, so that h' = foh,

The proof follows directly from the proof of ths tubular nsighborhocd
neighborhood uniqueness theorem in Milnor [25, p. 22]. To apply the
latter directly one can extend h and h' to bicollars (= tubular

neighborhoods) of M in the doubls of V.,

e e T TR e s .
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Delinition 9.2, Two collars V, V' of a smooth end € are called

. parallel if there exists a third collax nsighborhood V" ¢ Int VN Int V'

" such that the cobordisms V = Int V* and V' - Int VP are aiffec-

morphic to de*x[o,ﬂ.'_

Lomma 9.3, If V and V' are parallel collars and V' C Int V,
then V - Int V' = B4 V >< [0,1] .

Proofs Let V" C Int V(\ Int' V' be as in 9.2. Then V' = Int V*

is a collar neighborhood of Bd V* in V - Int V", By the collaring
uniqueness theorem 9.1 there is a diffeomorphism of V - Int V"

onto itself that carries V' <« V" onto a small standard collar of

BA V* and hence V - Int V' onto the complement of the small sf:andard )
collar. Since the 'stindard'_coilar can be so chosen that it‘s‘ coz;x'ple-

mont is diffeomorphic to Bd V>< [0,1], the Lemma is established. []

. Ibfi'nition-%l&. If V eand V' care any two collars of 's; the
difference torsion T(V,V') € Wh(nie_) 1s determined as follows.
Let V" be a collar parallel to V' s0 small that V' Int V.

Then (V « Int V®; Bd V,Bd V") is easily seen to be a h cobordisn.
Tts torsica is T(V,V') . ’

. It is a trivial matter to verify that T(V,V') is well defined

and depends only'on the parallel classes of V and V', Notice
that T(V',V) = -(V,V') and (V,V") = ¥(V,V') + (v, V) if
V" is a third collar. (See Milnor {17, 8 11].)

An immediate consequence of Stallings® classification of
h - cobordisms (Milnor [17]) is

Thaorem 9.5, If dim W 2> 6 and one collar Vo of ¢ is given,

o g
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then the difference torsions (V.,V) s for collars V of ¢ put

the classes of Parallel collarsg of
the elerents of Wh(rr1 €) .

€ in 1.3 Correspondence with

e Thus there is a natural

and the Parallel class of collars it dete

rmines certainly includes Ve
Lot 1:W—s§ .y MW b 4 completions of

the smooth °pen manifolq W, I f3§— Wi a diffeomorphim ’

the incuceq di ffeororpht s, ' W—sy 1s defineqd by f(x) =
T——=—=Lileomorphism

Pronosition 9.6. The completions 1 and i determine the Same
~2229s1tion

class of parallel collars of » 4 and only if

for any Prescribed
cc:r;iact set XC w

there exists 5 diffeomorphism £ W — we

S0 that the induceddiffeomorphism of W fixes K,

'y

roofs Let KC W besg given Compact set,

Let \7 be a collar
°f BdW so small that v 1"NT)  does not

meet K, 1f i anq

Come
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1* determine the same class of collars at each end of W s the closure

V' of i'(V) in W' 4s a collar of BdW'. Lot £yt Int W —>
Int W bs the diffeomorphism given by fo(x) = i'oi‘l(x) . Let
C be a collar of i(BaAV) 3n V. The collaring uniqueness theoren

" 9.1 shows that the map £,1¢ extends to a diffeomorphism £17
o ©on MW-VNue

and fi on V. Since fo coincides with f1 on C, f isa

diffeomorphism. The induced map f£'s W ——> W fixes W~V anda

~—> V', Nowdefine f1 W —> W' to be f

hence K.

The reverse implication is easy. If V is a collar of w
in the class Aeterndned by 1, choose a diffeomorphism f£3 W ——> _
W' so that the indwed map £'t W——> W fixes W - Int V. 'mén‘_
£*(v) =V is a collar in the class for 1i°.[]
. Let 13 W—>¥W and 1%t W—> W' be two completims of
the smooth open manifold W. By 9.4 and the discussion precesding

Proposition 9.6 there is a natural way to define a differsnce torsion

T(i,i') 6 %(chi) e x Wh(ﬂiﬁk) whém ei,o‘oo,gk, are the
ends of W. Combiming Theorem 9.5 and Proposition 9.6 we get

fheovem 9.7, If dim W>6, =(i,i') =0 if and only if glven any
compact KC W there exisis a diffeomorphism f3 W —> W so that

the induced @iffeomorphism £'s W ——> W fixes K . Further, if

i 1is fixed, every posSible torsion occurs as i' varies. ]

Recall that two diffeomorphisms f and g of a smooth manie
“old W onto itself are called (smoothly) isotopic [respectively

psaudo~isotopic] if there exists a level preserving [respectively

not necessarily level preserving] diffeomorphism F: W o< (0,1} ~

W><[0,1] so that F|{W><0 glves £3<0 and FIW><1 gives g><i.,
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Dofinition 9.8, Lot i: w_-—->*7 and 4'3 W —s i

the smooth OPén manifold W,

aient [resp,

be two conplew

We say 3 is isotopx equi va

Bseudo-isotopy 8guivalent] to ¢ if there exists a
diffeomorphism £1 0 —> We

tions of

§o that the induced diffeomorphism

I W—>y 34 isotopie [resp, pseudo-isotopic] to the idex:ztity.

are perfectly
8 diffeomorphispy 3 W — W

Also, we 8ay 41 anq 4

equivalent 4f there exists

The completions 3
and only if the 'map
(1)) extends tq o

are -apparently pPerfectly equivalent if
%ot Int W ~—> 1nt Fs glven by £ (x) = 4
diffeomorphism W— W',

s this map i5 unique, Thys 4 and

are- perféctly equivalsnt preci

sely when T, exists ang turns
out to be Smooth, 1.

of view of algebraie topology. For éxample we easily form unc

Fany coxpletions of Int 7 (or Int p° .
S is a Ségment on pg DZ let 4

ountably

4 2ap is sasy to conStmct.)
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 Let Ty be the rotation of Int D2 through an angle ©, Then for .
distinct angles 61, 92 the completions iore . iore are distinet.

1 2
In fact the induced map Int I° > Int I does not extend to a

contimous map D2 —_— D2 « Apparently these completions would

not even be perfectly equivalent in the topological category.
For a somewhat less obvious reason, there are uncountably . ’
rany complstions of Int D' = (-1,1) 1o two of which are perfectly

equivalent. If i1 and i' are two completions (-1,1) —> {-1,1]

there is certainly an induced homeomorphism £, of [-1,1] onto
itself that extends the monotons smooth function f£*(t) = i'(il"l(t)) .

Up to a perfeet equivalence we can assume that i(t) —>1 and :
1°(t) —>1 as t~—>1. Let hi (-1,1) —> (0,#) be the map R
h(t) = (1 +%)/(1 = t) and form the functions g(t) = hei(t)", DR

g'(t) = heit(t) . In case 4 and 1' are perfectly equivalent
f, is a diffeomorphism and one can verify that g(t)/g'{t) has

lipdt Dy (1) as t—>1 and -limt 1/Df,(~1) as t —> .1,

(Hints DE'(t) = (' (27H(t)))/ (D3 "1(1))) 1is shown to have the
same limit as {g(t)/g'(t)‘} H when t --;> +1 b_;,r applying : ‘ £
1'Hospital’s rule.) For any positive real number o .consider the |
complotion 1,(t) =b™'(h(t) ) and the map g (t) = h(1(t)) = n(eS* . | |
‘When « and @ are distinet positive real numbers ' ’

8V ey

= n(t)" "8 :

does not converge to a finite non-zero value as t —> +1. Thus S f :

the above discussion shows that i, snd 1, camnot be perfectly C
equivalent. | RENEE
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Using the idea of our first example one can show that if a

smooth open manifold W (# D ) has one completion, then it has
p.4

2 0 corpletions no two of which are perfectly equivalent. In fact

up to perfect squivalencethere are exactly Zxo completions. To

show there are no more observe that

_— N
(a) If W is fixed there are at most 2 ° completions i: W

—> ¥, since there are only 20

Xo
(b) There are only 2

continuous maps W —> W .

diffeomorphsim classes of smooth mani-
folds since each smooth manifold is imbeddable as a closed smooth -
submanifold of a suclidean space.

We have already studied isotopy equivalencs in another gulse,
Proposition 9.9. The classification of compiations up to isotopy

ecuivalence is just classification accord:mg to the corresponding .
families of parallel collars of w,

Proofs Let 1is W—> W, 1'% W—> W' be two completions and

>W 3 diffeomorphism so that the induced diffeomorphism
f'* W —>VW 4is isotopic to the identity.‘ We show that collars

V, V* of = corresponding to i, i' are necessarily parallel.

Ws know that f£'(V) is parallel to V', Consider the isotopic

deformation of 3t BdA VG W induced by the isotopy of f' <o 1’W'
Using Thom's Isctopy Extension Theorem [25] we can extend this to

an isotopy ht sy 0<t<1 of 1W that fixes points outside some

compact set K. If wo choose V' so small that V'a X = ¢,

so Ve Int V*
= h(V-Int V') =h (V) - Int V' = £9(V) - Int V" R Bd V* >< f0,1]

ht fizxes V', HNow hi(V) = £*'(V) and hi(V’)=V'

which means V and V' are parallel.
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To prove the opposite Amplication suppose V C W is a collar

of ® forboth 1 and i'. Thus there are diffeomorphismss

h: 4(V) U BA W —> Bd V >< [0,1]

h's 4°(V)U Bd W* —> Bd V >< [0,1] .

Using the collaring uniquensss theorem 9.1 we see that h can be

altered so that h'sh™> fixes points near Bd V>< 0. Define
f1 W —> W' by ’

| 17(+"1x))  for x¢ i(Int V)
h'"" h(x) for x€¢ (V)U BA W

Then f 4s a diffeomorphism such that ths induced diffeomorphism
L7 W—>W fixes a neighborhood of W - Int V., The fo]low;lng ~
lemma provides a smooth isotopy of £' +to 1W that actually fixes -
a neighbo‘rhood of WalIntV.] - -

Lerzna 9.10. Let M be a closed ‘smooth manifoid and g be a diffec-
morphism of M >< [0,1) that fixes a neighborhood of ‘M >< 0 .
Then there exists an isotopy By » 0<t<1, of the identity of
M><[0,1) to g that fixes a naighborhood of M >< 0.

' (m,x) if t=0
Proofs The isotopy is gt(m,x) = where

tg(m,%) if t 40

{m,x) € ¥ >< [0,1).0

We now discuss the looser pseudo~isotcpy equivalence between
completions. For simplicity we initially supposs that the smooth
open manifold W' has Just one end €, Then if 11 W —> W and

4's W—> W' are two completions thers is by 9.5 and 9.5 a difference
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torsion *(i,i') € Wn(-nle) that is an invariant of isotopy equivalence,

 and, provided n > 6, classifies completions 1' as 1' wvaries

while 4 7remains fixed. FHere T (i.1') =7(V,V') where V and

V' are collars corresponding to 4 and 1'.

Theorem 9.11. Suppose the manifold W' above has dimension n >5.
If the completion i is pseudo-isotopy equivalent to i', then
'f(i,i')v =Ty * (_1)n-1;0 where ’fo € Wh(nle) is an element so that
j,(‘t’o) =0¢€ W’n(ﬂ1W) e« If n2>6 rthe conve;:'se is true. (Here |

jo 4s the inclusion induced map Wh(m €) —> Wa(m,W) and T,

is the conjugate of T o under the involution of Wh(nlc) discussed
by Kilnor in [17, p. 49 and pp. 55-56].)

Proo® of Theorem 9.11% First we explain the construction that gives

the key to the proof. Given a smooth closed manifold M', m > Y,
we form the unique (relative) h=-cobordism X with left end M >< [0,1]
that has torsion T € W‘n('niM) . It is understood that X is to

give product cobordisms XO and X1 over M><0 and M>< 1,

X‘ B-\-Y\x

Moy | —E K 3K

P TR
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The construction in Milnor [17, p. 58] applies with only obvious -

" changes needed because M >< [0,1] has a boundary. We will call
X +the wedge over M >< {0,1] with torsion T .

Notice that the right hand end 8. X of X gives a h-co-
bordism between the right hand ends 3 +% and 3 Xy of X, and
X, .* The torsion of 3 Ko G X is T and the torsion of LGX

(_1)m§'1

is T by the duality theorem of Milnor [17]. It follows

that the torsion of 3,X,Cd X 1s - (-1)™'T=T+ (1) by
[17’ P' 35]0
Cbserve also that, as a cobordism Xo to X1 sy X has a

two-sided inverse, namely the wedge over M >< [0,1] with torsion

-T. Then the infinite product argument of Stallings [10) shows

that X - X &% ><[0,1). | |
We now prove the firs® statement oi_t‘ the theorem, Suppose that'

thers exists a aifreomo'rphism f3 W —> W' so0 that there is a pseudo-

isotopy F of the induced map f's W—>W +to the identity. The

pseudo-isotopy F 1s a diffeomorphism of W >< [0,1] that gives

the identity on W><0 and f'><1 on W><1. It will be con~

venient to identify W with i(W)C W,

e ‘m"‘\‘& ' _ BaWl
o N0 W o | BaW x oA}

L LA P
W0 BN

Figure 9.4.
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If V is a collar nsighborhoocd for i ¢+ the closure v of

V in W, 4is a collar of Bd W, and the closure F(V >< [0,1)c Ba W
>< [0,1] of F(V><[0,1]) 4n W><[0,1] is a wedge over ¥ ><0

with torsion T, say. Now £'(V) 4s a collar V!
to 1°v,

corresponding

So the end of the wedge £'(V) ><1U BAW><1c W< 1

gives a h-cobordism with torsion ~7T(i, i') = 'f + (- l)n.i To

Since the pmduct cobordism W >< (0,1] is the union of the wedge

over V >< 0 with torsion ’t‘o and another product, the Sum Theoren

for Whitehead Torsion 6.9 says that Ju(%) =0 € Wa(m W) . This
corpletes the proof of the first statement.

To prove the converse assertion suppose that «U(1,i') has

the forn T, + (-1)“’1'1’0 » where J,(T))'=0 €Wn(r W). As above

W is identified with i(W) =Int W, ¥ is a collar of Bd W and

V=Va.BdW is_# collar of €. Form the wedge over V with torsion
Ty s Choosing X, over BAV (not Bd W). From X and W >< [0,1]
form a completion Z of W >< [0,1] (in the sense of 10.2) by
identifying X - X, ® X, >< [0,1) with V< [0,1] % Bd V >< [0,1]"

> {0,1) under a diffeomorphism that is the identity on the last -
factor [0,1),

Wil

| | X
Wx o1 REAVAAGRIEA'S Y
k e
WO N

Fimn e 9.50

RL

and matches X, with Bd V>< [0 1] in the natural way. -

PR r e y ; PGS TR N5 T LA AR TP M N5 O ISy AR S A OO I
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Now Z is a compact h-cobordism from a manifold we ean

identify with W to a manifold we call W'. We claim that the come
14 >< 1

pletion 1"s W >W><1G W is isotopy equivalent to 49,
For 3, X =V><1UBdW" isa h-cobordlom with torsion T, +
-1y So -T(1,1") = T, + (;.1)“'1:{'0 =-T(1,4') . Tms T(i',3%) =0,
Since n 2> 6 our claim is verified.

A'l.so. .(Z;W,W") =0, since Z is the union of a product
cobordism and the wedge X with torsion ’L’o satisfying j*‘% =0.
(c.f. 6.9). By the s-cobordism theorem (Wall [2]), 2z W >< [0,17.
Any such product structure gives a diffeomorphism W —> iy &and
a pseudo~isotopy to the identity of the induced map W——>W (since
Z -~ X, 1is by construction W><[0,1]). As i and 1" are iso-
topy equivalent there is a diffeomorphism W" -';~> W' and an isotopy

_ to the idenﬁty of the induced map W ~—> V. v'rm’s the comp&éad
diffeomorphism W —> W' —> W' 4nduces a map which is psesudo-

isotopic to the identity. This completes the proof. (]

Remark 1) If instead of one end & s W has a finite set of ends
e = fel,...,ek}, Theorem 9.11 generalizes almost word for word.
In the statement, Wh(rrlc) is Wh("iei) O 440 DX Wh‘\'ﬂiek) and

-Jx 1is induced by the maps 'nl(ei) —> ni(W) s 1=1,400,ke

Remark 2)A As a further generalization one can consider the problem
of completing only a subset ¢ of all the ends of W while léaving
the other ends opsn. Thus a complation for € 3is a smooth imbedding
of W onto the interior §f & smooth manifold W' so0 that the c@m-
ponents of a collar for BEd W! gi*;'e collars for ends in ¢ (and

no others.) With the obvious definition of pseudo-isotopy equivalence
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9.11 1is generalized by substituting a quotient Wh(n1W)/N for

Wh(nIW) « Here N is the subgroup generated by the images of the

maps wh(niei) —_— Wh(n1W) where € Tanges over the ends pot
in the set €, This is justified by the following theorem.

Let W' be a smooth manifold with B4 W* compact so that
W' admits a completion. An he-cobordism on W' is by definition
a 'relativé'(nor.x-compact) cobordism (V;W',W") so that V has a
completion V (in the sense of 10.2) which gives a compact relative

h - cobordism (V3W',W") between a completion W' of W' and a

completion W" of W". The h -cobordism is understood to be a
product over Bd W', Let N be the subgroup of Wh{n W') generated

by the :hnages of the maps Wh(n €') —> W, W as

1 e' ranges over

tne ends of W’ o

"Theorenm 9.12; If dm W' >5, the he-cobordisms on W' are clase

sified up to diffeomorphism fixing W' by the elements of Wh(nfi')/ﬁ .

I omit the proof. It is not difficult to derive from Stallings®
classification of (relative) h -cobordisms (c.f. {17, p. 58].) with
the help of the wedges described on pags 99. Ths torsion for (Vswr wm)

above is the coset T(V;W',W") + N,

Jean Cerf has recently established that pseudo~isotopy implies
isotopy on smooth closed n-manifolds, n > 6,
nected (e.f. [28]).

that are 2-con-
Theorenm 9. 13 shows this is false for open mani-

folds ~= even contractible open subsets of euclidean spacs,

Theorem 9.13. For n > 2 there exists a contractible smooth opsn

ranifold W2n+1 that is the interior of a smooth compact manifold
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and an infinite seauence fi’fé’fj"” of diffeomorphisms of W
onto itself such that all are pseudo-isotopic to 1; but no two
are smoovily isotopic. Further for each n > 2 ‘this occurs with
infinitely many topologically distinct contractible manifolds like

W, each of which is an open subset of R2n+1 .

Perark 1) The maps i‘k><1R: WX R—>W>XR, k=1,2,..

are all smcothly isotopic.

R

A Mo i 2e S A s i s "
T - Yt
[ S SRt E

Zroof of Remayk: If WRInt W, W ><R= Int (W><[0,1]). But

W ><[0,1] (with corners smoothed) tsa contractible smooth manifold
with simply connected boundary -- hence is a smooth (eri-i)-;disk by
(4, 89.1). Tms W< RRE™™! and it is well known that ang

vso orientation preserving diffeomorphisms of Rwl are isotopic
(see [4’,,;:0' 601). O

" Rerark 2) To extend 9.13 to allow even dimensions (> 6 ) for W,
I would need a torsion T with T# T, (for the standard involution),
and none is known for any group. However using the example

Wa(Zg) wwith ©* = - [17, p. 56] one can distinguish isotopy and

pseudo-isotopy on a zuitable non-orientable W = Int W0 y n23,

where W is smooth and compact with nl(w) =2,, mBd W= Zg -

Perark 3) I do not know whether pseudo-isotopy implies isotopy for

diffeomorphisms of open manifolds that are interiors of compact mani-
folds with l-connscted boundary. Also it seems important to decide
this for diffeororphisms of closed smooth manifolds that are not

2~-conmnected.

Proof of Theoren 9.13: We suppose first that n 4s >3. Form

eI e
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= 2nt+l

a contractible smooth compact manifold W Zutl

with ‘m Bd W

=7 the binary icosahedral group ;a,b 3 a® =1 = (ab)zf (see page

s

84), and let W= Int W. In Lemma 9.1% below we show that there

is a mapping u(: 25 —>mn so that Y, Wh(ZS) —> Wh{n) is 1-i.

By Miinor [17, p. 26] Wn(Z,) = 2 and T = T for all ¥¢ wa(z,)

~~ hence for all elements of %Wh(zs) . Let J be a generator

of pwn(z,) and form completions 12 W—>%_ of W, k=1,2,..
such that 7(1,1,) = kp + (-1)°7kf = 2kp where i: WG W. Since

rrl'rf =1, 9.11 says that i and i’k ares pseudo-isotopy equivalent
i.e. there exists a diffeomorphism gkz W —> ﬁk so that the in-
duced diffeomorphism fk: W —> W 1s pseudo-isotopic to 1N ‘,
k=1,2,0.00 If £, wore isotoplc to £, J#k, fkof31: W

would be isotopic to 1,. But fgiofj is induced by

-

—_—

g o8] s Wo—>W . Hence 1; and & would be isotepy oquivalent

in contradiction to ’(f'(ij,ik) =2(k - 3)p#0.

When n=2, di.e, ddmW =25, the above argument‘breaks
down in two spots, It is not apparent that i, exists with T (i,:\k)
=2k} . And when 1, 3s constructed it is not clear that it is
psendo~-isotopy equivalent to 1. Repair the argument as fo_]J.cws.

If V is a collar corresponding to i, 1let Vk Int V be a col-

lar such that the h-cobordism V = Int Vk is diffeomorphic to the
right end of the wedge over Bd V >< [0,1] with torsien X . Then
TV,V) = kb +4(-1)“’k_§,= 2kp.  So Ui,i) = 2kp if we let s

W —> ﬁk be a completion for which V,_ is a collar. To show that
this particular :Lk is pseudo-isotopy equivalent to i we try to
follow the proof for the second statement of 9.11 taking i' = :’Lk

and 'I‘o = k@ + ' What needs to be adjusted is the proof on page 101 that

e

‘,

AR
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i and i (= ik) are isotopy equivalent. Now, if V* ¢ Int V
is a collar for i", 1t is clear that V -~ Int V" is diffeomorphie
to b+X » the right hand end of the wedge over Bd V >< [0,1] with
torsion T 0 = kf. But in our situation V - Int Vk is by construction
diffeoﬁozphic to 3.X. Because O X is an invertible h - cobordism
(page 99 ), V" and V., are parallel collars. Thus 9.9 says that
iv and. i' = ik are isotopy equivalent. The rest of the argument
on page 101 establishes that 4 and i' = ik are pseudo~isotopy
equivalent,

Finally we give infinitely many topologically distinet cone
tractible manifolds 1ike W¢ B, Lot W_ be the interior of

the connected sum along the boundary of s copiss of ﬁ,' £ = 1,2,0000

Now ‘@n-i-lc gL st _ fpoint}, and the comnscted sum ean

" clearly be formed inside . 2l .. Hence we ¢an suppose W; c Rzm'_jf .

Wy 1is distinguished topologically from W_, r#s, by the fun-
danental group of the end which is the s-fold free product of 1w,
As Wh is a functor Whnm is a natural swmand of Wn(m ... % n) .

Hencs the argument for W will also work for W, o This completes
the proof of 9.13 modulo Lerma 9.1%. []

Lerma G.1%4. There is a homomorphism s Z5 —>n= {a,b; é._5 =

| b3 = (a“p)'?'} so that Pt ‘n’h(ZS) ~> Wal{n) is 11,

Proof: By [17, p. 26] Wa(Z5) is infinite cyclic with generator
% represented by the unit (t + t~! - 1) ¢ ZdZ) -where t isa

genarator of Z5 « The quotisnt ga,b: a’ =po = (ab)2 = 1}’ of

7 15 the rotation group A5 of the icosahedron (see {21, pp. 67-69]).

7 has order 120 and A5 has order &0 so z;10 =1 in 1w, ‘I’husl

& A BT B

i




106 .
we can define ¢(%t) = az,é . . v

To show that ¢, is 1-1 in Wh(m) it will suffice to give
a2 homomorphism

hs 1 ——> 0(3)

so that if we apply h to (f(t+t'1~1)=a2+a-2-1 we get

AR B A €T i ey ST e e LT S L ST e

R T LS S ST 4 TS G T S G I AT WIS N 20 MO A

‘'a matrix M with determinant not equal to #+1. For by Milnor [17,
Pe 36-43] h determines a homomorphism h, from Wh{(n) to the
mltiplicative group of positive real numbers, and hp,(0) = {det M| .

The homomorphism we choose 1s the composite

m— A5 —> 0(3)

wanere the second map is an inclusion so chosen that a &£ A5 is a

rotation about the Z-axis through angle © =72°, Tis -

cos 8 sin © 0
h(a) = | -sin ) cos © 0

0 0 1

2c08s 28 =1 O 0

and E(a® + a™% - 1) = 0 200828 -1 0 .y
: TSI
\ o 0 1 | HE

wnich has determinant # +1.(]
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Chapter X,- ‘The Main Theorsm Relativized and

Apolications to Manifold Pairs.

We consider smooth manifolds W' such that Bd W 4is a mani-
fold without boundary that is diffeomorpbic to the interior of 2
smooth compgct marifold. A s;i.m_ple‘ example is the closed uﬁier half B i
‘plane. An end' € of W is tame if it is isolated and satisfies 4
conditions 1) and 2) of Definition 4.4 on page 24, In defining a

k-neighborhood V of an end ¢ of W, k = 0,1,2,00e , wo must

insist that V be a closed submamifold of W so that V' = V nBdV g
is a smooth, possibly empty, submanifold of BAW with Vt* ™~ B3 V¢

>< [0,@) . The frontier bV of V in W mmst be a smooth compact ’
submanifold of W that meets BAd W transversely; in Bd (V) = BV,
;Otherm.se the definition of x-neighborhood is that given in 2.4 o ,'
3.9 and 4.5 ,with frontier substituted for boundary. - To show that o o b
an isolated end € of W has arbitrarily small O-neighborhoods. |

form a proper smooth map
3 W —> [0,=)

so that : }

1) £|BA W is a proper Morse function with only finitely many
cr:i'ticzil points., ' - ? 5
2) f is the restriction of a proper Morse function f* on the z
doubls IW .,

(To do this ons first fixes f|Bd W, then constructs £? by the
methods of Milnor (&, 8 2].) Then follow the argument of 2.5 to

the desired conclusion remenfoeﬂhg that frontier should replace boundaries.

[
[ 1
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If € is an isolated end of W s0 that n, 1s stable at € and

1
nl(e) is finitely presented, then € has arbitrarily small i-neigh-
borhoods. (The proof of 3.9 is easily adapted.) Thus we can give

the following definition of the invariant o(e) of a tame end €.

Consider a connected neighborhoods V of ¢ that is a smooth sube
manifold (possibly with corners) having compact frontier and one
end. If V 5:5'50 small that ni(e) — ni(V) " has a left inverse
r then VED and '

r,o(V) € Eo (my€)

-

is an invariant of ¢ (see Proposition 7.‘6) . Define o(e) = r (V).
A collar foranend ¢ of W is a connected neighborhood V of

€ that is a closed submanifold W such that the frontier bV’

of V is a compact smooth submanifolé of W (possibly with boundary),
and V is diffeomorphic to bV >< [0,%) . ‘

Relativized Main Theorem 10.1. Suppose W , n2>26, is a smooth - _

manifold such that Bd W 1is diffeomorphic to the interior of a com-
pact manifold. If € is a tame end of W the invariant 0(e)

Ko(n 1e:) is zero if and only if € has a collar neighborhood.

Proof: We have already observed that e has arbitrarily small i-
neig‘n‘oorhoods. To complete the proof one has to go back and generalize
the argument of ChaptersIV and V. There is no difficulty in doing
this; one has only to keep in mind tha{ frontiers of ke-neighborhoods
are now to replace boundaries, and that all handle operations are

to be peffomed away from Bd W. This should be sufficient proof. []
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Suppose again that W. is a smooth manifold such that Bd W

1ls diffeomorphic to the interior of a compact smooth manifold.

Definition 10.2. A completion of W 1is a smooth imbedding i: W
—>¥W of W onto a compact smooth manifold so that 31(Int W) =

Int ¥ ard the closure of 1(Bd W) 1is a compact smooth mamifold
with interior 1(Bd W) . If N is a properly imbedded submanifold

so that . Bd N 1s compact and N meets Bd W in Bd N, transversely,
we say i. gives a completion of (W,N) 4f the closure of i(N)

in W is a compact submanifold N that meets BdW 4in BA N,

transversely.

When W has a completion a collar of = is a neighborhoi;d
V of = sp that bV ;’Ls a smooth compact submanifold and V= bif '
> [0,1) . ':Notice that "W ‘has a completion if (and only if) it
has finitely rany ends, each with a cr;)llar. The natural construction
for W _(c.f. page 92 ) yields a manifold W > W that has corners
at the frontier of Bd W. Of course thsy can be sméothgd as in
Milnor (9.

For the purposes of the theorem below observe that if the
end e of ths Relativized Main Theorem has one coll#r, then one
can easily find another collar V of € so that VA BAW is a

prescribed collar of the ends of BAd W contained by ¢ .‘

| The following theorem isipartial gensralization of ‘unknotting
theorens for B 1a EP , n-k#2. (See Theorem 10.7.) It might
be called a 'peripheral unknotting theorem'. The notion of tameress _
and the invariant ¢ are esgsential in the proof but obligingly dis-

appear in the statement,
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Theoren 10.3. Let W be a smooth open manifold of dimension n > 6

and N a smooth properly imbedded submanifold (without boundary) .

Suppose W and N separately admit a boundary. If N has codimension Tk
> 3 or else has codimension one and is l-connected at each end, ' |
then there exists a compact pair (W,N) such that W= Int W, T é
Comolement 10.4. It is a corollary of the proof we give and of the , S

e A L RO T A TR IO ST WG T T A3 B8

observation above that N can be chosen to determine a prescribed
collar of ® in N. - ; §
Remarks: A counterexample for codimension 2 is provided by an o g
infinite string K din R° that has evenly spaced trefoil knots. o %
‘ s
' B ‘ 4
P
( - K has non-finitely generated i‘undamental group == ‘see page B ; :, 1 %
49). ‘The boundary of a tubular neighborhood of K gives an example ‘ o 2 g
‘ ' cih e
for codimension 1 showing that a restriction on the ends of N : é
is necessary. To get examples in any dimension > 3 consider ' Pl ; é
(RB,K) >< Rk , k = 0,1,2,-00 » ‘ ' : :‘; g
Proof of 10.3t Let W' be W with the interior of a tubwlar neigh v %
borhood T of N removed. Apparently it will L

suffice to show that

(T,%) and ‘W' both hava completions./ _

G R B R Vel R
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' 7|U of the smooth disk bundle T over U is smoothly equivalent to

- Consider V! =V

e Nt
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Let U< B4 U > [0,°)v be a collar of ® in N. Then the part

the bundle |T|Bd U}»< [0,%) over Bd U >< [0,#) ZU. One can deduce
tnis from a smooth version of Theorsm 11.4 in Steenrod [29]. It fol-
lows that (T,N) has a completion.

By the method suggested on page 107 form a proper Morse function »
f1 W—> [0,#) so that -£|N . has no critical point on a collar U = 1
NAO f'lfa,w) % B4 U >< [a,») , and so that, when restricted to T|U% | .
T|Bd U >< [a,») , f gives the obvious map to [a,). Then for
b>a, V. = f'i[b,w) maéts ‘T ina coilar T of = in T.-

b b

5 b - Int T= Vb/\ W' for any b noncritical, b >a,

If N has codimension > 3, 1t V! GV, is a l-equivalence by a

gensral position argument. Since Vb and V{)/\ Tb are in d .

so is .V} by 6.6, and 0 = o(V,) = 1,6(V}) by the Sum Theorem 6.53,
as i, 1is an isomorphism 0’(V."°) = 0. This shows that for sach * - ey

end € of W thers is a unique contained end €' of -W' and that

e (like €) 4is tame with o(e') = 0. Thus the Relativized Main

i 4 g gt etk g g

Tneorem says that W' has a completion. This complatés the proof

if N has codimension 2> 3.

For codimension 1 we will reduce the proof that (W,N) has

a completion to ‘ : : J

E_r_g_;ésition 10.5. Let W be a smooth manifold of dimension > 6 |
so that Bd W 1s diffeomorphic to the interior of a compact manifold,
énd let N be 8  smooth propsrly imbedded submanifold of codimension
1 so ‘l:haﬁ Bd N is compact and N ‘mests BA W in Bd N, transversely;
Suppose that W and N both have one _end and sepai'ate]g; admit a com-

pletion. Ir ﬂi(eN) =1, then the pair (W,N) admits a completion.
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The proof appears below. Observe that Proposition 10.5 cone-
timues to hold if N 4is replaced by several disjoint submanifolds
'Nl’""Nk each of which enjoys the properties postulated for N.

For we can apply Proposition 10.5 with N = N1 s then replace W

by W minus a small open tubular neighborhood of N, (with resulting
corners smoothed), and apply Proposition 10.5 again with N = Nz- . .
Eventually we deduce‘ that W minus smail Vopen tubular neighborhoods

of N 1""’Nk (with resulting comei‘s smoothed) admits a cozzipiation‘

-~ which implies that (W,Niu eee U Nk) admits a completion as
required. .

Applying Proposition 10.5 thus extended, to the pair (vb,i\x NV,
we see imﬁediata]y that the pair (W,N) of Theorem 10.3 has a com-

pletion when N has codimension 1. |

Proof of Proposition 10.5. If T is a tubular neighborhood of N

in W we k'now that (T,N) admits a completion; With the help of
Lemma 1.8 ons sees tha:t- W=W- SI" has at most two ends, (sthere
% denotes the open 1-disk bundle of- T). Consider a sequence

Vl,Vz,...' of O-neighborhoods of e« in W (cms?ucted with V‘l':he

help of a suitable proper Morse functioﬁ; c.t. .page'_”_'_iuﬁ) so that

.
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1) Vieg € Int V, and AV, = 4. |
2) T.=V,0 T is T|N, where N, is a collar of = in N. :
P i i i ,

After replacing Vl,V seee by a subsequence we may assune

@) m(e) —>m,(V,) is an inbedding and My Vigg) =2 m (V)

‘has image "1(5.4)C ni(Vi) for 211 1 (c.f. 4.4),

: o
(11) If W' bas two ends ¢ and ¢,, then Vi=V, -T has

e D T L LRI D el T s,

two components A, and Bi

5 that are, respectively, neighborhoods

of e and €y 1 =1,2,0006 If W' has oné éndvthen V_:: is

connected.
Case A) W' has two ends €

ei’ 2 . , .
Since w (T )=mn (eN) =1, = (V ) =ﬂ1(A )’*ni(B.).'
Thus with suitably chosan base points and base paths the system
CD uA (v ) < 17 (V ) <

eee 1is the free p*'oduct of " &: n (A )
by by
<« wi(Az, <2 .. with Din L (B, ) < my(B,) <—2-

Obser7e that Image(vi) intersects ﬂi(Ai) - 4n Iznage(ai) ‘and in-
tersects m,(B;) in Image(b;). Thus 1f L or 13 were not stable

nf would not bs stable. As V7 1s stable Both a and-ﬁ mst be.

Now r;,'(el) is a retract of nl(Bi) for i large and ,(B,) :
is a retract of 'rrl(Vi) » which 1s finitely pressnted. Hence ﬂ1(€ )y i

and simtlarly = (e } 4is finitely presented by Lemma 3.8. By 3.10 G

(relativized) we can assume that: A, B

€, €5, SO thaﬁ nl(ew) = ni(Vi) = ni(Ai) * ﬁl(Bi) = ni(ei) x 1, ().
Now V., 7, €8 implies

are 1-neighborhoods of o IR

A, 316‘8 by 6.6, and 0 = (¢,
= 11*6( el) + 12‘9‘( 32) '+ Since KO is functorial, il"‘f 1,4 dimbed
%5 (ﬂ'l )y ‘o("i 62) as swmrands of Ko(“iew) « We conclude that

U(ei) = 0, c-(ez) =0. Thws W admits a complstion. As (W,N)

doss too Proposition 10.5 is establishoed in Case 4),

N [ _— . IR RS T DR
ERA L TR A A R R TR TN S MR B RO AT RS R I (RS 2 R RTR
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Case B) W' has just one end €',

A

that intersects N

There exists a smooth loop Yi in Vv,

ju‘st once, transverssly. Since "1(T1) =1, 'nl(Vl) = nl(Vi) x 2

where 1 € Z is represented by Xl +» Since 6’1

we may assuue [\’1] € Image 'nl(Vz) = "1(€W) C ﬂl(Vl) + Thex )’1

could lie in- Vz

can be deformed to a sequence of loops XZ'.Kj’“’ so that .[Xi]
€n(g)Cm(V,) and ¥, cuts N just once. Thus with suitable
base points and paths Vi nl(Vl) e ﬂi(Vz) <~ .ee 1is the free

product of '3 m (Vi) <= (V) <— ... with the trivial system _

2L 2L ., The remainder of the proof is similar to Case
A) but easier, as the reader can verify., This completes the proof

of Proposition 10.5, and hence of Theorem 10.3, J

The. analogue of Theorem 10.3 in the theory of h - cobordisms is =

Theorem 10.6. Let M and V be smooth closed manifolds and sup~ .

o AR a0t

pose N =M ><[0,1] is smoothly imbedded in W=V >< [0,1] so
that N meets BAW in M><0C V><0 and M><1c Vo<1,

B ey Yt T A

transversely. If W has dimension > 6 and N has ‘codimension
23, then (W,N) is diffeomorphic to (V >< 0,4 >< 0) >< [0,1] . I

The same is trweif N has codimension 1, provided sach component T

£

of V is simély connected.

Proof: Let W' be W with an open tubular neigh‘_borhood % of

N in W deleted. Ons shows that W' gives a product cobordism
from V><0 -1, to V>1.-T using the s-cobordism theorem.
For codimension 2> 3 see Wall [3, p. 27]). For codimension 1, the
argument 1is soxﬁewhgt similar to that fol; Theorem 10.3 but more

straightforward. [J
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The canonically simple application of Theorem 10.3 and 10.6
is the proof that R° unkmots in R, n>6, n-k#2. This

is already well known. In fact it is true for any n except for

t‘né single case n =3, k =2 whero the result 1is false! See

Connsll, Montgomsery and Yang [13], and Stallings [10].

Theoren 10.7. .If (R%,N) is a pair consisting of a copy N of

Rfk smoothly and properly imbedded in i , then (Rn,N) 45 diffeo-

morphic to the standard pair (Rn,Bk) provided n>6 and n-k # 2.

Proof: By Theorem 10.3 and its Complement 10.4 we know that (R",N)
is the interior of a compact pair (R,N) where N is a copy of

D°. e establish the theorem by showing (R,N) is diffecmorphie

to the standard pair (Dn,Dk) « Choose a small ball pair (Dn,Dg)

in B sothat I ='.D3n N is concentric with N= D% By the

' h fc¢bordi:‘:sm theorsm % - Int Dg is an anmulus. Thus, applying -
Theores 10.6, ws find that (R,N) is (Dg,Dg) with a (relative)

product cobordism attached at the boundary. This ‘completes the proof. g

The Isotopy Extension Thesorem of Thom (Milnor [25]) shows

that if N is 2 smoothly properly imbedded subrﬁanifold of an open

manifold W and h
map %G W then ht extends to an ambient isotopy of W provided
ht fixes points outsida some compact set. The standard emle
to show that this proviso is necessary involves a knot in a string
that moves to « like a wave disturbance. N can be the center

of the string (codimension 2) or its surface (codimension 1) .

gr 0S5 t £1, ic a smooth isotopy of the inclusion

LTI .iiaiiWW¥ﬁ$WhﬂmﬁmW» AUVPIII I 4D IR a
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Do counterexamples occur only in codlmension 2 or 17 Here is an

attempt to say yes.

Theorem 10.8. - Suppose Nk is a smooth open manifold smooth]y' anpd

properly imbedded in a smooth open manifold W s, n26, n-k#2.

Suppose that N and W both admit a completion, and 4f n-k =1,

suppose N 1s l-connected at each end. Let H be a smooth proper
isotopy of the inclusion N G W, il.6. a smooth level pfeserving
proper imbedding H: N >< [0,1] —> W >< [0,1], that fixes N><0.

Then H extends to an ambient pseudo-isotopy -- i.e. to a diffeo-

morphism HE's W >< [0,1] —> W >< [0,1] * that is the identity on

W<,

Corollary 10.9., The pair (W,N) is diffeomorphic to the pair (W,Nx)
if N, is the deformed image of N =-- i.e. N, = hl(N) where

hy, 0<t=<1, is defined by H(t,x) = (t,ht(x)) ,» 't€ [0,1],

x€ N, A

Procf {in outline)s Observe that NK' = H(N >< [0,1]) and W' =

W >< [0,1] both admit completions that are products with [0,1].

By Theorem 10.3,.(rglativized) there exists a compact pair (W?,N')

with W' =Int W', N' =1Int N'. By the Complement 10.4 (relativized),

wa can assume N' ig a product N >< {0,1] , the product structure

agresing on N' with that given by H. Furthermors, after attaching -

a suitable (relative) h - cobordism at the boundary of (W',R') |

[
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we ray assume W' is also & product with (0,1} .

Applying Theorem 10.6 we find (Bd W',Bd N') 4s a product -
with [0,1].

-
N ;
N
L LB LR R Wi Mt ) e

Arplying Theorem 10.6 again (now in a relativized

3,

fozﬁ} we find (W',N') is a product., What is more, if we now go

back and apply the relativizad s ~cobordism theorem we see that

the given product structure N° i N >< {o,1] can be extended;t_o :

a product structure on W' (Wall {3, Theorem 6.2]), Restricted -

to ¥W' this product structure gives the required diffeomorphism H 0

For amsement we unknot a whole forest of RSrs in R® y n-k#2

Theoren 10,10, Suppose N is a union of s disjoint copies of Rk,

smoothly and properly imbedded in R°, n 26, n~-k # 2. Then _ a

DA,
U bl R - T bt sz iS
. » i . T VT TORT gl T Jonh s R e ing oyt 5 jhom Nins 3 oo S0 R,
SIS S T SR £ d

Fn,u'c) is dif;eon'orpnic to a standard pair consisting of the cosets

. .Rk £(0,000,0,1) C R“ = 1,2,000,5 R
Proof: Thers always exists a smoothly, properly imbsdded copy of
1

R™ that meets each componsnt of N :!.n a single point, transversely.

Thus after a diffeomorphism of R" we can assume that the component.

N, of N

5 meets the last co-ordinate axis in. (0,...,1) , transversely,

i=1,...,s. Using [&, § 5. 6] we see that after another diﬁ‘eomorphism .

of R' we can assume that Ni coincides with Rk + (0,000,0,1)

near (0,...,0,i). A smooth propar isotopy of N in K® makes

N coincide with the standard cosets. Now apply 10.9. [J

Z
5
¢
i

g
g
o
E
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o
i
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Chapter XI. A Duality Theorem and the Question of

Topological Invariance for G~ (¢) «

We give here a brief exposition of a duality between the two _

ends € and e + of a smooth manifold W~ homeomorphic to M >x<

(0,1) where M 1is a closed topological manifold. The ends €_

and . € are necessarily tame and the duality reads” ¢(e +) = (-'fl)n"1 '

(<) vhere the bar denotes a certain involution of K, (m W) - that
. is the analogue of the involution of Wh(n'iW) defined by Milnor
in [17] + Xeep in mind that, by the Sum Theorem, o(e,) + Or(e_) =
o(W) = 0(M) , which is zero if M 1is equivalent to a finite ‘complex.
I unfortunately do not know any example where G{c ) F0. IfX

did some compact topological manifold (mth boundary) would certainly
bs non-triangulable —;- namely the closure V in M ><[0,1}=w '

of a 1;heighboi'hood V of e in W,

L When W is orientable the

involution 'bar' depends on the group us (W) alone. Prof. Milnor has

established that this standard involution is in general non-trivial.

There exists non-zero x,y ¢ K0(2257) sothat x=x and y=-y #y.

‘The appendix explains this (page 127).

Suppose ht W ——> VW' 1is a homeomorphism of a smooth open

manifold W onto a smooth open manifold W' that carries and end

€ of W to theend ¢ of W', From Definitiam 4.4 1t follows.

that ¢ is tame AT and only if ¢ 4is. For tame ends we ask whether

h,o(e) = o(e') .

’I‘he‘duality theorem shows tha*t the diffarence h,,o’('e) -o(e') = ‘6‘0

satisfies tha restriction

e et YRR LY BRI, T AR S RIS s I Rt
e e e T e SRS L AR A SR SRR e R SR S L SR i

g
o A 1
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nel= _ = At T
cro+(-1) 6, =0, n=din¥,

Tris is far from the answer that Ty = 0. An example with 56 # 0

would again involve a non-triangulable manifold.

A related question is “Ibes every tame end have a topological
collar neighborhood?" This may be just as difficudt to answer as
"Is every smooth h -cobordism topologically a product cobordism?"
It seems a safe guess that the answer to both these questions is
no. But proof is lacking. |

The same duality 0“('e+) = (-1)n'16(e_) holds for the ends

¢ and ¢_ of a manifold W® that is an infinite cyclic covering

of a smooth compact manifold -- provided these ends are tams. The proof

is like that for M><R. It can safely be left to the reader.
Cuestion: Let e be a tame end of dimension>5 :with o (e)#0, and let
" M be the boun'dary of 'a ccllar for. €St .D.bes” the 1nfin1te cyclic cover
of i coresponding to the cokernel w, (M) — Z of the natural map +w(g)-»
wl(I»Z)Ewi(exS‘) provide a non-trivial example of this duality?
To explain duality " we need some algebra. Let R bé an

assoclative ring with one-element 1 and a given anti-automorphism

'‘bar't R—> R of period two. Thus r+s=r+s, rs=sr

and ;_—; r for r, s€ R. Mydules are understood to be left R~
modules. For any module A, the anti-homomorphisms from A to
R == Genoted A or Homg(A,R) -= form a left R-module. (Nots
that HomR(A,R) would be a right R-module.) Thus ® € A is an
additive map A —> R so0 that o(xa) =ol{a)r for a€ A, r€ R.
Mnd (set)(a) = s((a)) for a €A, sE&R. Ileave it %o the

reader to verify that P —> P gives an additive involution on .

o AR WNT o SR I vl O B

v " g, i g+ S A, T TS
R e AT RS R B T BRI R T AR SRR R T T

L

e s 4

T S AT TR R 4 F BB T S Sl R B A AR
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the isomorphism classes P(R) of f.g. projective R ~-modules.and

hence addtive involutions (that we also call *bar') on KO(R) and
~ ’? . .
Ko\...) .

If Ci vey —>C. 2> ¢ . —> ... isa chain complex

p A=l
we cefine C to be the cochain complex
—_ 6 -
aee C,A Ck-i .-"-" ese.

vhere 4 is defined by the ruls
, - .
(3 e)(e) = (1) c(de)

for eGC;,t and ¢ € E’»\-i'. i

For our purposes R will be a group ring 2Z[G] where G
is a fundamental group of 2 manifold and the anti-automorphism 'bar®
is that mcmced b’j sending g %o e(g)g ~in 2[G], where e(g)

+ 1 according as g gives an o”ientation preserving or orientaticn

reversing homsoﬁzarpbism of the universal cover. If the manifold
is orientable ©(g) 1is always + 1 and ‘bar' then depends on
G alone and is called. the standard involution,

Let (W%V,V') be a smooth manifold triad wlth self~indexing

Yorse function £ . Provide the usual equipmentt base po:mt P

for W base paths to the critical points of f3§ gradient-like

‘vecter field for f; orientations for the left hand disks. Then

a based fres wW comlex C, for H,(W,V) is well defined (Chapter -

IV, page 29).

#hen we specify an orientation at p, geometrically dual

eguiprent is determined for the lMorse functicn -1 and hence a geo-

motrically cual complex C! for H,(W,V*)., With the help of the

:
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formila g}', = (-1)7'sign(gP)£P on page 29, one shoxfs that

Cy = Cn_.,t

i.e. C} is the cochain complex E* with the grading éuitably reversed.

Duality. Theorem for M >< R 11.1, Suppose that W is a smooth open

manifold of dimension n > 5  that is homeomorphic to M >< R for
some cormected closed topological manifold M. Then W "has two
ends -€_ and €_, both tame, and when we identify ’f(‘on L5 and

o Koy€, with KgmW under the natural :Ls'omorphi;ms, T

o(e,) = (- ey .

The proof begins after 11.4 below.

- Corollery 11.2: The above theorem holds without restriction on n.

" Proof of 11.2: Form the cartesian product of W with a closed smooth

ranifold N6 having X(N) = 1, e.g. real projective space P6( R) .

, i _
Then we have maps nl(W) pmar nl(w >< N) so that rei=1. Using
= .

Definition 7.7 and the Product Theorem 7.2 one easily shows that
G(e+ > N) = X(N)i*f(e+) and hence r*O‘(e+ > ) = 0'(e+) e The
sams holds for €_. Since 1, commtes with 'bar’, duvality for
. W><YN implies duality for W.[

Corollary 11.3. Without restriction on n,
e P
o) = o(e,) + (DRI

and, consaquently, o(M) = (—1)n'1vZM5 .

.
5’
o
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R
S
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Froof of 11.3: By 6.5, o(M) =a(W) =o(c) + (e ) .[]

Pemarks It is a conjecture of Professor Milnox that if M is any

closed topological manifold, then (M) = (-1) o(M) or equivalently

P00 = (-1)"p(H) .
0f course the conjecture vanishes if all closed manifolds are tri-

angulable, Theorem 11,1 shows at least that

Treorexm 11.4. If M" is a closed topological manifold such that

for somée k, M ><I?.k has a smoothness structure then .

c() = (-1)"5C .-

Proof of 11.4: We can assume k is even and k > 2 o Wo will be
able to identify all fﬁndament;lgroups miurauy wiﬁh 71(M)_ .
By 6,12 the end ¢ of‘. M >< Rk is tame and G(e€) =.0'(I'I) o The
open submanifold W = M > Rk -M><0 is ho_meomorphic to M><
s5"L >< R and (W) = 0 by the Product fi'heofem since’ k - 1 1is

odde From 11.2 and the Sum Thecrem we get

o
"

s(W) =v{e) + (-1)"*1gTey

o{M) + (-1)m.1c{}{ as required. []

o)
H
o
i

Pemark: It is known that not every closed topological manifold M
is stably smoothable (page 126). However it is conceivable that,
for sufficiently large k, M >< Rk can always be iriangulated

a5 a combinatorial manifold. Then the plecswise linear version of

11.4 (sesthe introduction) would prove Professor Milnor's conjectﬁre.
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Proof of the Duality Theorem 11.1: For convenience identify tha

underlying topological manifold of W with M > R. By 4.5 we'

can find a (n-3)-neighborhood V of € so small that it lies in:

¥>< (0,2) . After adding suitable (trivially attached) 2-handles

to V in M>< {0,®), we can assume that U=W - Int V isa 2-
naighbo'rhood of e ., Next find a (ne3)~neighborhood of the posi-
tive end of .H->< (~=,0) . Adding M >< [0,°°) to it we get a (n-3)_-
neighborhood V' of e that contains M >< [0,®) . After adding

2-nandles to Y' we can assume that U' =W - Int V' 1is a 2-neighe-

tortood of € o -

Y ;

v \/’

By 5.1 we know that H,(V,Bd V) and H(V',Bd V') ars f.g.

projective ﬁl(W) -modules P, and P} concentrated in dimension
n - 2 znd both of class (-1)"?o{e,) . By an argument similar

to thal for 5.1 ons shows that U 'a.\dmits a proper Morse function

£1 5 —> [0,®) with £72(0) = BAU so that f has critical points

of index. 2 and ' 3 only. (The s‘trbng handle cancellation theorem

7]

» Wall {3, Theorem 5.5] is reeded.) The same is true for U',
It follows that H,(U,Bd V) and H,(U',Bd V') ave f.g. projective
modules P_ and P! concentrated in dimension 3 and both of class

(-1)30’( € ) by Lemma 6.2 and Proposition 6.11.
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Let X=V' - Int V. Since the composition V' - M >< (0,»)G -
X 6 V' 1isa homotopy equivalence H,(X,Bd V') —> H, (V' ,Bd V’) :

~ o~

is onto. Thus from the exact sequence of (V',X,M) we deduce (c.f .

page 37) that H__ (x Ba V) = 2(v B V') T P! land Hn_B(X,Bd Vo)
g (V0 TH _(V,aaV) Tp, ’

Slmilarly one shows that I:g,(X Bd V) —> d*(U Bd V) is onto.

-

As a consequence (X Bd V) = 1-13(U Bd V)

Now BAVG X gives a U - isomoxrphism. Also Bd V'4 X
is (n-4#)-connected (and gives a us -isomorphism when n = 5') .‘
It follows from Wall [3, Theorem 5.5] that the triad (X3Bd V*,Ba V)
admits a nice Morse function f with critical points of index ‘ ne-~3
and n -2 only.

Let f be suitably equipped and consider the free ni(W) -

complex C, for Hy(X,Bd V'). It has the form (c.f. page 39)

' _
0 —>H, , 08, < By @K 4 —>0

where 3 is an isomorphism of 3;1-3 ont?' Bn-3 and Hn-z = p_:_

and Hn-j =P e Then the complex C, is

- = 3 < o
0<—3H ,88 3<=F 40H ;<0

whers 3 glves an isomorphism of B onto B! Bat we have

n-3 n=3 °

observed that En_* is the complex C) for H,(X,Bd V) that is

geomatrical]y duai to C,. Hence we have

Hy(c) = 'ﬁn_3 .
Bat Hy(C) F Hé('i,Bd V)

= 3{e ) and § =%
= P_ has class (-1) a(-_) and Hn-3—P+

. has class (_1)n-?¢(€ +) . So the duality relation is established; D. '

TR BN W ST SR ARG
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Suppossa W is an open topological manifold and ¢ an

end of W‘. Let —091 "and dz be two smoothness structures for .

v and denote the smooth ends corresponding to € by €

1 €2 o
‘Notice that ¢, is tame if and only if ¢, is, since the definition

2
Fo I P

£ tameness doss not mention the smoothness structurs.

Theere~ 11,5, -Suppose n>5. If 2t is tame, so is € and

the c‘zi;":’ereﬁce o el) - G(ez) =q 0 € Korfie satisfies the relation

L syR=l
Ty * («1) % = 0.
Furtier O, 1s always zero if and only if the following statement
(s) is trus.
(8) it ? is a closed smooth manifold and is a smooth
rarifold homeomorphic to. M >< R +then both ends of W° have ine

S . -
variznc Zero,

Cerollary 11,6, The first assertion of 11,5 is valid for any.

dizension n.

g

roof

)

Let N0 bs a closed smooth mamifold with X(N) =1, and

consider the smoothings € > N, €, >XN of ¢ ><_ N. Now follow

the reof of 11.2. [J

!

Preel: Lst V1 . be a l-neighborhood of € o With smoothmess from

: J , int ’-71 has two ends —- viz. €, and the end € whose neighe

1

€y Hhas a neighborhcod homeomorphic to Ed Vi >R, € is tame

and w{ey) + (-1)“'1c<e05 =0 by Corollary 11.3 to the duality theorem. -~

borroods are those of Ba V1 intersected with Int V o Since

Let U bs a l-neighborhood of “ ¢y« Then V, =IntV, - Int U

"m»zw:;Js.m':u:-mmsmmmmmm:muamm:smmmnmmamammmwwwmmmmﬂ'{amw&ﬂv' ARELT R NRAR LR R
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5 e But Vi = Int Vi

and UNV, is a finite complex. Thus, by the Sum Theorem 6.5,

is clearly a l-neighborhood of ¢ =U v Vz
a(ed =a(V)) =o(V,) + «(0) = 0(¢,) +o(ey) . Thus the first assertim
holds with @, = o eo) .

Now if (S) holds, Gy = S( eo) =0 because ¢, is an end

of a smooth xﬁanifold homeomorphic to Bd V, > R. . Conversely, if

1
6, 1is always zero, i.e. 0’(62)‘ = O ei) , then @ does not depend
on the smoothness structure. Thus (S) clearly holds. This com-

 pletes the proof, []

Footnote: To Justify anvasse-rti.on on page 122 here is a fﬁlklore .
example, due to Professor Milnor, of a closed topological xnanifold
which is vnot stably smoothable, It is shom in Milnor [32, 9.4, 9.5]
~ that there is a finite complex K and a ‘topological‘microbundle ‘
én over K which is »si-’;ably distinct (as microbundle) from any
vector bundle. Further one can arrange that X is a compact I;-qub-
manifold with bourdary, of R° for some k.- By Kister [33] the
induced microbundle D§” over the double. DK of X contains a
locally trivial bundle with fibre R®. If one suitably compactifies
the total space adding a point-at-infinity to each fibre, a closed |
topological manifold resul‘ts'which cannot be stably 'smoothable sincs

its tangent microbundle restricts to ¢ g {trivial bundle} over K.
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Appendizx

——

This appendix explains Professor Milnor's proof that there o

exist nonzero x and y in K( ) so that

x=x and y =

257

-y # ¥y where the bar denotes the standard involution (pages 119-120).
Theorems A.6 and A.7 below actually tell a good deal about the standard.

involution on the progect:we class group K (Z ) of the cyclie group -

Zn of prime order P

Suppose A and B are rings with 1dentity each equipped

Wwith anti-automorphisms 'bar® of period 2, .-If. 83 A—> B 4s -

a ring homomorphism so that ©(a) = o(a) . ‘then one can show that

tre dia_gram

0 0.
9* 9, :
v 4
- *bar! g

corzutes whers 'bar' is the additive involution of the projective

class group defined on pages 119-120. Now épacialize. Let A=
Z{n] where mw = { t; tP = 1} is cyclic of px'ime order, Dafine

;(—T = a(""i) for a(t) € Z[rr] so that

bar: KOZ[n] — KOZ['n] ‘

<+

is *ne standard involution of K Z[n] = K (MY Lot

;is

B= 251 where

rimitive p-th root of 1, and let 6(t) =% define 6:

2] —> Z[ﬁ] «* (Notice that ker 6 is the principal ideal gen-

=1+ Tt e, t tp"i.) Since s'l is the complex-con-

8(2) = 6(a) where the sscond bar is complex'

conjugation.
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The following is due to Rim [38, pp. 708-711].

~

Theorem A.1. ©,: Kj2[n] —> KOZ[S] is an isomorphism. -

Remark: Rim assigns to a f.g. projective P over Z[n] the sub-
object P ={x€ Plsx=0f, Z=1+t+ .o +tP, with the

obvious action of 2[m]/(£) = 2[%]. But there is an exact sequence

: o e
0 > 3P > P \>2P >0

where o is inclusion and ﬁ is rmultiplication by 1 - t. Hence
iPE’ ?/(iP) as . 2[§] - modules, Bat P/($P). is easily seen to be .

isomorphic with 2[5] QZ[rr] P. Thus Rim's isomorphism is in fact ©,.

We now have a commtative dlagram

~ . .barQ ~
Ky2ln] > Ky2ln)

T | e, ?:'\LG*

PRI

So it is enough to study 'bar' on EOZ[Sj . ".To do this we go one
more step to the ideal class group of ZB] .

Now 2[§] 4is known to be the ring of all algebraie integers
in‘ the cyclotomic field @(S) of p;-‘c;h roots of unity [39,p. 70]. .

Eence 2[5] is a Dedekind domain [40, p. 281]. A Dedekind domain

may be defined as an integral domain R with 1-element in which
the (equivalent) conditions A) and B) hold. [40, p. 275] [41,

‘Chap. 7, pp. 29-33].

A) The fractional ideals form a group under multiplication.

- (A fractional ideal is an R-module QU imbadded in the quotient field

K of R such that for soms T€ R, rolCR.)
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B) Zvery ide2l in R is a f.z. projective R-module.

Tre ideal class greup C{R) of R is by definition the group

- of fractional ideals modulo the subgroup generated by principal ideals.

B) implies that anj f.c. projective P over R is a direct sum
oy € ... @ &, of ideakin R, (42, p, 13]+ According to [38,
Theorem 6.19] ihe ideal class of the product '0‘1"‘{’:- depends only

or: ¥ and the correspondente P —> Ot ...Clr gives an isomorphism

1
{: X (R) —> C(R).

Let us define "bar': CZ[§] —> Cz{5] by sending a fi‘actional.' ‘

‘ideal Ot to the fractional ideal U(A™.) where o denotes complex

conjugation in @(‘5) + The following two lemmas show that the diagram

~ oapt
K251 —2F— KOZ_[EJ .

¥ g«v ‘ =9 |
v N T
cz(5] 2L ez ]

cormutes,

LIer~2 A.2. In any Dedekind domain R, Homﬁ(O(,R) =0l for any

- fractioral ideal Ot .,

Lerra 4.3, Let OU be any fractional ideal in 2[5]. Then G{(@):
is naturally isormorphic as Z2[5] -module to 01 with a new action

of Z[§] given by r-a_=;a for r€ 281, a€o.

The second lemma is obvious. The first is proved below. To
ses that these lemmas imply that the diagram above commutes notice

that for a ring R equipped with anti-automorphism 'bar?, the left

" Rerocdule P = E;R(?,R) used on page W97 to define 'bar': KO(R)

-

- - e e " i ) T : . Ty ww e S RRILIRE SRER RS SR ORI, R P el
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_ KO(R) » 1s naturally isomorphic to P* = HomR(P,R) provided
with a left action of R by the rule (r«f)(x) = £{(x)r for r€ R,

f€&€ P* and x€P.

Proof of Lemna A.21 We know o =gy€ K | ynC R} where K 1is
the quotient field of R [40, p. 272]. So there is a natura? im-

bedding

ol — Homg (0,R)

which we prove is onto, Take f € HomR(Ol,R) and x € aaNR. Let

b = £f(x)/x and consider the map f, defined by fb(x) = bx. . For.

a & n

o
1

= (£ - 1,)(x) = a(f = £)(x) = (£ - £, )ax =

x(f - fb)(g) = (f - fb)(a}..

-

i

hence f{a) fb(a)l =ba, Thus b €0t"1 and o is onto as required. [J

Let A be a Dedekind domain, X 1its quotient field, L
a finite Galois extension of K with degré.e d and group G.
Then the integral closure B of A vin L 1is a Dedskind domain.
(%0, p. 281]. Each element O € G maps integers to -integers and
so gives an automorphism of B fix:’mgA A, Then ¢ clearly gives
an automorphism of the group of fractional ideals of B that sends

principal ideals to principal ideals. Thus @ induces an automorphism

6, of C(B). Letus write C(A) and C(B) as additive groups.

Theoren A.4, There exist homomorphisms‘ js c(a) —> C(B) and
N: C(B) —> C(A) so that Nej is rultiplication by d = [L;K]

and j'N = réGo;'




Przof: J 4is induced by sending each fractional ideal o € A to
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the fractional ideal eB of B. N comes from the norm homomorphism
dsfined in Lang (43, p. 18-19]., It is Proposition 22 on p. 21 of
[43] that shows N is well defined. That Nej =d and JoN =

ZC‘EG 0, follows immediately from Corollary 1 and Corollary 3 on

pp. 20-21 of (43]. [J

- Since 5,52....,Sp~1- form 4 'Z ~basis for.the algebrajic in-

Gprre s s R e AT el T e - e

tezers in Q(§) (39, p. 701, 5*’ -5_,.-.,9 FEL +3'E;' form a

Z -basis for the self-conjugate integers in (%), 1.0 the alge-
braic integers'in Q(§) N R =Q(§'+ g) . Bt z[§ +§} is the span
§ +§',...,51‘25J' + E’P%L . Hence Z[§+&] is the full ring

Yy

o}
of algebraic integers in @Q(% +E) and go 1s a Dedekind domain

(40, p. 281]. It is now easy to check that we have a situation as

Dt S i e AR T S o

described above with A = 2Z[§ + ;], B= Z[§J, d=2:and .G :-{_1,0‘}

whare (rv is complex conjugation. Observe that with the ideal class
group CZ[S] written additively x = o, (<x) = -q,x, for x€ Cz[§]

(paze 129 ). As a direct application of the theorem above we have

Tnsorenm A.5. There exist homomorphisms N and

Ky(2) = C2b] g > ca[§+ §]
P 3
so that JeN =1+ 0, and Nej = 2.

Now the order h = h(p) of CZ[4] is the so-called class
mrter of the cyclotomic field ®(§) of p-th roots of unity. It
can te expressed as a product hih2 of positive ':'mtegral factors,
wrers the first is given by a closed formla of Kummer [44] 1850,

and the second is the order of CZ[(+%] , Vandiver [45, p. 571].



Treorem A.7. If the second factor h2 of the class number for the
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(In fact J is 1-1 and N is onto, Kwamer {‘30] , Hasse [Lé;p.lS footnote 3),
p.49 footnote 2)]). Write h, = h32® where hj is odd. Recall
that p 1s a prime number and EO(ZP) is the group of stable iso-
morphism classes of f.g. projective over 'the group Zp + Bar denotes

the standard involution of Ko(Zp) (page1\® ) .

Theorem A.6. 1) The subgroup in 'Eo(zp) of all x with x=x
has_ordar at least h, ; ’ _ ‘
2) The:;e is«a summand S in 'IZO(ZP) of oraer hé S0 tltxat Sr-= -y .
for all y€ S.

Proof: For x€ kernel(N), (1 + o )% = joNx = 0 implies x=x.

Bat kernel(N) has order at least h

13 so 1) is established.

The component of C2[§ + 5—] prime to 2 is a subgroup S of order
hé . Since rmltiplication by -2 1s an automorphism of S, Noj =2
says that 3 maps S 1-1 into a summand of _?c'o(zp) . For y=
%), x€& S, we have JN(y) = j(2x) =2y. Thus y + oy = 2y

or y=-y. This proves 2).[

In case h, is odd h, = h} , and the proof of A.6 gives

the clear-cut result:

cyclotoric field of p-th roots of unity is odd, then

Eo(zp> = xernel(N) & Cz[§ + ¥

and % =x for x& kernel(N) while y = -y for y €& CZ[§+&].

In (477 1870, Xummer proved that 2|h2 implies thl (c.f.

(46], p. 119). He shows that, although h, 1is even for p = 29

1




3Eh2(257) , Tneorem A.6 shows for example that there is in KO(Z

133

~and p = 113, h2 is odd. Then he shows that both h, and hz

1
are even for p = 163 and states that the same is true for p = 937.

Zurmer cormputed hy for all p < 100 in (44] 1850 (see [50, p. 199]
for the correction h,(71) = 72 ><79241), and for 101 <p < 163

in {457 1874, In [49], h, 1is incorrectly listed as odd for p =
163.. Supposing that the other cormputations are correct, one observes

that for p <163, h1 is odd except when p =29 or p = 113.

We conclude that p = 163 is the ledst prime so that hé is evén. -

Trus p = 163 1is the leasi prime where have to fall back from A.7

to the weaker theorem A.6.

" Elements x in KO(ZP) , so that x = X, are plentiful.

X

After a slow start the factor h1 grows répidly: hl(p) = i for
prizes p <23, h(23) =3, n(29) =8, n,(31) =9, h,(37) = 3,
n, (51) = 11.11 = 121, h, (47) = 52139, b, (53) = 4889,..., h,(101)
= 57.101-11239301, ete. Kumer [44] 1850 gives (sithout proof) the

asyrptotic formula
=3 p=1
h1(p>~p%1/2223n 2 .

Bt it seems no one has shown that hi(p) >1 for all p > 23.

On the other hand elements with x = =x are hard to get hold
cf, Tor information about h2 is scanty., It has been
established that hZ(p) =0 for primes p <23 ({ses Minkowski [48,p.
256] ). In [47] 1670, Kumer shows that h, is divisible by 3
Tor p = 229, and be asserts the same for p = 257.

Vandiver [45, p. 571] has used a criterion of XKummer to show

that plh,(p) for p =257 (out pThl(p) for p=229). Since

25?>
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an element x of ordsr 257 with x = %X and another element y

of order 3 with y = -y. Notice that (x+y) #+(x+y).

Remark: It is not to be thought that :EO(ZP) is a cyelic group

in general. In [50] 1853, XKummer discussed the structure of the sub-
group Gp of 2ll elements for which x = x s, 1l.e. the subgroup cor-
responding to the ideals 2 in 2[§] such that % o{R) is principal.
For p < 100, h2« is odd so that this subgroup is a summsnd of order

h; by Theorem A.7. He found that

%9

G31 = Z9

Gyp = %91 ® 2

Zz>$ 22 9 22

11
Goy = 249 @ Zogoyg
‘ \

For other p < 100 there are no repeated factors in h1 hence no

structure problem exists.
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