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Even-dimensional l –monoids and L–theory

JÖRG SIXT

Surgery theory provides a method to classify n–dimensional manifolds up to diff-
eomorphism given their homotopy types and n � 5 . In Kreck’s modified version,
it suffices to know the normal homotopy type of their n

2
–skeletons. While the

obstructions in the original theory live in Wall’s L–groups, the modified obstructions
are elements in certain monoids ln.ZŒ��/ . Unlike the L–groups, the Kreck monoids
are not well-understood.

We present three obstructions to help analyze � 2 l2k.ƒ/ for a ring ƒ . Firstly,
if � 2 l2k.ƒ/ is elementary (ie trivial), flip-isomorphisms must exist. In certain
cases flip-isomorphisms are isometries of the linking forms of the manifolds one
wishes to classify. Secondly, a further obstruction in the asymmetric Witt-group
vanishes if � is elementary. Alternatively, there is an obstruction in L2k.ƒ/ for
certain flip-isomorphisms which is trivial if and only if � is elementary.

57R67; 57R65

1 Introduction

Let q � 2 and �D .�/q . Let ƒ be a weakly finitering with an involution x 7�! xx , for
example ƒD ZŒ�� with the usual involution. (Weakly finite means that the rank of
a free module is well-defined; see also Cohn [1, page 143 ff].) All modules are left
ƒ–modules. “Free module” always means free based f.g. module and any isomorphism
between them is a simple isomorphism. Let I D Œ0; 1�.

1.1 Surgery theories

Surgery theory was developed by Browder, Kervaire, Milnor, Novikov, Sullivan, Wall
and others in order to classify manifolds up to diffeomorphism, PL–isomorphism or
homeomorphism. Given a homotopy equivalence f W M1

'
�!M0 between two n–

dimensional manifolds M0 and M1 , the surgery programme can decide (in principle) if
f is homotopic to a diffeomorphism or not. By analysing certain homotopy invariants
of f , one can find all normal cobordisms of the type:

.e; id; f /W .W;M0;M1/!M0 � .I; f0g; f1g/
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Each of them gives rise to an obstruction �.W /2Ln.ZŒ�1.M0/�/. The groups Ln.ƒ/

are Witt-groups of forms and formations and of a purely algebraic nature. They have
been extensively studied and computed. If n� 5, an obstruction �.W / vanishes if and
only if W is normally cobordant rel@ to an s–cobordism. In this case, M0 and M1

are diffeomorphic by the s–cobordism theorem. The surgery machine was successfully
applied to classify exotic spheres and finite free group actions on spheres (see also
Wall [15] and Ranicki [14]). Under certain restrictions, surgery theory also works in
the topological and PL–categories if nD 4 (see Freedman and Quinn [2]).

In applications, it is sometimes difficult to determine the (normal) homotopy type of
a manifold. Therefore Kreck produced an enhanced surgery theory which classifies
manifolds whose normal homotopy type is only known up to the middle dimension (see
Kreck [7]). An embryonic version helped to compute the cobordism of automorphisms
[6]. Later, it helped to classify complete intersections, 4–dimensional manifolds
with finite fundamental groups up to homeomorphism and certain 7–dimensional
homogenous spaces (see Hambleton, Kreck, Teichner and Stolz [3; 4; 5; 8; 9] and
Kreck [7, Section 8]).

We briefly sketch the even-dimensional version of Kreck’s theory. Let B! BO be a
fibration. A B–manifold is an n–dimensional smooth manifold M together with a
lift x� of its normal bundle to B . It is called a .q� 1/–smoothing if x� is q–connected.
The construction of Postnikov towers is a useful way to find a suitable (and in some
sense universal) B for a given manifold (see [7, Section 2]).

Let .M0; x�0/ and .M1; x�1/ be two .2q C 1/–dimensional .q � 1/–smoothings. In
principle, spectral sequences allow us to determine the cobordism groups of B–
manifolds and, therefore, help to decide whether .M0; x�0/ and .M1; x�1/ are B–
cobordant. We shall call a B –cobordism .x�W ; x�0; x�1/W .W;M0;M1/! B a modified
surgery problem over B . Surgery below the middle dimension yields a new B–
cobordism .x�W 0 ; x�0; x�1/W .W

0;M0;M1/! B such that .W 0; x�W 0/ is a q–smoothing.
A cobordism invariant �.W / 2 l2qC2.ZŒ�1.B/�/ of W can then be defined as fol-
lows: let l2qC2.ƒ/ be the set of equivalence classes of preformations, ie, tuples

.F


 � G

�
�! F�; �/ of homomorphisms 
 and � together with a .��/–quadratic

form .G; 
 ��; �/. The equivalence relation is given by isometries and stabilization
with “hyperbolic” tuples (Definitions 2.4, 2.5). The obstruction �.W / is represented
by the preformation

.HqC1.W
0;M0/



 �HqC2.B;W

0/
�
�!HqC1.W

0;M1/;  W 0/(1)

where 
 and � are taken from the long exact sequences of the triads .B;W 0;Mi/ and
 W 0 is induced by the self-intersection form on W 0 (Corollary 2.10).
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Theorem 1.1 [7, Theorem 3] W is B –cobordant rel@ to an s–cobordism if and only
if �.W / is elementary, ie, it allows a “generalized lagrangian” (see Definition 2.7).

The lack of understanding of the l –monoids can be a serious obstacle when one tries
to apply modified surgery theory. Therefore this paper aims to relate these monoids to
the better understood L–groups.

1.2 Results

The l –monoids are the set of equivalence classes of �–preformations. Let z D .F


 �

G
�
�! F�; �/ be a regular �–preformation, ie, a tuple of free modules F and G ,� 

�

�
2 Homƒ.G;F ˚F�/ together with an .��/–quadratic form .G; 
 ��; �/. (It is

interesting to observe that regular �–preformations where
� 

�

�
is a split injection of a

half-rank direct summand (so-called non-singular split formations) are the building
blocks of the Wall-groups L2q�1.ƒ/.)

A flip-isomorphism of z is a weak isomorphism (Definition 2.5) between z and its
flip z0 D .F�

��
 � G



�! F;��/. If z is the obstruction of a modified surgery

problem .W;M0;M1/, then z0 is the obstruction of the “flipped” surgery problem
.�W;M1;M0/.

Theorem 1 (Proposition 5.2) z has a flip-isomorphism if it is elementary.

In certain cases flip-isomorphisms can be interpreted as isometries of linking forms
associated to z which in turn are related to the topological linking forms on Mi if
Œz�D �.W / as in (1).

Theorem 2 (Proposition 9.4 for ƒ D Z, S D Z n f0g) Assume that 
 and � are
Q–isomorphisms. (Then z is called an S -�–preformation.)

(i) Split .��/–quadratic linking forms L� and L
 can be defined on coker� and
coker 
 , and their isometry classes are invariants of Œz� 2 l2qC2.Z/.

(ii) Every flip-isomorphism induces an isometry L�
Š
�! L
 and conversely any

such isometry is induced by a stable flip-isomorphism of z .

Theorem 3 (Theorem 9.7) Let .W;M0;M1/ be a modified surgery problem over
B such that �1.B/ D 0, dim W D 2qC 2 � 6 and jHqC1.B;Mj /j <1. Then the
obstruction preformation is an S -�–preformation, and L
 and L� are the linking
forms on HqC1.B;Mj / which are induced by the topological linking forms of Mj .
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For any choice of flip-isomorphism t , one can define an asymmetric signature ��.z; t/

in the Witt-group WAsy.ƒ/ of non-singular asymmetric forms, ie, isomorphisms
�W M Š

�!M � where no symmetry conditions are imposed (Definitions 6.1 and 6.6). If

z is an S -�–preformation, one can replace flip-isomorphisms by isometries L�
Š
�!L


(Theorem 9.5).

Theorem 4 (Theorem 6.8) If Œz� 2 l2qC2.ƒ/ is elementary then ��.z; t/ D 0 2

WAsy.ƒ/ for all flip-isomorphisms t of z .

The vanishing of all asymmetric signatures of a preformation does not ensure that it is
elementary (Example 8.4). A complete set of obstructions is given by the quadratic
signatures. The precondition for their definition is the existence of a special type
of flip-isomorphism. In general, any flip-isomorphism induces an automorphism of
a certain 2q–dimensional quadratic Poincaré complex (Theorem 5.3). If there is a
homotopy .�; �/ between this map and the identity, the flip-isomorphism is called
a flip-isomorphism rel@ (Definition 7.6) and one constructs the quadratic signature
��.z; t; �; �/ 2L2qC2.ƒ/ (Definition 7.8).

Theorem 5 (Theorem 7.9) Œz� 2 l2qC2.ƒ/ is elementary if and only if there is a flip-
isomorphism rel@ t of z0 with Œz0�D Œz� 2 l2qC2.ƒ/ and a homotopy .�; �/W .1; 0/'
.ht ; �t / such that ��.z0; t; �; �/D 0 2L2qC2.ƒ/.

Asymmetric and quadratic signatures are related as one would expect.

Theorem 6 (Theorem 7.10) The quadratic signatures are mapped to the asymmetric
signatures under the canonical homomorphism

L2qC2.ƒ/ �!WAsy.ƒ/; .K;  / 7�! .K;  � � �/

The rather technical definition of flip-isomorphisms rel@ can be avoided if z is in fact
a formation, ie, if

� 

�

�
W G! H�.F / is the inclusion of a lagrangian. For example,

assume that B is a .2qC 1/–dimensional Poincaré space and the modified surgery
problem .W;M;M 0/!B�.I; f0g; f1g/ is a normal degree 1 cobordism. Its modified
surgery obstruction z D �.W / is a formation and any flip-isomorphism is a flip-
isomorphism rel@ (Theorem 8.1). In addition, it turns out that the asymmetric signatures
do not depend on the choice of flip-isomorphism (Theorem 8.2). For simply-connected
manifolds one can use these facts to show the following result.

Theorem 7 (Theorem 9.7) Let .W;M0;M1/ be a modified surgery problem such
that �1.B/D 0, q is odd, dim W D 2q � 6 and HqC1.B;Mj / are finite. Assume that
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the induced linking forms on HqC1.B;Mj / are non-singular. Then W is cobordant
rel@ to an s–cobordism if and only if there is an isometry l of the linking forms on
HqC1.B;Mj / such that its asymmetric signature �.�.W /; l/ vanish.

1.3 The strategy of proof

The proofs of the theorems in this paper rely heavily on the algebraic theory of surgery
due to A Ranicki (see [11]). Its objects are n–dimensional quadratic and symmetric
Poincaré complexes and pairs. Symmetric Poincaré complexes are algebraic shadows
of geometric Poincaré spaces, whereas their quadratic counterparts model normal maps
f W M ! X from a manifold M to a Poincaré space X . Symmetric and quadratic
Poincaré pairs are the relative versions corresponding to geometric Poincaré pairs and
normal cobordisms.

Topological notions of cobordism, s–cobordism, surgery, boundary, gluing, etc all
have analogues in this algebraic world. The cobordism groups of quadratic Poincaré
complexes can be identified with Ln.ƒ/.

At the heart of this paper is Theorem 4.3. It assigns to any preformation z a .2qC 2/–
dimensional quadratic Poincaré pair

x D .gW D0
[h D!E; .ı!; ı 0

[� ı //

whose boundary c0[.h;�/�cD .D0[h D; ı 0[� ı / is the union of certain .2qC1/–
dimensional quadratic Poincaré pairs c D .f W C !D; .ı ; // and c0 D .f 0W C 0!

D0; .ı 0;  0// along an isomorphism .h; �/W .C;  / Š
�! .C 0;  0/ of the boundaries of

c0 and c . The Poincaré pair x is designed in such a way that it is cobordant rel@ to an
algebraic s–cobordism if and only if Œz� 2 l2qC2.ƒ/ is elementary. (Unlike in classical
surgery theory, we don’t know of any realization result in Kreck’s theory, ie, it is not
known whether any preformation z arises as an obstruction of some modified surgery
problem. Theorem 4.3 mends matters by offering a kind of algebraic realization.)

If Œz� 2 l2qC2.ƒ/ is elementary (ie, x is cobordant rel@ to an algebraic s–cobordism)
the Poincaré pairs c and c0 must be (homotopy) equivalent. It turns out that this is the
same as a stable weak isomorphism between z and its flip, ie, a flip-isomorphism of z

(Definition 5.1). Hence, any choice of flip-isomorphism t induces an equivalence c '
�!

c0 and thus enables us to transform the boundary c0[.h;�/�cD .D0[h D; ı 0[� ı /

of x into a twisted double c [.ht ;�t / �c D .D [ht
D; ı [�t

ı /. Here, .ht ; �t /

is the composition of .h; �/ and an equivalence .C 0;  0/ Š
�! .C;  / induced by t

(Theorem 5.3).

The new algebraic cobordism xtD .gW D[ht
D!E; .ı!; ı [�t

ı // is the algebraic
analogue of a manifold W with a twisted double structure @W DN [g �N on the
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boundary. These manifolds have been studied by H E Winkelnkemper [16; 17], F Quinn
[10] and others. They have shown that W is cobordant rel@ to a compatible twisted
double if and only if a certain obstruction (its asymmetric signature) vanishes in the
asymmetric Witt-group WAsy.ƒ/DLAsy2qC2.ƒ/. There is a corresponding theorem
in the world of algebraic surgery (Ranicki [13, Section 0B]) which can be applied to the
Poincaré pair xt . The asymmetric signature �.z; t/ 2WAsy.ƒ/ from Definition 6.6 is
nothing but the asymmetric signature for xt . Since an (algebraic) s–cobordism is an
(algebraic) twisted double, all asymmetric signatures for an elementary preformation
must vanish (Theorem 6.8).

A stronger obstruction can be obtained by gluing the Poincaré pair x along its boundary
using a suitable flip-isomorphism t . If the resulting quadratic Poincaré complex is
null-cobordant, then x is cobordant rel@ to an s–cobordism.

Unfortunately this gluing operation requires extra conditions on the flip-isomorphism.
Let t be some flip-isomorphism and xt the Poincaré pair with the twisted double
structure on the boundary as before. If that twisted double is trivial (ie, .ht ; �t / is
homotopic to the identity), it is possible to glue both ends of xt together or, alternatively,
stick an algebraic tube .D [C D!D; .0; ı [ ı // onto xt . Hence, we require
t to permit a homotopy .�; �/W .ht ; �t / ' .1; 0/. (Similarly, a tube N � I cannot
generally be glued onto a manifold W with @W D N [g �N unless g is isotopic
to the identity.) In this instance, t is called a flip-isomorphism rel@ (Definition 7.6).
Gluing yields a .2q C 2/–dimensional quadratic Poincaré complex. Its cobordism
class in L2qC2.ƒ/ is the quadratic signature ��.z; t; �; �/ (Definition 7.8). The class
vanishes for some flip-isomorphism t and choice of homotopy .�; �/ if and only if xt

and therefore x is cobordant rel@ to an s–cobordism.

Unfortunately, the rel@–conditions for a flip-isomorphism are quite complicated. If,
however, C and C 0 are contractible the problem disappears. This is the case if and
only if z is a non-singular formation in the sense of [11, Section 2]. Whence quadratic
signatures can be defined for any choice of flip-isomorphism (Theorem 8.2).

2 Surgery obstruction monoids and groups

2.1 Forms and L2q.ƒ/

Definition 2.1 [11, Section 2] Let M be a module.

(i) The canonical map M !M �� defines the �–duality involution map

T�W Homƒ.M;M �/ �! Homƒ.M;M �/; � 7�! .x 7�! ��.�/.x//

and the abelian groups Q�.M /D ker.1�T�/ and Q�.M /D coker.1�T�/
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(ii) An �–symmetric form .M; �/ is tuple with � 2Q�.M /. It is non-singular if
� is an isomorphism. A lagrangian j W L ,!M is a free direct summand such

that 0!L
j
�!M

j��
�!L�! 0 is exact.

(iii) An �–quadratic form .M; �; �/ is an �–symmetric form .M; �/ together with
a map �W M !Q�.ƒ/ such that for all x;y 2M and a 2ƒ

(a) �.xCy/� �.x/� �.y/D �.x;y/ 2Q�.ƒ/

(b) �.x/C ��.x/D �.x;x/ 2Q�.ƒ/

(c) �.ax/D a�.x/a 2Q�.ƒ/

A lagrangian L of .M; �; �/ is a lagrangian of .M; �/ such that �jLD 0.

Remark 2.2 [11, Section 2] If M is free, an �–quadratic form .M; �; �/ can also
be thought of as an equivalence class of split �–quadratic forms, ie, tuples .M;  2

Homƒ.M;M �// with .1CT�/ D � and  .x/.x/D �.x/. Two split structures  
and  0 on M are equivalent if Œ �D Œ 0� 2Q�.M /.

Definition 2.3 For any free module L we define a hyperbolic form

H�.L/D
�
L˚L�;

�
0 1
0 0

�
W L˚L�

�!
�
L˚L�

���
Two non-singular �–quadratic forms are stably isometric if they are isometric after
adding hyperbolic forms. L2q.ƒ/ is the group of stable isometry classes.

2.2 Preformations, l2qC2.ƒ/ and L2qC1.ƒ/

Definition 2.4 ([7], [11, Section 2])

(i) An �–preformation .F


 �G

�
�! F�/ is a tuple consisting of a free module

F , a f.g. module G and
� 

�

�
2 Homƒ.G;F ˚ F�/ such that .G; 
 ��/ is a

.��/–symmetric form.
A split �–preformation zD .F



 �G

�
�!F�; �/ is an �–preformation and a map

� W G!Q��.ƒ/ such that .G; 
 ��; �/ is a .��/–quadratic form. z is regular
if G is free. Then we interpret � as a split quadratic structure � 2Homƒ.G;G�/

on G . Moreover, if
� 

�

�
is the inclusion of a lagrangian for H�.F /, it is called

a split �–formation.1

1An �–formation .F


 �G

�
�! F�/ is a non-singular �–quadratic formation .H�.F /;F;G/ and a

split �–formation .F


 �G

�
�! F�; �/ is a non-singular split �–quadratic formation

�
F;
�� 

�

�
; x�
�

G
�

together with a choice of representative � for x� 2Q��.G/ . See also [11, page 127].
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(ii) The boundary of a .��/–quadratic form .K; �/ on a free module K is the split

�–formation @.K; �/D .K
1
 �K

�����

�! K�; �/.

(iii) A trivial formation is a split �–formation of the form .P;P�/D .P
0
 � P

1
�!

P�; 0/ with P a free module.

Surprisingly, the obstructions in both even-dimensional modified (Section 1.1) and
odd-dimensional classical surgery theory are preformations. Let B be a .2q C 2/–
dimensional Poincaré space. The Wall surgery obstruction for a .2qC 1/–dimensional
normal map f W M0 ! B can be constructed as follows: Perform surgery on some
set of generators of Kq.M0/. Then the trace .W 0;M0;M1/!B � .I; f0g; f1g/ is a
.qC 1/–connected modified surgery problem and (1) is a formation and the surgery
obstruction of f (see [14, Section 12.2]). Although the obstruction preformations are
the same in both surgery theories, the equivalence relations are quite different! Two
B –diffeomorphic modified surgery problems induce strongly isomorphic obstruction
preformations. If they are B –cobordant rel@, they will only differ by some connected
sum of tori (see [7, Section 4]). Hence the surgery obstructions are isomorphic after
adding by some “hyperbolic” elements. Therefore (1) lives in the the set l2qC2.ƒ/ of
stable strong isomorphism classes.

However, in odd-dimensional classical surgery theory, an equivalence of q–connected
.2qC 1/–dimensional normal maps M0! B gives rise to a stable weak isomorphism
of the obstruction (pre-)formations. The stable weak equivalence classes modulo all
boundaries yield the classical surgery group L2qC1.ƒ/.

Definition 2.5 ([7, section 5], [11, Sections 2,5]) Let z D .F


 �G

�
�!F�; �/ and

z0 D .F 0

 0

 �G0
�0

�! F 0�; � 0/ be two split �–preformations.

(i) A weak isomorphism2 .˛; ˇ; �; �/ between z and z0 is a tuple consisting of iso-
morphisms ˛ 2Homƒ.F;F 0/, ˇ 2Homƒ.G;G0/ and maps � 2Homƒ.F�;F /

and � 2 Homƒ.G;G�/ such that
(a) ˛
 C˛.� � ���/��D 
 0ˇ 2 Homƒ.G;F 0/

(b) ˛���D �0ˇ 2 Homƒ.G;F 0�/

(c) � C����D ˇ�� 0ˇC �C ��� 2 Homƒ.G;G�/

(ii) A stable weak isomorphism of z and z0 is a weak isomorphism z˚ t Š z0˚ t 0

for trivial formations t , t 0 . The Witt-group L2qC1.ƒ/ is the set of equivalence

2 .˛; ˇ; �; �/ is a refinement of the isomorphism .˛; ˇ; Œ��/ of the underlying non-singular split �–
quadratic formations [11, page 128].
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classes of all (split)3 �–formations where z � z0 if there are boundaries b and
b0 such that z˚ b and z0˚ b0 are stably weakly isomorphic.

(iii) A weak isomorphism .˛; ˇ; 0; 0/ between z and z0 is called a strong isomorphism
.˛; ˇ/.

(iv) A stable strong isomorphism between z and z0 is a strong isomorphism z˚@hŠ

z0˚ @h0 for some hyperbolic forms h and h0 . The l –monoid l2qC2.ƒ/ is the
set of the equivalence classes.

Remark 2.6 Every stable strong isomorphism is also a stable weak isomorphism, for
there exists a weak isomorphism�

1;
�

0 1
�� 0

�
;
�

0 0
� 0

�
; 0
�
W @H��.P /

Š
�! .P ˚P�; .P ˚P�/�/

2.3 Elementary preformations

A modified surgery problem is B –cobordant rel@ to an s–cobordism if and only if its
obstruction is elementary [7, Theorem 3]. Several alternative definitions for this central
concept will be given. We will also show that testing a preformation for elementariness
is equivalent to testing some related regular preformation. This is important since the
secondary obstructions (the asymmetric and quadratic signatures in ~) are only defined
for regular preformations.

Definition 2.7 [7, page 730] A split �–preformation .F


 � G

�
�! F�; �/ is ele-

mentary if there is a free submodule j W U ,!G such that

(i) j �
 ��j D 0 and �j D 0,

(ii) 
j and �j are split injections with images U0 and U1 ,

(iii) R1 D F�=U1! U �
0

, f 7! f jU0 is an isomorphism.

Such a U is called an s–lagrangian. An element in l2qC2.ƒ/ is elementary if it has
an elementary representative.

Proposition 2.8 For a split �–preformation z D .F


 � G

�
�! F�; �/ and a free

submodule j W U ,!G the following statements are equivalent:

(i) z is elementary with s–lagrangian U .

(ii) � jU D 0 and 0 �! U
�j
�! F�

.
j/�

�! U � �! 0 is exact.

3The Witt-groups of split and non-split formations are isomorphic [14, 12.33].
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(iii) � jU D 0 and the two horizontal chain maps

U

j

��
G




��

1 // G

j�
��
��

G
1oo

�

��
F

��j���

// U � F�
j�
�

oo

are chain equivalences.

(iv) The preformation is strongly isomorphic to a preformation of the form

.U ˚U �

�
1 0
0 �

�
 � U ˚R

�
0 ���
1 �

�
�! U �

˚U ; �/

for a split �–preformation .U �
�
 �R

�
�! U; � 0/ such that

� W U ˚R �!Q��.ƒ/; .u; r/ 7�! � 0.r/� ��.r/.u/:

Proof The only difficult direction is (i) ) (iii): Let � W F ! U0 D 
 .U / be the
projection along some complement R0 . Decompose G D U ˚R with RD ker.�
 /.
Let R1 � F� be some complement of U1 D �.U /. Write


 D
� 
1 
2

3 
4

�
W U ˚R �! U0˚R0

�D
� �1 �2
�3 �4

�
W U ˚R �! U �

0 ˚R�
0

ˆD
�
ˆ1 ˆ2

ˆ3 ˆ4

�
W U1˚R1 �! U �

0 ˚R�
0; f 2 F�

7�! .f jU0; f jR0/

�0
D

�
�0

1
�0

2

�0
3
�0

4

�
W U ˚R �! U1˚R1; x 7�!ˆ�1�.x/:

By assumption, 
1 and �0
1

are isomorphisms and 
3 and �0
3

vanish. We can apply the

strong isomorphism
�
1;
� 
1 
2

0 1

��
to achieve the simpler situation of 
 D

�
1 0
0 
4

�
and

U0 D U . We compute 
 �� and see that ˆ1 D 0. From Definition 2.7, (iii) implies
that ˆ2 is an isomorphism and therefore ˆ3 is bijective as well. We use these facts to
see:

�Dˆ�0
D

�
0 ˆ2�

0
4

ˆ3�
0
1
ˆ3�

0
2
Cˆ4�

0
4

�
D
�

0 �2
�3 �4

�
Therefore �3 must be an isomorphism. Because 
 �� is .��/–symmetric, �2 D

����
3

4 . Finally, we apply the strong isomorphism

��
1 0
0 ��

3

�
; 1G

�
.
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Lemma 2.9 Let x D .F


 � G

�
�! F�; �/ and y D .F

�
 �H

�
�! F�;  / be two

split �–preformations and � W G � H an epimorphism such that

F G

oo � //

� ����

F�

H
�

iiTTTTTTTTTTTTTT �

55jjjjjjjjjjjjjj

(2)

commutes and � D  � . Then x is elementary if and only if y is elementary.

Corollary 2.10

(i) �.W / on [7, page 729] can be replaced by (1).

(ii) Let x be a split �–preformation. Then there is a regular split �–preformation
which is elementary if and only if x is elementary.

3 Algebraic surgery theory

In this paper, algebraic surgery theory is the key to a better understanding of l2qC2.ƒ/.
This section summarizes the main concepts from Ranicki [11; 12] and presents a new
theory of surgery for Poincaré pairs.

3.1 A short introduction

Definition 3.1 [11; 12] Let C be a chain complex.

(i) The duality involution T is defined as:

T W Homƒ.C p;Cq/ �! Homƒ.C q;Cp/;  7�! .�/pq �

(ii) The chain complexes W %.C / and W%.C / are defined as:

W %.C /n D f�sW C
n�rCs

�! Cr jr 2 Z; s � 0g

d%
W W %.C /n �!W %.C /n�1

f�sg 7�! fd�sC .�/
r�sd�

C .�/nCs�1.�s�1C .�/
sT�s�1/W

C .n�1/�rCs
�! Cr jr 2 Z; s � 0g; .��1W D 0/

W%.C /n D f sW C
n�r�s

�! Cr jr 2 Z; s � 0g

d%W W%.C /n �!W%.C /n�1

f sg 7�! fd sC .�/
r sd�

C .�/n�s�1. sC1C .�/
sC1T sC1/W

C .n�1/�r�s
�! Cr jr 2 Z; s � 0g
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Their homology groups are the symmetric Q–groups Qn.C /DHn.W
%.C //

and the quadratic Q–groups Qn.C /DHn.W%.C //.
They are related by the symmetrization map:

Qn.C / �!Qn.C /; f sg 7�!

(
.1CT / 0 W if s D 0,

0 W if s ¤ 0.

(iii) For n 2 N define the chain complex C n�� by

dC n�� D .�/r d�
C W .C

n��/r D C n�r
D C �

n�r �! .C n��/r�1:

(iv) A symmetric n–dimensional complex .C; �/ is a tuple containing a cycle � 2
W %.C /n . It is Poincaré if �0W C

n��! C is a chain equivalence.

(v) A quadratic n–dimensional complex .C;  / is a tuple containing a cycle  2
W%.C /n . It is Poincaré if .1CT / 0W C

n��! C is a chain equivalence.

(vi) A morphism .f; �/W .C;  /! .C 0;  0/ of quadratic n–dimensional complexes
is a chain map f W C ! C 0 together with an element � 2 W%.C

0/nC1 such
that  0� f  f � D d%.�/. The composition of two morphisms is defined to be
.f 0; � 0/ ı .f; �/D .f 0f; � 0Cf 0�f 0�/.

Definition 3.2 [11; 12] Let f W C !D be a chain map.
(i) The chain complex W%.f / is given by

W%.f /nC1 D f.ı ; / 2W%.D/nC1˚W%.C /ng

d%W W%.f /nC1!W%.f /n

.ı ; / 7! .d%.ı /C .�/
nf  f �; d%. //

The homology groups are the relative quadratic Q–groups Qn.f /

(ii) An .nC 1/–dimensional quadratic pair .f W C ! D; .ı ; // is a tuple con-
taining a cycle .ı ; / 2W%.f /nC1 . It is called a Poincaré pair or cobordism
if
�

.1CT /ı 0

.�/nC1�r .1CT / 0f
�

�
W DnC1�r ! C.f /r is a chain equivalence.

Remark 3.3 [11] Let M be an n–dimensional closed manifold. The diagonal
approximation map produces an n–dimensional symmetric Poincaré complex ��.M /D

.C; �/ where C D C�.fM / is the ZŒ�1.M /�–chain complex of the universal cover of
M and �0 D�\ ŒM � the Poincaré duality map. If M has a boundary i W @M ,!M ,
then a similar construction endows the chain map ei �W C�.e@M /! C�.fM / with a
relative symmetric structure .ı�; �/ 2 Qn.ei �/. The quadratic construction assigns
an n–dimensional quadratic Poincaré complex to any normal map M ! X . Its
symmetrization plus ��.X / is ��.M /. There is also a relative version for normal
cobordism.
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Remark 3.4 [11; 12] There are several important constructions and concepts in
algebraic surgery theory used in this paper.

(i) An equivalence of .nC 1/–dimensional quadratic pairs

.g; hI k/W .f W C !D; .ı ; // '
�! .f 0

W C 0
!D0; .ı 0;  0//

consists of chain equivalences gW C '
�!C 0 , hW D '

�!D0 and a chain homotopy
kW f 0g ' hf such that .g; hI k/%.ı ; /D .ı 0;  0/ 2QnC1.f

0/. (See [11,
page 140].)

(ii) For every n–dimensional quadratic Poincaré pair c D .f W C ! D; .ı ; //

one can endow the mapping cone C.f / with an n–dimensional quadratic struc-
ture: the Thom complex .C.f /; ı = / of c . Conversely, any n–dimensional
quadratic complex .N; �/ determines an n–dimensional quadratic Poincaré
pair .@N !N n��; .0; @�//: its Thickening. These operations establish inverse
natural bijections between the equivalence classes of n–dimensional quadratic
Poincaré pairs and connected n–dimensional quadratic complexes. (See [11,
pages 141–144].)

(iii) One can glue two n–dimensional quadratic Poincaré pairs c D .f W C !

D; .ı ; // and c0 D .f 0W C ! D0; .ı 0;  // along their common bound-
ary [11, page 135]. Their union is the n–dimensional quadratic Poincaré
complex c [�c0 D .D [C D0; ı [ ı 

0/. A Poincaré pair .f W C ˚ C !

D; .ı ; ˚� // with two identical boundary components can be glued together
as well. (See [13, page 266].)

(iv) Two n–dimensional quadratic Poincaré complexes are cobordant if their sum
is the boundary of a Poincaré pair. The set of cobordism classes form a group
which is canonically isomorphic to Ln.ƒ/. (See [11, Propositions 3.2, 4.3 and
5.2].)

(v) Given an n–dimensional quadratic pair .f W C !D; .ı ; // one can perform
algebraic surgery on .C;  / killing im.f �W H �.D/!H �.C //. The result is
an n–dimensional quadratic complex .C 0;  0/. .C;  / is Poincaré if and only
if .C 0;  0/ is Poincaré. Two Poincaré complexes are cobordant if and only if
one can be obtained from the other by finitely many algebraic surgeries and
equivalences [11, Section 4].

Definition 3.5 [13, Definition 30.8] Let c D .f W C !D; .ı ; // be an .nC 1/–
dimensional quadratic Poincaré pair and .g; �/W .C 0;  0/ '

�! .C;  / an equivalence.
We define the .nC 1/–dimensional quadratic Poincaré pair

.g; �/%.c/D .fgW C 0
!D; .ı C .�/nf �f �;  0//
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Let c0 D .f 0W C !D0; .ı 0;  0// be another .nC1/–dimensional quadratic Poincaré
pair. We define

c [.g;�/�c0
D .D[g D0; ı [� ı 

0/D .g; �/%.c/[�c0

If c D c0 we call this union a twisted double of c in respect to .h; �/.

3.2 Cobordism of pairs, surgery inside a pair

For our purposes we have to extend the results and definitions for surgery and cobordism
from quadratic Poincaré complexes to quadratic cobordisms.

Definition 3.6 Two .nC 1/–dimensional quadratic Poincaré pairs c and c0 with
identical boundaries are cobordant rel@ if c [�c0 D 0 2LnC1.ƒ/.

Definition 3.7 Let c D .f W C !D; .ı ; // be an .nC 1/–dimensional quadratic
Poincaré pair and d D .gW C.f /!B; .ı�; ı = // an .nC2/–dimensional quadratic
pair. Write g D

�
a b

�
W Dr ˚Cr�1! Br . The result of the surgery d on the inside

of c is the .nC 1/–dimensional quadratic Poincaré pair c0 D .f 0W C !D0; .ı 0;  //

given by

dD0 D

 
dD 0 .�/n.1CT /ı 0a�C.�/nf .1CT / 0b�

.�/r a dB .�/r .1CT /ı�0C.�/nC1b 0b�

0 0 .�/r d�
B

!
W

D0
r DDr ˚BrC1˚BnC2�r

�!D0
r�1

f 0
D

�
f

�b

0

�
W Cr �!D0

r

ı 0
0 D

�
ı 0 0 0

0 0 0

0 1 0

�
W D0nC1�r

�!D0
r

ı 0
s D

�
ı s .�/

sT ı s�1a��f T s�1b� 0

0 .�/n�r �sC1T ı�s�1 0

0 0 0

�
W D0nC1�r�s

�!D0
r .s > 0/

These formulas are derived from standard procedures of algebraic surgery theory,
namely, Thom complex, algebraic surgery and thickening:

Proposition 3.8 The result of the surgery d D .gW C.f /! B; .ı�; ı = // on the
Thom complex of c is isomorphic to the Thom complex of c0 .

Proof The isomorphisms

ur D

 1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 .�/n�r 0b�

!
W Mr D .Dr ˚Cr�1/˚BrC1˚BnC2�r
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Š
�! C.f 0/r D .Dr ˚BrC1˚BnC2�r /˚Cr�1

define an isomorphism .u; 0/W .M; �/ Š
�! .C.f 0/; ı 0= / between the result .M; �/

of the surgery d on .C.f /; ı = / and the Thom-complex of c0 .

Two manifolds are cobordant if and only if one is derived from the other by a finite
sequence of surgeries and diffeomorphisms. The same statement holds for Poincaré
complexes (by [11, Proposition 4.1]) and Poincaré pairs:

Proposition 3.9 Two .nC 1/–dimensional quadratic Poincaré pairs with identical
boundaries are cobordant rel@ if and only if one can be obtained from the other by a
finite sequence of surgeries and equivalences of the type .1; hI k/.

Proof Let cD .f W C!D; .ı ; // and c0D .f 0W C!D0; .ı 0;  // be two .nC1/–
dimensional quadratic Poincaré pairs. Let .1; hI k/W c '

�! c0 be an equivalence. There
is a .ı�; �/ 2W%.f

0/nC2 such that .1; hI k/%.ı ; /� .ı 0;  0/D d%.ı�; �/. The
.nC 2/–dimensional quadratic Poincaré pair .bW D [C D0 �!D0; ..�/nı�; ı [ 
ı 0// with b D .h; .�/r�1k;�1/W .D [C D0/r D Dr ˚ Cr�1 ˚D0

r�1
! D0

r is a
cobordism between c and c0 .

Now let c , c0 and d as in Definition 3.7. Let .V; �/D c [�c . Define a connected
.nC 2/–dimensional quadratic pair zd D .zgW V !B; .ı�; �// by zg D

�
a b 0

�
W Vr D

Dr˚Cr�1˚Dr !Br . The result . zV ; z�/ of this surgery is isomorphic to c0[�c via

ur D

0B@
1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 .�/n�r 0b�

0 0 1 0 0

1CA W zVr D .Dr ˚Cr�1˚Dr /˚BrC1˚BnC2�r

�! .D0
[C D/r D .Dr ˚BrC1˚BnC2�r /˚Cr�1˚Dr

Clearly .V; �/ is null-cobordant and so is c0[�c by [11, Proposition 4.1]. Conversely,
let c D .f W C ! D; .ı ; // and c0 D .f 0W C ! D0; .ı 0;  // be two cobordant
.nC 1/–dimensional quadratic Poincaré pairs, ie, there is an .nC 2/–dimensional
quadratic Poincaré pair

e D .hW D[C D0
�!E; .ı!; ! D ı [ �ı 

0//

Write h D
�
j0 k j1

�
W Dr ˚Cr�1˚D0

r ! Er . We define the connected .nC 2/–
dimensional quadratic pair

d D .gW C.f / �! B D C.j1/; .ı�; ı = //

g D
�

j0 k
0 �f

�
W C.f /r DDr ˚Cr�1 �! Br DEr ˚D0

r�1
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ı�s D

�
ı!s 0

.�/n�r �1.ı 0
sj�

1
C.�/sf 0 sk�/ .�/n�r �sT ı 0

sC1

�
W

BnC2�r�s
DEnC2�r�s

˚D0nC1�r�s
�! Br DEr ˚D0

r�1

The result of the surgery d inside of c is the .nC 1/–dimensional quadratic Poincaré
pair c00 D .f 00W C !D00; .ı 00;  //. The maps

mr D
�
0 0 1 0 0 ı 0

0

�
W D00

r �!D0
r

define an equivalence .1;mI 0/W c00 '
�! c0 .

4 From preformations to quadratic complexes

Given a regular split �–preformation z , we will construct a Poincaré pair x such that
x is cobordant rel@ to an s–cobordism if and only if Œz� 2 l2qC2.ƒ/ is elementary.
This algebraic “realization” result allows us to apply algebraic surgery techniques to
preformations.

Proposition 4.1 [11, Propositions 2.3, 2.5] Let C be the category of .2q C 1/–
dimensional quadratic complexes concentrated in dimension q and q C 1 with iso-
morphisms as morphisms. Let P be the category of regular split �–preformations and
weak isomorphisms. There is an equivalence FW P '

�! C mapping .˛; ˇ; �; �/W .F


 �

G
�
�! F�; �/ Š

�! .F 0

 0

 �G0
�0

�! F 0�; � 0/ to a morphism .e; �/W .N; �/ Š
�! .N 0; �0/

given by:

NqC1 D F
eqC1D˛

//

��

��

N 0
qC1
D F 0

�0�

��
Nq DG�

eqDˇ��

// N 0
q DG0�

�0 D 
 W N
q
�!NqC1 �1 D �� W N

q
�!Nq

�0 D ˛�˛
�
W N 0qC1

�!N 0
qC1 �1 D �

0�˛�˛�
W N 0qC1

�!N 0
q

�2 D�ˇ
����ˇ�1

W N 0q
�!N 0

q

F induces a bijection between the equivalence classes in Obj.C/ and the stable weak
isomorphism classes in Obj.P/.

Definition 4.2 Let z D .F


 � G

�
�! F�; �/ be a split �–preformation. Its Flip is

the split �–preformation z0 D .F�
��
 �G



�! F;��/.
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The flip of the surgery obstruction (1) is the surgery obstruction of the “reverse” surgery
problem .�W;M1;M0/! B .

Theorem 4.3 Given a regular split �–preformation z D .F


 �G

�
�! F�; �/, there

exists a .2qC 2/–dimensional quadratic Poincaré pair x D .gW @E!E; .0; !// and
.2qC 1/–dimensional quadratic Poincaré pairs

c D .f W C �!D; .ı ; //; c0
D .f 0

W C 0
�!D0; .ı 0;  0//

together with an isomorphism .h; �/W .C;  / Š
�! .C 0;  0/ such that

(i) c and c0 are the thickenings of F.z/ and F.z0/ where z0 is the flip of z .

(ii) .@E; !/D c0[.h;�/�c .

(iii) Œz�2 l2qC2.ƒ/ is elementary if and only if x is cobordant rel@ to an s–cobordism,
ie, a Poincaré pair

��
j 0

0
k 0 j 0

1

�
W @E!E0; .ı!0; !/

�
such that j 0

0
W D '
�! E0

and j 0
1
W D0 '
�!E0 are chain equivalences.

Proof Let c and c0 be the thickening of F.z/. Then .h; �/ is given by:

hqC1 D 1W CqC1 DG Š
�! C 0

qC1 DG(3)

hq D
�

0 �
1 0

�
W Cq D F ˚F� Š

�! C 0
q D F�

˚F

hq�1 D 1W Cq�1 DG� Š
�! C 0

q�1 DG�

�1 D
�

0 ��
0 0

�
W C 0q

D F ˚F�
�! C 0

q D F�
˚F

�2 D
�

��
0

�
W C 0q�1

DG �! C 0
q D F�

˚F

�3 D � W C
0q�1
DG �! C 0

q�1 DG�

The .��/–quadratic form .G; �/ gives rise to the .2q C 2/–dimensional quadratic
Poincaré pair y D .pW A! E; .0; �// given by p D 1W AqC1 D G ! EqC1 D G ,
EiD0 (i¤qC1) and .A; �/DF.@.G; �//. There is an equivalence .a; �/W .@E; !/ WD
c0[.h;�/�c '

�! .A; �/ given by:

aq D
�
��� �1 
 �

�
W @Eq D F ˚G�

˚F�
�!Aq DG�(4)

�2 D �� W A
q
DG �!Aq DG�

Then we set x D .a; �/%.y/.

Now we assume that z is elementary. An s–lagrangian i W U ,!G defines a .2qC3/–
dimensional quadratic pair:

d D .mW C.g/ �! B D SqC1U �; .ı�; �//
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mD
�
a b

�
W C.g/qC1 DG˚ .F ˚G�

˚F�/! BqC1 D U �

aD�i�
 ��; b D
�
��i��� i� �i�
 �

�
The result of the surgery d on the inside of x is the .2qC 2/–dimensional quadratic
Poincaré pair x0 D .g0W @E!E0; .ı!0; !// given by:

@EqC2 D 0˚G˚ 0

��

0@ 1


�
1

1A
��

0 // E0
qC2
D 0˚ 0˚U

�i

��
@EqC1 DG˚ .F ˚F�/˚G 

��
 � 0 0
0 �� �
� 0
0 0 � ���

!
��

.1 0 0�1 / // E0
qC1
DG˚ 0˚ 0

�i�
��

��
@Eq D F ˚G�˚F�

. �i��� �i� i�
� / // E0
q D 0˚U �˚ 0

Applying Proposition 2.8 (iii) to g0ı

�
1 0
0 0
0 1

�
W D0˚D!E0 shows that x0 is an algebraic

s–cobordism.

Finally, we prove the converse. Let x be cobordant rel@ to an s–cobordism x0 D

.g0W @E!E0; .ı!0; !//. In order to simplify our calculations we use the equivalence

.a; �/ from (4). Let y0D .p0W A!E0; .ı� 0; �// be the .2qC2/–dimensional quadratic
Poincaré pair such that x0 ' .a; �/%.y

0/. The proof of Proposition 3.9 allows us to
assume that y0 is the result of a surgery d D .mW C.p/! B; .ı�; � D @�=�// inside
of y with:

C.p/qC2 DG�
��

��
��

�
��

mqC2DbqC2 // BqC2

d
��

C.p/qC1 DG˚G�
mqC1D.aqC1 bqC1 / // BqC1

For r � qC 3 or r � q the complex E0 is given by:

d 0
r D

�
d .�/r .1CT /ı�0

0 .�/r d�

�
W E0

r D BrC1˚B2qC3�r
�!E0

r�1 D Br ˚B2qC4�r

The top differentials are dual to those on the bottom:�
0 .�/r

1 0

�
d 0�

r

�
0 .�/r �1

1 0

�
D d 0

2qC3�r

for r � q C 3 and r � q . Because of E0 ' D , the homology groups Hr .E
0/

vanish for r ¤ qC 1; q . Hence there is a stably free submodule X � E0
q such that
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ker d 0
q ˚X D E0

q . It follows that E0
qC2

= ker d 0
qC2
D coker d 0

qC3
D U is stably free

and U � D ker d 0
q D im d 0

qC1
. Thus, we are allowed to cut off the top and bottom parts

of E0 and find a chain equivalence l W E0 '
�!E00 .

E0
qC2
D BqC3˚BqC1 projX //

d 0
qC2

��

E00
qC2
D U

i
��

E0
qC1
DG˚BqC2˚BqC2

d 0
qC1

��

 
1 0 0

bqC2 1 0

0 0 1

!
// E00

qC1
DG˚BqC2˚BqC2

p

��
E0

q D BqC1˚BqC3

h�
0 �1

�� 0

�i
// E00

q D U �

(5)

with:

d 0
qC2 D

 
0 �b�

qC1

d �.1CT /ı�0CbqC2b�
qC1

0 �d�

!
i D

��
0 �b�

qC1

d �.1CT /ı�0

0 �d�

��
d 0

qC1 D

�
��aqC1 d ��.1CT /ı�0

0 0 ��d�

�
p D

h�
0 0 �d�

�bqC1

�� ��d .1CT /ı�0

�i
We define a regular split �–preformation z0 by:

.F 0

 0

 �G0
�0

�! F 0�; � 0/D .F


 �G

�
�! F�; �/˚ @

�
BqC2˚BqC2;

�
0 �
0 0

��
Clearly Œz� D Œz0� 2 l2qC2.ƒ/. Additionally, one observes that p D i�
 0��0 . The
formulas for surgery (Definition 3.7) describe the map g0W A!E0 :

AqC1 DG

.
��/�

��

 
1

�bqC2

0

!
// E0

qC1
DG˚BqC2˚BqC2

d 0
qC1

��
Aq DG�

�
�bqC1

0

�
// E0

q D BqC1˚BqC3

x0 is equivalent to a cobordism .m ıg0 ı aW @E!E00; .ı!00; !// where the boundary
remains fixed. Applying Proposition 2.8 (iii) proves that z0 is elementary.

5 Flip-isomorphisms and twisted doubles

The existence of flip-isomorphisms is our first obstruction to elementariness. One can
detect them via linking forms (see Section 9). The secondary obstructions (asymmetric
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and quadratic signatures) will depend on a choice of flip-isomorphism. In regard to
Theorem 4.3, a flip-isomorphism is an isomorphism of the “boundaries” c and c0 of x .
Therefore, we will use flip-isomorphisms to transform @E D c0 [�c into a twisted
double @Et D c [.ht ;�t /�c .

Definition 5.1 A flip-isomorphism of a regular split �–preformations z is a weak
isomorphism with its flip. A stable flip-isomorphism of z is a flip-isomorphism of a
preformation z0 with Œz�D Œz0� 2 l2qC2.ƒ/.

Proposition 5.2 Every elementary regular (split) �–preformation has a flip-isomor-
phism.

Proof Let z be a regular split �–preformation of the form described in Proposition
2.8 (iv). Then there is a flip-isomorphism .

�
0 �1

�� 0

�
;
�

�1 ��
0 1

�
; 0;

�
0 0
0 � 0

�
/.

Theorem 5.3 With the notation from Theorem 4.3: A flip-isomorphism t of z induces
isomorphisms .ht ; �t /W .C;  /

Š
�! .C;  / and .at ; �t /W .@E; !/

Š
�! .@Et ; !t / WD

c [.ht ;�t / �c . x is cobordant rel@ to an s–cobordism if and only if this is true for
xt D .at ; �t /%.x/.

Proof By Proposition 4.1, t D .˛; ˇ; �; �/ induces an isomorphism .et ; �t /D F.t/W
F.z/ Š

�! F.z0/ of .2q C 1/–dimensional quadratic complexes. Since the Poincaré
pairs c and c0 are thickenings of F.z/ and F.z0/ the isomorphism .et ; �t / leads
to an equivalence .@et ; e

��
t I 0/W c

'
�! c0 [11, Proposition 3.4]. Define an automor-

phism of .C;  / by .ht ; �t / D .h; �/
�1 ı .@et ; @�t /. Then there is an isomorphism

.at ; �t /W .@E; !/D c0[.h;�/�c Š
�! .@Et ; !t / given by:

at;qC2 D ˇW @Et;qC2 DG �! @EqC2 DG

at;qC1 D

 
0 ˇ 0 0
0 0 0 ˛��

0 0 �˛ �˛.�����/
1 0 0 0

!
W

@Et;qC1 DG˚G˚ .F ˚F�/ �! @EqC1 DG˚ .F ˚F�/˚G

at;q D

�
0 ˛�� 0
0 0 ˇ��

1 0 0

�
W @Et;q D F�

˚F�
˚G�

�! @Eq D F ˚G�
˚F�

�t;0 D

�
0 0 0 0
0 0 0 0
0 0 ˛�˛� 0
0 0 0 0

�
W @EqC1

�! @EqC1

�t;0 D

�
0
1
0

�
W @EqC2

�! @Eq

�t;1 D

�
0 0 � 0

�1 �
� ���C�
�˛�˛� �1
0 1 �˛�˛� 0

�
W @EqC1

�! @Eq
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�t;2 D

�
0 0 0

�
� ��ˇ���ˇ�1 0
�1 �����˛�˛�
 ��˛�˛�

�
W @Eq

�! @Eq

Define the .2qC2/–dimensional quadratic Poincaré pair xt D .at ; �t /%.x/D .gt W @Et

�!E; .0; !t //. The last claim follows from the fact that at maps each copy of D in
@Et onto a copy of D and D0 in @E .

6 Asymmetric signatures

Let W be a .2qC 2/–dimensional manifold where the boundary is a twisted double
M [h�M . An obstruction ��.W / in the asymmetric Witt-group WAsy.ƒ/ vanishes
if and only if W is cobordant rel@ to a manifold which carries a twisted double
structure compatible with the boundary (Ranicki [13, Section 30], Winkelnkemper
[17] and Quinn [10]). An s–cobordism is a twisted double. Hence, the asymmetric
signature is also an (incomplete) obstruction for .W;M [h �M / to be cobordant
rel@ to an s–cobordism. Analogous results and constructions hold in the realm of
algebraic surgery theory. They will be applied to xt (Theorem 5.3) in order to obtain
the asymmetric signature of a flip-isomorphism.

6.1 Asymmetric L–theory

Definition 6.1 [13, Sections 28F, 30B]

(i) A (non-singular) asymmetric form .M; �/ is a free module M together with an
isomorphism �W M Š

�!M � . It is metabolic if there is a free direct summand

j W L ,!M such that 0!L
j
�!M

j��
�!L�! 0 is exact.

(ii) Two asymmetric forms are stably isometric if they are isometric after addition of
metabolic forms. The set of stable isometry classes is the asymmetric Witt-group
WAsy.ƒ/.

(iii) An n–dimensional asymmetric Poincaré complex .C; �/ is a chain complex C

together with a chain equivalence �W C n�� '
�! C .

(iv) An equivalence f W .C; �/ '
�! .C 0; �0/ of n–dimensional asymmetric Poincaré

complexes is a chain equivalence f W C '
�!C 0 such that there is a chain homotopy

�0 ' f �f � .

(v) An .nC 1/–dimensional asymmetric cobordism .f W C ! D; .ı�; �// is an
n–dimensional asymmetric Poincaré complex .C; �/, a chain map f W C !D

and a chain homotopy ı�W f �f � ' 0W Dn��!D such that�
ı�

.�/r C1�f �

�
W DnC1�r

�! C.f /r DDr ˚Cr�1
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. ı� .�/nf � /W C.f /nC1�r
DDnC1�r

˚C n�r
�!Dr

induce chain equivalences.

(vi) The asymmetric L–group LAsyn.ƒ/ is defined to be the cobordism group of
n–dimensional asymmetric Poincaré complexes.

Remark 6.2 [13, Propositions 28.31 and 28.34]

LAsy2n.ƒ/ŠWAsy.ƒ/; LAsy2nC1.ƒ/D 0

Definition 6.3 [13, Definition 30.10] Let x D .gW @E!E; .�; @�// be an .nC 1/–
dimensional symmetric Poincaré pair such that the boundary .@E; @�/D c [.h;�/�c

is a twisted double of an n–dimensional symmetric Poincaré pair c D .f W C !

D; .ı�; �// with respect to a self-equivalence .h; �/W .C; �/ '
�! .C; �/. We write

gD
�
j0 j1 k

�
W @Er DDr˚Dr˚Cr�1 �!Er . The asymmetric signature ��.x/D

Œ.B; �/� 2 LAsynC1.ƒ/ of x is given by B D C.j0 � j1W D �! C.j0f W C ! E//

and a chain equivalence which fits into the chain homotopy commutative diagrams of
exact sequences:

0 // C n��

�
0
1

�
//

˙�0h� '

��

C.j0f /
nC1��

.1 0 / //

� '

��

EnC1�r //

'

��

0

0 // C��1

 
k

�f h
�f

!
// C.j0; j1/

�
1
0

�
// C.g/ // 0

0 // Dn��

�
0
1

�
//

'

��

BnC1��
.1 0 / //

T� '

��

C.j0f /
nC1�� //

� '

��

0

0 // C.f /

 
j0 0
0 1
0 0

!
// B

 
1 0 0
0 f 1
0 0 �1

!
// C.j0; j1/ // 0

One can give an explicit formula for the asymmetric complex .B; �/.

Proposition 6.4 � is given (up to chain homotopy) by

T �r D

 
�0 .�/n�1j0f �0C.�/n�r k�0h� j1ı�0

.�/n�r�0k� .�/n�r C1�0.1Ch�/ .�/n�r�0f
�

.�/n�r C1.ı�0j�
0

Cf�0k�/ .�/n�rf�0h� .�/n�r C1f�0f
�

!
W

BnC1�r
DEnC1�r

˚C n�r
˚Dn�r

�! Br DEr ˚Cr�1˚Dr�1

Corollary 6.5 We use the notation of Definition 6.3.

Algebraic & Geometric Topology, Volume 7 (2007)



Even-dimensional l –monoids and L–theory 501

(i) If @E D 0 then .B; �/' .E; �0/ as asymmetric complexes.

(ii) Let C D 0. Let .V; �/ be the n–dimensional symmetric Poincaré complex ob-
tained by gluing the n–dimensional symmetric Poincaré pair ..j0; j1/W D˚D!

E; .�; ı�˚�ı�// along its boundary. Then .B; �/D .V; �0/ 2LAsynC1.ƒ/.

6.2 Constructing asymmetric signatures of flip-isomorphisms

Let zD .F


 �G

�
�!F�; �/ be a regular split �–preformation and tD .˛; ˇ; �; �/ be a

flip-isomorphism. Let � D .�����/� . We apply the asymmetric signature construction
from Proposition 6.4 to the symmetrization of xt . The result is a .2qC2/–dimensional
asymmetric complex .B; �/. There is an equivalence bW .B; �/ '

�! .B0; �0/ to a smaller
asymmetric complex .B0; �0/ given by

bqC2 D
�
0 1

�
W BqC2 DG˚G �! B0

qC2 DG

bqC1 D��

�

 �1 0 �˛��

0 0 0 1

0���˛
 �˛ �1 �˛˛���1��˛�

�
W

BqC1 DG˚F ˚F�
˚F�

�! B0
qC1 D F ˚F�

˚F�

bq D 1W Bq DG�
�! B0

q DG�

d 0
qC2 D

� 

�
0

�
W B0

qC2 �! B0
qC1

d 0
qC1 D

�
�.1Cˇ��/�� .1Cˇ��/
 � 
 �

�
W B0

qC1 �! B0
q

�0
qC2 D �W B

0q
�! B0

qC2

�0
qC1 D

�
0 0 1
� 0 �˛�

�� �˛ ˛���˛C�˛�˛�

�
W B0qC1

�! B0
qC1

�0
q D�ˇ

��
W B0qC2

�! B0
q

Now we apply [13, (Errata) 28.34] and compute a highly-connected .2qC 2/–dimen-
sional asymmetric complex .B00; �00/ which is cobordant to the asymmetric complex
.B0; �0/. The module automorphisms0BB@

˛ 0 0 0 �˛
ˇ

0 �˛�� 0 0 ��˛���ˇ

0 1 1 0 ��ˇ

�.1Cˇ��/�� .1Cˇ��/
� 
� ��ˇ�� 0

0 0 0 0 ˇ

1CCA W
B00

qC1 D F ˚F�
˚F�

˚G�
˚G Š
�! B00

qC1
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transform .B00; �00/ into another asymmetric complex from which we read off the
non-singular asymmetric form:

�D

�
0 0 ˛

1 0 ��

0 1 �˛�˛�

�
W M D F ˚F�

˚F �!M �

It represents the image of ��.xt / under LAsy2qC2.ƒ/ Š
�!WAsy.ƒ/.

Definition 6.6 Let z D .F


 � G

�
�! F�; �/ be a split �–preformation. The asym-

metric signature ��.z; t/ 2 WAsy.ƒ/ of a flip-isomorphism t D .˛; ˇ; �; �/ of z is
given by

�D

�
0 0 ˛

1 0 ��

0 1 �˛.�����/˛�

�
W M D F ˚F�

˚F Š
�!M �

Remark 6.7 The asymmetric signature only depends on the flip-isomorphism
.˛; ˇ; ��� ��/ of the underlying non-split �–preformation .F



 �G

�
�! F�/.

6.3 Asymmetric signatures and elementariness

Theorem 6.8 If Œz� 2 l2qC2.ƒ/ is elementary and regular then ��.z; t/ D 0 2

WAsy.ƒ/ for all flip-isomorphisms t .

The proof follows from Theorem 5.3 and the following Proposition.

Proposition 6.9 Let xD .gW @E!E; .�; @�// and x0D .g0W @E!E0; .� 0; @�// be
two .nC 1/–dimensional symmetric Poincaré pairs such that the boundary .@E; @�/ is
a twisted double of an n–dimensional symmetric Poincaré pair .f W C !D; .ı�; �//

with respect to a homotopy self-equivalence .h; �/.

(i) If x and x0 are cobordant rel@, then ��.x/D ��.x0/ 2LAsynC1.ƒ/.

(ii) ��.x/� ��.x0/D ��.x[�x0/ 2LAsynC1.ƒ/.

(iii) If x is an s–cobordism then ��.x/D 0 2LAsynC1.ƒ/.

Proof The first statement is a special case of [13, Proposition 30.11(iii)], so only
the third claim requires a proof. Let .B; �/ be the asymmetric complex of x from
Proposition 6.4. Then there is an .n C 2/–dimensional asymmetric cobordism��

0 0 1
�
W B �!D��1; .˙ı�0; �/

�
.
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7 Quadratic signatures

A manifold W with a twisted double structure .M [h�M / on the boundary cannot
be glued together along its boundary unless hW @M Š

�! @M is isotopic to the identity.
Similarly, the Poincaré pair xt of Theorem 5.3 can generally not be glued together
(or attached to an s–cobordism with the same boundary). This is possible, however,
if the equivalence .ht ; �t / from Theorem 5.3 is homotopic to .1; 0/. Choices of flip-
isomorphisms t for which this is the case will be called flip-isomorphisms rel@ t . Then
the result of gluing xt in L2qC2.ƒ/ will be the quadratic signature.

7.1 Homotopy and twisted doubles

The following rather technical section extends [11, Proposition 1.1(i)] to a thorough
theory of homotopies of morphisms of quadratic complexes. At the end, Lemma 7.5
proves that homotopic self-equivalences yield equivalent twisted doubles.

Definition 7.1 Let �W f ' f 0W C !C 0 be a chain homotopy of two chain maps. Let
 2W%.C

0/n . Define �% 2W%.C
0/nC1 by

.�% /s D�� sf
�
C .�/rC1.f 0 sC .�/

n�T sC1/�
�
W C 0nC1�r�s

�! C 0
r

Lemma 7.2 Let �W f ' f 0W C ! C 0 be a chain homotopy of two chain maps.

(i) Let  2W%.C /n . Then d.�% /D��%.d /Cf  f
��f 0 f 0�

(ii) If .f; �/W .C;  /! .C 0;  0/ is a morphism of n–dimensional quadratic com-
plexes, then .f 0; �C�% /W .C;  /! .C 0;  0/ is one as well.

Definition 7.3 A homotopy .�; �/ of two morphisms of n–dimensional quadratic
complexes .f; �/; .f 0; �0/W .C;  /! .C 0;  0/ is a chain homotopy �W f ' f 0W C !

C 0 and an element � 2W%.C
0/nC2 such that

�0
��D�% C d.�/ 2W%.C

0/nC1:

Lemma 7.4 Let .C;  / and .C 0;  0/ be n–dimensional quadratic complexes. Then
homotopy is an equivalence relation on all morphisms .C;  /! .C 0;  0/.

Proof Let .�; �/W .f; �/' .f 0; �0/ be a homotopy. Then .��;e�/W .f 0; �0/' .f; �/

is also a homotopy where e�s D ��s C .�/
rC1� s�

�W C 0nC2�r�s
! C 0

r . Let
.�0; �0/W .f 0; �0/ ' .f 00; �00/ be another homotopy. Then .� C �0; �00/W .f; �/ '

.f 00; �00/ is a homotopy with �00
s D �sC �

0
sC .�/

r�0 s�
�W C 0nC2�r�s

! C 0
r .
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Lemma 7.5 Let c D .f W C !D; .ı ; // be an n–dimensional quadratic Poincaré
pair. Let .�; �/W .h; �/' .h0; �0/W .C;  / '

�! .C;  / be a homotopy of self-equivalen-
ces. There is an isomorphism .a; �/W .c [.h;�/�c/ Š

�! .c [.h0;�0/�c/ where:

ar D

�
.�/rf� 0

0 1 0

0 0 1

�
W .D[h D/r DDr ˚Cr�1˚Dr �! .D[h0 D/r

�s D

 
.�/n�1f �sf

� 0 0

.�/n s�
�f � 0 0

0 0 0

!
W .D[h0 D/nC1�r�s

�! .D[h0 D/r

7.2 Flip-isomorphisms rel@

Definition 7.6 A flip-isomorphism t rel@ of a regular split �–preformation z D

.F


 � G

�
�! F�; �/ is a flip-isomorphism t D .˛; ˇ; �; �/ of z such that .1; 0/ '

.ht ; �t /W .C;  /
Š
�! .C;  / with .ht ; �t / as defined in Theorem 5.3.

Proposition 7.7 Every elementary preformation has a flip-isomorphism rel@.

Proof Let z be of the form described in Proposition 2.8 (iv). Then the flip-isomorphism
defined in Proposition 5.2 is a flip-isomorphism rel@ with a homotopy .�; �/W .1; 0/'
.ht ; �t /W .C;  /

Š
�! .C;  / given by:

�qC1 D

�
� 0 0 �

0 0 0 0

�
W Cq D .U ˚U �/˚ .U �

˚U / �! CqC1 D U ˚R

�q D

 
0 0

�1 0

�� 0
0 0

!
W Cq�1 D U �

˚R�
�! Cq D .U ˚U �/˚ .U �

˚U /

�1 D

�
0 0 1 0

0 0 0 0

�
W C q

D .U �
˚U /˚ .U ˚U �/ �! CqC1 D U ˚R

�1 D

 
0 0

� 0

1 0

0 0

!
W C qC1

D U �
˚R�

�! Cq D .U ˚U �/˚ .U �
˚U /

�2 D

�
1 0

0 0

�
W C q�1

D U ˚R �! CqC1 D U ˚R

�2 D

 
0 0 0 0

0 0 0 0

1 0 0 0

0 1 � 0

!
W C q

D .U �
˚U /˚ .U ˚U �/ �! Cq

�3 D

 
�� 0

0 0

0 0

0 0

!
W C q�1

D U ˚R �! Cq D .U ˚U �/˚ .U �
˚U /

�4 D

�
0 0

��� 0

�
W C q�1

D U ˚R �! Cq�1 D U �
˚R�
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7.3 Construction and properties of the quadratic signature

Let t D .˛; ˇ; �; �/ be a flip-isomorphism rel@ of a regular split �–preformation
z D .F



 � G

�
�! F�; �/, ie, a homotopy .�; �/W .1; 0/ ' .ht ; �t / exists. Write

�qC1 D
�
R S

�
W Cq D F ˚F�! CqC1 DG and �q D

�
U
V

�
W Cq�1 DG�! Cq D

F˚F� . We recall the construction of the quadratic Poincaré pairs xt , c , .ht ; �t /, etc
from Theorem 5.3. Lemma 7.5 provides us with an isomorphism .a; �/W .@E0; !0/W D

c [�c Š
�! .@Et ; !t / that gives rise to the .2qC 2/–dimensional quadratic Poincaré

pair:

wt D .a; �/%.xt /D .g
0
t W @E

0
�!E; .ı!0; !0//(6)

g0
t;qC1 D

�
1 ��R ��S �ˇ

�
W @E0

qC1 DG˚ .F ˚F�/˚G �!EqC1 DG

ı!0
t;0 D��0W E

qC1
DG�

�!EqC1 DG

In the next step wt is stuck onto the algebraic s–cobordism yD .mW @E0!D; .0; !0//

with mr D
�
�1 0 1

�
W @E0

r DDr˚Cr�1˚Dr !Dr . Let the result be the .2qC2/–
dimensional quadratic Poincaré complex .V; �/D wt [�y . There is an equivalence
l W V '
�! V 0 to a smaller complex:

VqC2 DG˚F ˚F�˚G
.�
 1 0 0 / //

��

V 0
qC2
D F�

R
��

�
��

VqC1 DG˚F�˚G�˚F�˚G

�
1 ��S 0 0 ˇ

0 �
� 1 0 0

�
// V 0

qC1
DG˚G�

Applying the instant surgery obstruction of [11, Proposition 4.3] to .V 0; l%�/ we obtain
a non-singular .��/–quadratic form .M; �/

� D

�
��0 ˇ 0

0 � 0

R� � 0

�
W M DG�

˚G˚F Š
�!M �(7)

Definition 7.8 ��.z; t; �; �/ D Œ.M; �/� 2 L2qC2.ƒ/ is the quadratic signature of
the regular split �–preformation z and the flip-isomorphism rel@ t .

Theorem 7.9 Œz� 2 l2qC2.ƒ/ is elementary if and only if there is a flip-isomorphism
rel@ t of a z0 where Œz0�D Œz� 2 l2qC2.ƒ/ and a homotopy .�; �/W .1; 0/' .ht ; �t /

such that ��.z0; t; �; �/D 0

Proof If z is elementary then use the flip-isomorphism constructed in the proof of
Proposition 7.7. If, on the other hand, one quadratic signature vanishes then .V; �/D
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y [ �wt constructed in the previous section is null-cobordant. Hence wt and the
s–cobordism y are cobordant rel@. We easily conclude that the Poincaré pair x from
Theorem 4.3 is cobordant rel@ to an s–cobordism and therefore Œz� 2 l2qC2.ƒ/ is
elementary.

7.4 The relationship between quadratic and asymmetric signatures

Theorem 7.10 Let z , t , � and � as in Definition 7.8. Then ��.z; t; �; �/ is
mapped to the asymmetric signature ��.z; t/ under the canonical homomorphism
L2qC2.ƒ/ �!WAsy.ƒ/; .K;  / 7�! .K;  � � �/

Proof By construction, the quadratic signature ��.z; t; �; �/D .V; �/D wt [�y is
the union of the .2qC 2/–dimensional quadratic Poincaré pairs defined in Section 7.3.
By Proposition 6.9 the image of .V; �/ in WAsy.ƒ/ is the difference of the asymmetric
signatures of the Poincaré pairs wt and y . Since y is an s–cobordism its asymmetric
signature vanishes. The asymmetric signature of wt is the asymmetric signature of xt

by the following general fact.

Lemma 7.11 Let cD .f W C!D; .ı�; �// be an n–dimensional symmetric Poincaré
pair. Let .�; �/W .h; �/' .h0; �0/W .C; �/ '

�! .C; �/ be a homotopy of self-equivalen-
ces. Then there is an isomorphism

.a; �/W .@E; �/D c [.h;�/�c Š
�! .@E0; � 0/D c [.h0;�0/�c

by Lemma 7.5. Let x0D .g0W @E0!E; .ı� 0; � 0// be an .nC1/–dimensional symmetric
Poincaré pair. Then ��..a; �/%.x0//D ��.x0/ 2LAsynC1.ƒ/.

Proposition 7.12 Let ƒD Z, q D 2k � 1 and z a regular split �–preformation.

(i) Œz� 2 l4k.Z/ is elementary if and only if there is a flip-isomorphism rel@ t such
that ��.z; t/D 0 2WAsy.Z/.

(ii) The quadratic signature ��.z; t; �; �/ 2L4k.Z/ only depends on z and t .

Proof The canonical homomorphism L4k.Z/!WAsy.Z/ is an injection.

8 Formations

If the chain complex C in the constructions of Theorems 4.3 and 5.3 was contractible
(ie, the preformation z is in fact a formation), all flip-isomorphisms would automatically
be rel@. Additionally, we will show that asymmetric signatures of formations do not
depend on the choice of flip-isomorphism.
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8.1 Quadratic signatures of formations

An �–formation z D .F


 � G

�
�! F�; �/ is a split �–preformation such that� 


�

�
W G ! H�.F / is the inclusion of a lagrangian. By [11, Proposition 2.2], this

map extends to an isomorphism
�
f D

�

 z

� z�

�
;
�

� 0

z
�� z�

��
W H�.G/

Š
�! H�.F / of

hyperbolic �–quadratic forms. For any � W G�! G the maps z
 0 D z
 C 
 .� � ���/,
z�0 D z�C�.� � ���/, z� 0 D z� C .� � ���/��.� � ���/C z
 ��.� � ���/�� �� define
another extension. Any other choice of z
 0 , z�0 or z� 0 emerges in this way.

Theorem 8.1 Let t D .˛; ˇ; �; �/ be a flip-isomorphism of z .

(i) t is a flip-isomorphism rel@.

(ii) A choice of z
 , z� and z� defines a homotopy .�; �/W .1; 0/ ' .ht ; �t /. The
quadratic signature z��.z; t; z
 ; z�; z�/D ��.z; t; �; �/ is given by:�

z
� z�Cz
�˛�˛� z
 �z
�˛
 0

0 ��� 0

�.˛� z
�z�/ �� 0

�
W M DG�

˚G˚F�
�!M �(8)

(iii) Œz0� 2 l2qC2.ƒ/ is elementary if and only if for some representative z 2 Œz0�, a
flip-isomorphism t of z and choices for z
 , z� and z� as above

z��.z; t; z
 ; z�; z�/D 0 2L2qC2.ƒ/

Proof

(i) A choice of z
 , z� and z� leads to homotopies �C W 1' 0W C ! C and .�; �/W
.1; 0/' .ht ; �t /W .C;  /! .C;  / given by

�C;qC1 D
�
�z�� z
 �

�
W Cq D F ˚F�

�! CqC1 DG

�C;q D��
�

z

z�

�
W Cq�1 DG�

�! Cq D F ˚F�

.�; �/D .�C .1� ht /;�C %.�t ��% //

(ii) Let � and � as in (i). Transforming (7) via the isomorphism

f D

�
1 0 �z
�˛.�����/�z��˛��

0 1 0

0 0 1

�
W M � Š

�!M �

yields the alternative representative.

(iii) Let z be elementary. We assume it is of the form described in Proposition
2.8 (iv). Then . �� / W R! U ˚U � is the inclusion of a lagrangian. Again this
map can be extended to an isometry:��

� z�

� z�

�
;
�
� 0 0

z��� z� 0

��
W H�.R/ �!H�.U

�/
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The maps

z
 D
�

0 0

0 z�

�
W G�

D U �
˚R�

�! F D U ˚U �

z�D
�

1 ��z�

0 z�

�
W G�

D U �
˚R�

�! F�
D U �

˚U

z� D
�

0 0

0 z� 0

�
W G�

D U �
˚R�

�!G D U ˚R

complete
� 

�

�
to an isometry of hyperbolic forms. Let t D .˛; ˇ; �; �/ be the

flip-isomorphism from Proposition 5.2. Then the associated .��/–quadratic
form (8) has a lagrangian:

i D

0BB@
1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 �z� 0

1CCA W U �
˚R�

˚U �!M D U �
˚R�

˚U ˚R˚U �
˚U

8.2 Asymmetric signatures of formations

Theorem 8.2 The asymmetric signature of (split) �–formations is independent of the
choice of flip-isomorphism.

We apply this theorem to the image of the map @W L2qC2.ƒ/ ,! l2qC2.ƒ/.

Corollary 8.3 Let .K; �/ be a .��/–quadratic form and z D @.K; �/.

(i) z has a stable flip-isomorphism if and only if .K; �/ is non-singular. Then
Œz� 2 l2qC2.ƒ/ is elementary if and only if .K; �/D 0 2L2qC2.ƒ/.

(ii) If .K; �/ is non-singular, ��.z; t/D Œ.K; � � ���/� 2WAsy.ƒ/ for any stable
flip-isomorphism t .

Proof Let � D � � ��� . If .K; �/ is non-singular then t D .��; 1; ���1; 0/ is a
flip-isomorphism of z . Let .M; �/ be the asymmetric form of Definition 6.6. Then

�˚�� has the lagrangian

 
� 1

0 ���

1 0

�� 1

!
.

Example 8.4 By Corollary 8.3, @
�
Z2;

�
1 1
0 1

��
has stable flip-isomorphisms and all

asymmetric signatures vanish but it is not stably elementary.

Algebraic & Geometric Topology, Volume 7 (2007)



Even-dimensional l–monoids and L–theory 509

Finally, a proof of Theorem 8.2 can be given. We recall that in Section 6.2 the
asymmetric signature ��.z; t/ 2WAsy.ƒ/ was defined as the asymmetric signature of
the .2qC 2/–dimensional symmetric Poincaré pair xt . In our case C is contractible
and D˚D and @Et are chain equivalent. The following lemma treats this situation in
general.

Lemma 8.5 Let c D .f W C !D; .ı�; �// be an n–dimensional symmetric Poincaré
pair and .h; �/W .C; �/ '

�! .C; �/ a self-equivalence. Let .@E; @�/D c [.h;�/�c be
the twisted double of c in respect to .h; �/. Assume that C is contractible with �W 1'
0W C ! C . Define � D ı�C .�/n�1f�%�f � and x�D�%.�%� ��� h�%�h�/.

(i) There is an equivalence .a; �/W .D; �/˚.D;��/ '
�! .@E; @�/ of n–dimensional

symmetric Poincaré complexes given by:

aD

�
1 0

0 1

0 0

�
W Dr ˚Dr �! @Er DDr ˚Dr ˚Cr�1

�s D

 
.�/nf x�sf

� 0 0

0 0 .�/s�1f�%�s

.�/nC1�r�%�sh�f � 0 .�/nC1�r CsT�%�s�1

!
W @EnC1�rCs

�! @Er

(ii) Let x D .gW @E!E; .�; @�// be an .nC 1/–dimensional symmetric Poincaré
pair. Write g D

�
j0 j1 k

�
W @Er DDr ˚Dr ˚Cr�1 �!Er .

Let x0 D .a; �/%.x/. Let .B; �/ be the asymmetric complex of x and .B0; �0/

the asymmetric complex of x0 . Then there is an equivalence .b; �/W .B;T �/ '
�!

.B0;T �0/ of .nC 1/–dimensional asymmetric complexes given by:

b D
�

1 .�/r j0f� 0

0 0 1

�
W Br DEr ˚Cr�1˚Dr �! B0

r DEr ˚Dr

� D
�
.�k��0h�C.�/r C1j0f x�0/�

�f �j�
0

0

f��0..�/
n�r k��h���f �j�

0
/ .�/n�rf��0f

�

�
W

B0nC2�r
DEnC2�r

˚DnC1�r
�! B0

r DEr ˚Dr

Proof of Theorem 8.2 By Lemma 8.5, ��.z; t/ 2WAsy.ƒ/ is the asymmetric sig-
nature of the .2qC 2/–dimensional symmetric Poincaré pair:

x0t
D .g0t

W D˚D �!E; .ı� 0; �˚��//

g0t
qC1 D

�
1 �ˇ

�
W DqC1˚DqC1 DG˚G �!EqC1 DG

ı� 0
0 D��Y W E

qC1
DG�

�!EqC1 DG

�0 D�z�
�
W Dq

D F �!DqC1 DG

�0 D�z�W D
qC1
DG�

�!Dq D F�
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By Corollary 6.5, ��.x0t / is the image of the union of x0t in LAsy2qC2.ƒ/. In order
to construct x0t in a different way we consider the .2qC 2/–dimensional quadratic
Poincaré pair zx D .zgW D˚D0 �!E; .0; �˚��0// by:

zg D
�
1 �1

�
W DqC1˚DqC1 DG˚G �!EqC1 DG

�0
0 D�z


�
W D0q

D F�
�!D0

qC1 DG

�0
0 D�z
 W D

0qC1
DG�

�!D0
q D F

and the isomorphism .xet ; x�t /W .D; �/
Š
�! .D0; �0/ given by:

xet;qC1 D ˇW DqC1 DG �!D0
qC1 DG

xet;q D ˛
��
W Dq D F�

�!D0
q D F

x�t;0 D��Y W D
0qC1
DG�

�!D0
qC1 DG

The isomorphism can be used to replace the “boundary component” .D0; �0/ by .D; �/.
The result will be x0t . Gluing both ends (ie, D and D0 ) of zx together using .xet ; x�t /

yields the union of x0t . Hence all unions of x0t for different choices of t are in
the same algebraic Schneiden-und-Kleben-cobordism class. Due to [13, 30.30(ii)],
their images in LAsy2qC2.ƒ/ coincide. Those images are precisely the asymmetric
signatures ��.x0t /D ��.z; t/.

9 Preformations and linking forms

Let .W;M0;M1/ be a modified surgery problem over a simply-connected B such that
HqC1.B;Mj / are finite. Its surgery obstruction will be a preformation z D .F



 �

G
�
�! F�; �/ over Z where 
 and � have finite cokernel. Flip-isomorphisms of

such z are basically just isometries of linking forms induced on those cokernels. The
asymmetric signature turns out to be well-defined on those isometries. Next, we will
prove even more general statements using localization: Let S�1ƒ be the localization
of ƒ away from the central and multiplicative subset S �ƒ. We repeat some concepts
from [12, Sections 3.1, 3.4]:

Definition 9.1

(i) A .ƒ;S/–module M is a module M such that there is an exact sequence

of modules 0! P
d
! Q! M ! 0 where P and Q are free and d is an

S –isomorphism.

(ii) A homomorphism f 2 Homƒ.P;Q/ is an S –isomorphism if its induced ho-
momorphism S�1f 2 HomS�1ƒ.S

�1P;S�1Q/ is an isomorphism.
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(iii) An �–symmetric linking form .M; �/ over .ƒ;S/ is a .ƒ;S/–module M to-
gether with a pairing �W M�M!S�1ƒ=ƒ such that �.x;�/W M!S�1ƒ=ƒ

is ƒ–linear for all x 2M and �.x;y/D ��.y;x/ for all x;y 2M .

(iv) A split �–quadratic linking form .M; �; �/ over .ƒ;S/ is an �–symmetric
linking form .M; �/ over .ƒ;S/ together with a map �W M !Q�.S

�1ƒ=ƒ/

such that for all x;y 2M and a 2ƒ

(a) �.ax/D a�.x/xa 2Q�.S
�1ƒ=ƒ/

(b) �.xCy/� �.x/� �.y/D �.x;y/ 2Q�.S
�1ƒ=ƒ/

(c) .1CT�/�.x/D �.x;x/ 2Q�.S�1ƒ=ƒ/

9.1 Flip-isomorphisms, asymmetric signatures and linking forms

Definition 9.2 A split S -�–preformation z D .F


 �G

�
�! F�; �/ is a regular split

�–preformation such that 
 and � are S –isomorphisms. Then a split .��/–quadratic
linking form L� D .coker�; ��; ��/ over .ƒ;S/ is given by:

��W coker�� coker� �! S�1ƒ=ƒ; .x;y/ 7�! 1
s

 �.x/.g/

��W coker� �!Q��.S
�1ƒ=ƒ/; y 7�! 1

s
�.g/.g/1

Ns

for x;y 2 F� , g 2 G , s 2 S such that sy D �.g/. Similarly, we can define the
split .��/–quadratic linking form L
 on coker 
 . We denote the associated .��/–
symmetric linking forms by L� D .coker�; ��/, etc.

Remark 9.3 A split S -�–preformation is a refinement of a split �–quadratic S –
formation [12, page 240]. The definitions of the linking forms are taken from the proof
of [12, Proposition 3.4.3] which establishes a bijection between weak isomorphism
classes of S –formations and linking forms up to isometry. Under this correspondence
z is mapped to L� and its flip to L
 .

Proposition 9.4 Let z D .F


 �G

�
�! F�; �/ be a split S -�–preformation.

(i) All flip-isomorphisms .˛; ˇ; �; �/ induce isometries Œ˛���W L�
Š
�!L
 .

(ii) Every isometry l W L�
Š
�!L
 is induced by a stable flip-isomorphism.

(iii) If Œz� 2 l2qC2.ƒ/ is elementary then L� ŠL
 .

Proof The first statement is clear. The last claim follows from Proposition 2.8 (iv)
and [12, Proposition 3.4.6(ii)]. It remains to prove the second statement. According
to Remark 9.3, we can apply [12, Proposition 3.4.3] to z and its flip z0 . The proof
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demonstrates that a stable isomorphism of split �–quadratic S –formations between z

and z0 exists. Using Remark 2.6 it is not difficult to find a stable flip-isomorphism of
z .

Theorem 9.5 Let z D .F


 � G

�
�! F�/ be an S -�–preformation. Two flip-

isomorphisms t D .˛; ˇ; �/ and t 0 D .˛0; ˇ0; �0/ of z which induce the same isometry

L�
Š
�!L
 have the same asymmetric signature. Hence, we can define the asymmetric

signature ��.z; l/ of an isometry l W L�
Š
�!L
 to be ��.z; s/ for any flip-isomorphism

s that induces l .

Proof In Section 6.2, ��.z; t/ is defined as the asymmetric signature of the sym-
metrization of the .2q C 2/–dimensional quadratic Poincaré pair xt which will be
denoted by xt D .gt W @Et ! E; .0; �t //. Its boundary is a twisted double of the
symmetrization of the quadratic Poincaré pair c (denoted by .f W C !D; .0; �//) in
respect to the automorphism .ht ; 0/ of .C; �/ where � D .1CT / . We will show
that t and t 0 lead to homotopic .ht ; 0/' .ht 0 ; 0/. Then the asymmetric signatures of
xt and xt 0

are the same by Lemma 7.11. By Proposition 4.1, t and t 0 induce two
isomorphisms

.e; �/D F.t/; .e0; �0/D F.t 0/W .N; �/D F.z/ Š
�! .N 0; �0/D F.z0/

where z0 is the flip of z . The fact that t and t 0 induce the same isometries translates

into e� D e0�W H �.N 0/
Š
! H �.N /. Since N and N 0 are 1–dimensional, e and e0

are chain homotopic. Let �W e ' e0 be a chain homotopy. Due to the proof of [11,
Proposition 3.4], .e; �/ and .e0; �0/ induce isomorphisms

.@e; 0/; .@e0; 0/W .C; �/D .@N; .1CT /@�/
Š
�! .C 0; �0/D .@N 0; .1CT /@�0/:

Using the fact that N and N 0 are 1–dimensional and S –acyclic, one can show that
there is a chain equivalence .@�; 0/W .@e; 0/' .@e0; 0/W .C; �/! .C 0; �0/:

@�qC1 D
�
0 �ˇ0��˛��

�
W Cq D F ˚F�

�! C 0
qC1 DG�

@�q D
�
�
0

�
W Cq�1 DG�

�! C 0
q D F�

˚F

As explained in the proof of Theorem 5.3, we compose @e with the inverse of

.h; 0/W .C; �/
Š
�! .C 0; �0/ from (3) in order to obtain the automorphism .ht ; 0/W .C; �/

Š
�! .C; �/. Using Lemma 7.2, one finds a homotopy

.h�1@�; 0/W .ht ; 0/' .ht 0 ; 0/W .C; �/ Š
�! .C; �/
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which can be fed into Lemma 7.11. Hence, ��.z; t 0/D ��.xt 0

/D ��.x00/ 2WAsy.ƒ/

with x00 D .g00W @Et !E; .0; �t // given by

g00
D
�
1 ˇ0 0�ˇ0��˛��

�
W @Et;qC1 DG˚G˚F ˚F�

�!EqC1 DG:

Finally, there is a homotopy equivalence .1; 1I l/W x00 '
�! xt given by

l D
�
0 �ˇ0��˛�� 0

�
W @Et;q D F�

˚F�
˚G�

�!EqC1 DG:

Clearly ��.x00/D ��.xt / by Proposition 3.9 and 6.9.

9.2 Asymmetric signatures of certain surgery problems

Let ƒ D Z and S D Z n f0g. Let z D .F


 � G

�
�! F�/ be an �–preformation

such that coker 
 and coker� are finite. The regular �–preformation z0 D .F
Œ
 �
 �

G= ker 

Œ��
�! F�; � 0/ can be used to extend Theorem 9.5 to z .

Definition 9.6 [14, Example 12.44] Let M ! B be a .2q C 1/–dimensional
B–manifold. The B-linking form .THqC1.B;M /; lB

M
/ on the torsion subgroup of

HqC1.B;M / is the linking form induced by the topological linking form

lM W THq.M /�THq.M; @M / �!Q=Z; .Œx�; Œy�/ 7�!
1

s
hz;yi

with z 2 C q.M; @M / and s 2 Z n f0g such that sx D d.z\ ŒM �/ 2 Cq.M /.

Theorem 9.7 Let .W;M0;M1/ be a modified surgery problem such that �1.B/D 0,
dim W D 2q � 6 and HqC1.B;Mj / are finite. Let z be its surgery obstruction.

(i) L
 D�lB
M0

and L� D�lB
M1

.

(ii) If W is cobordant rel@ to an s–cobordism, then isometries l W lB
M1

Š
�! lB

M0
exist

and all asymmetric signatures vanish.

(iii) Assume q is odd and lB
M0

is non-singular. Then W is cobordant rel@ to an
s–cobordism if and only if there is an isometry l W lB

M1

Š
�! lB

M0
such that its

asymmetric signature vanish.

Proof The complex zCqC2DHqC2.B;W /


�! zCqC1DHqC1.W;M0/ has homology

Hi. zC / D Hi.B;M0/ (i D q C 1; q C 2). There is a chain equivalence mW zC '
�!

C.B;M0/ and there is a chain map C.B;M0/ ! C��1.M0/ which induces the
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connecting homomorphism @�W H�.B;M0/!H��1.M0/. Both maps together yield
a chain map:

CqC1.M0/
d // Cq.M0/

zCqC2

p

OO



// zCqC1

p

OO

which induces the connecting map pW HqC1.B;M0/!Hq.M0/. Let a; b 2 coker 
 D
HqC1.B;M0/DHqC1. zC /. Represent both homology classes by chains xa; xb 2 zCqC1 .
Then there is a g2 zCqC2 and an s2Znf0g such that sxaD
 .g/. Let z2C q.M0; @M0/

such that p.g/D z\ ŒM0�. Then sp.xa/D d.z\ ŒM0�/. Hence lB
M0
.a; b/D 1

s
hz;p.xb/i.

Let b0 2H qC1.W;M0
0/ such that b0\ŒW �D xb . Then lB

M0
.a; b/D 1

s
hp�z; b0\ŒW �iD

�� 1
s
hb0;p�.z/\ŒW �i. Since p is a connecting homomorphism p�.z/\ŒW �D��i.z\

ŒM0�/ D ��ip.g/ D ���.g/. Hence lB
M0
.a; b/ D 1

s
hb0; �.g/i D �� 1

s
��.b/.g/ D

�L
 .a; b/.

The last statement follows from Proposition 7.12.
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