1968 Summer Topology Conference University of Illinois at Chicago Circle

The Arf Invariant of a Manifold

By

Edgar H. Brown Jr.

In [1], [2] and [3] the Arf invariant of a manifold is defined for various classes of manifolds. The aim of this lecture is to discribe a general technique for defining an Arf invariant which includes the above as special cases.

In the above papers the technique is roughly as follows: Let M be a smooth, compact, closed 2n-manifold. Although we will assume all manifolds are smooth, the techniques apply equally well to PL-manifolds. One assumes that the normal bundle v of M embedded in \mathbb{R}^{2n+k} , k large, has a special structure and one considers certain special values for n. In [1] one assume v is framed and n is odd but n $\ddagger 1,3,7$. In [2] one assumes v has a Spin structure and n $\equiv 1 \mod (4)$. Let $\mathbb{H}^{n}(\mathbb{M}) = \mathbb{H}^{n}(\mathbb{M};\mathbb{Z}_{2})$. Using these special assumptions and various cohomology operations one obtains a function

$$\varphi: \operatorname{H}^{n}(\operatorname{M}) \longrightarrow \operatorname{Z}_{2}$$

which has the following property:

(1) $\varphi(u + v) = \varphi(u) + \varphi(v) + u v v(M)$

 φ is thus a non-singular quadradic function over Z_2 . Such functions are algebraically classified by their Arf invariant $A(\varphi) \in Z_2$ which is defined as follows: Let λ_i , μ_i , $i = 1, 2, \dots, \ell$ be a basis for $H^n(M)$ such that

$$\lambda_{i}\lambda_{j} = \mu_{i}\mu_{j} = 0$$
, $\lambda_{i}\mu_{j} = 0$, $i \neq j$ and $\lambda_{i}\mu_{j} = 1$. Then

$$A(\phi) = \Sigma \phi(\lambda_{i}) \phi(\mu_{i})$$

The Arf invariant of M, K(M), is then defined to be $A(\varphi)$. One then goes on to show that K(M) is a cobordism invariant within the class of manifolds under consideration. The techniques in [3] are similar to this but technically more difficult to discribe. (see below)

We will follow a similar line of development, namely, we obtain quadradic functions on $H^{n}(M)$ from special structures on v and obtain an invariant on M from an algebraic invariant of this function.

We first note the following easily proved lemma. All spaces will be assumed to have base points. [,] and {,} will denote homotopy classes of maps and homotopy classes of S-maps, respectively. Let $K_n = K(Z_2, n)$. Let $\lambda : M^+ \longrightarrow S^{2n}$ be a map which is degree one on M. Let

$$\eta$$
 : $H^{n}(M) = [M^{+}, K_{n}] \longrightarrow \{M^{+}, K_{n}\}$

be the obvious map. Recall $\{\textbf{S}^{2n},\textbf{K}_n\}\approx \textbf{Z}_2$. Let α be the generator.

Lemma 2. The function

 Θ : $H^{n}(M) \times Z_{2} \longrightarrow \{M^{+}, K_{n}\}$

defined by $\theta(u,t) = \eta(u) + t \lambda^{\mathbf{x}} \alpha$ is an isomorphism if one defines addition on the product by

$$(u,t) + (v,s) = (u + v, u v v(M) + t + s)$$

Note that this lemma shows that functions φ : $H^{n}(M) \longrightarrow Z_{2}$ satisfying (1) are in 1-1 correspondence with homomorphisms $\overline{\varphi}$: $\{M^{+},K_{n}\} \longrightarrow Z_{2}$ such that $\overline{\phi}(\lambda^*\alpha) = 1$. The correspondence is $\overline{\phi} \longrightarrow \phi$ where $\phi(u) = \overline{\phi} \Theta(u, \phi)$. Note also that if there is a $u \in H^n(M)$ such that $u^2 \neq 0$, no such $\overline{\phi}$ will exist since $\lambda^*\alpha = \Theta(0,1) = 2 \Theta(u,0)$. But there will always be a homomorphism $\overline{\phi}: \{M^+, K_n\} \longrightarrow Z_4$ such that $\overline{\phi}(\lambda^*\alpha) = 2$. For this reason we generalize the motion of a mod 2 quadradic function as follows:

Let i: $Z_2 \longrightarrow Z_4$ be the homomorphism sending 1 to 2. Let V be a finite dimensional vector space over Z_2 .

Definition 3. A function $\varphi: V \longrightarrow Z_{4}$ is quadradic (non-singular) if there is a non-singular pairing $\mu: V \otimes V \longrightarrow Z_{2}$ such that

(1) $\phi(u + v) = \phi(u) + \phi(v) + i\mu(u \otimes v)$

Note that if $\mu(u \otimes u) = 0$ for all $u \in V$, $\phi = i \phi'$ where $\phi' : V \longrightarrow Z_2 \quad \text{satisfies}$

$$\varphi(u + v) = \varphi(u) + \varphi(v) + \mu(u \otimes v) .$$

<u>Lemma 5</u>. Quadradic functions $\varphi : H^n(M) \longrightarrow Z_{l_1}$ are in 1-1 correspondence with homomorphisms $\overline{\varphi} : \{M^+, K_n\} \longrightarrow Z_{l_1}$ such that $\overline{\varphi}(\lambda^* \alpha) = 1$.

To obtain algebraic invariants of these quadradic functions we compute their associated Grothendeck ring. Let $\varphi_1 : V_1 \longrightarrow Z_4$, i = 1, 2, be quadradic functions. φ_1 and φ_2 are <u>isomorphism</u> if there is a linear isomorphism $n : V_1 \longrightarrow V_2$ such that $\varphi_2 = \varphi_1 n$. The sum $\varphi_1 + \varphi_2 : V_1 \otimes V_2 \longrightarrow Z_4$ is defined by $(\varphi_1 + \varphi_2)(u) - \varphi_1(u) + \varphi_2(u)$. $V_1 \times V_2 \longrightarrow Z_4$ given by $(u,v) \longrightarrow \phi_1(u) \phi_2(v)$, defines, via (4) a quadradic function $\phi_1 \phi_2 : V_1 \otimes V_2 \longrightarrow Z_4$. Let Q_2 be the Grothendeck ring consisting of the free abelian group generated by the isomorphism classes of quadradic functions modulo the usual relations.

Let γ^+ , γ^- : $Z_2 \longrightarrow Z_4$ be given by $\gamma^+(1) = \pm 1$. <u>Theorem 6</u>. $Q_2 = Z [t]/(4t, t^2-2t)$

where
$$l = \{\gamma^+\}$$
 and $t = \{\gamma^+\} - \{\gamma^-\}$.

We are interested in applying our results to cobordism theory so we need a notion of cobordism for quadradic functions. For a M with a certain structure, we will obtain a φ : $\operatorname{H}^{n}(M) \longrightarrow \operatorname{Z}_{l_{4}}$. If $M = \partial N$, we will see that $\varphi_{j}^{*} = 0$, where j^{*} : $\operatorname{H}^{n}(N) \longrightarrow \operatorname{H}^{n}(M)$. Recall,

$$H^{n}(\mathbb{N}) \xrightarrow{j^{*}} H^{n}(\mathbb{M}) \xrightarrow{\delta} H^{n+1}(\mathbb{N},\mathbb{M})$$

is exact and $\delta(j \star u \circ v) = u \circ \delta v$.

<u>Definition 7</u>. A quadradic function $\varphi : V \longrightarrow Z_4$ is <u>cobordant to zero</u> if there is an exact sequence of vector spaces over Z_2 ,

$$v_1 \xrightarrow{a} v \xrightarrow{b} v_2$$

such that $\varphi a = 0$ and a non-singular pairing $\mu' : V_1 \otimes V_2 \longrightarrow Z_2$ such that $\mu'(u \otimes bv) = \mu(au \otimes v)$ where μ is the pairing associated to φ .

Lemma 8. The elements of Q_2 represented by functions cobordant to zero form an ideal generated by t-2.

Since 4t = 0, $Q_2/(t-2)$ is cyclic of order 8. For a quadradic function φ , let $A(\varphi) \in \mathbb{Z}_8$ be defined by

$$A(\varphi) 1 = \{\varphi\} \epsilon Q_2/(t-2)$$

We summarize the various properties of A in the following theorem: <u>Theorem 9</u>. (i) $A(\phi_1 + \phi_2) = A(\phi_1) + A(\phi_2)$. (ii) $A(\phi_1\phi_2) = A(\phi_1) A(\phi_2)$. (iii) If ϕ is cobordant to zero, $A(\phi) = 0$. (iv) $A(\phi) = \dim V \mod 2$ where $\phi : V \longrightarrow Z_4$. (v) If $\phi = i\phi'$, where $\phi' : V \longrightarrow Z_2$, $A(\phi) = 4$ Arf invariant of ϕ' .

(vi) If U is a finitely generated free module over Z and ψ : U — > Z is a quadradic function with determinant ± 1, then ψ induces a quadradic function

$$\varphi : U/_{2U} \longrightarrow Z_4$$

and $A(\phi) = \text{signature of }\psi$, mod (8). (Any element of $Q_2/(t-2)$ may be represented by the reduction of an integer form but it is not true that any $\phi: V \longrightarrow Z_4$ is the reduction of an integer form. For example

N7 - 3

 φ : $Z_2 + Z_2 \longrightarrow Z_4$, by $\varphi(0,1) = \varphi(1,0) = 2$ and $\varphi(0,0) = \varphi(1,1) = 0$, has rank 2 and $A(\varphi) = 4$.)

We next describe how quadradic functions may be obtained in cobordism theory. Suppose $\zeta = \{\zeta_k\}$, k = 1, 2, ... is a sequence of real k-plane bundles and $h_k: \zeta_k + 0^1 \longrightarrow \zeta_{k+1}$ are bundle maps, where 0^1 is the trival line bundle. For example ζ_k might be the universal bundle for 0_k , U_k Spin_k, etc. Let $T(\zeta_k)$ denote the Thom space of ζ_k and U_k its Thom class. If M is an m-manifold, a ζ structure on M is a map $h: v \longrightarrow \zeta_k$ where v is the normal bundle of M embedded in \mathbb{R}^{m+k} . In the usual way, one forms cobordism groups Ω_m (ζ) consisting of cobordism classes of pairs (M,h) and one has $\Omega_m(\zeta) \approx \pi_{m+k}$ ($T(\zeta_k)$).

Suppose M is a closed 2n-manifold and $h: v \longrightarrow \zeta_k$ is a ζ structure. Recall T(v) is the 2n+k, S-dual of M^+ . Consider

$$\{M^+, K_n\} \stackrel{d}{\approx} \{S^{2n+k}, T(v) \land K_n\} \xrightarrow{T(h)_{\star}} \{S^{2n+k}, T(\zeta_k) \land K_n\}$$

where d is the S-duality isomorphism. Let w be image of α under the map

$$\{S^{2n}, K_n\} = \{S^{2n+k}, S^k \land K_n\} \longrightarrow \{S^{2n+k} T(\zeta_k) \land K_n\}$$

induced by the inclusion of S^k into $T(\zeta_k)$ as a "fibre".

Lemma 10. (i)
$$w = T(h)_{\star} d \lambda^{\star} \alpha$$
 (Recall $\lambda : M^{+} \longrightarrow K_{n}$ is the map of degree 1.)

(ii) w # 0, if and only if
$$\chi(Sq^{II+L}) U_k = 0$$
, where χ is

the canonical anti-automorphism of the Steenrod algebra. Furthermore, w is divisable at most by 2.

Suppose $\chi(Sq^{n+1}) U_k = 0$. Then we may choose a homomorphism

$$\gamma$$
 : { S^{2n+k} , $T(\zeta_k) \land K_n$ } $\longrightarrow Z_{l_4}$

such that $\gamma(w) = 2$. By lemma 5,

 $\phi_h : H^n(M) \longrightarrow Z_{l_4}$

defined by $\varphi_h(u) = \gamma T(h)_* d\Theta(u,0)$ is a quadradic function. Let $A_{\gamma}(M,h) = A(\varphi_h).$

Theorem 11. A defines a homomorphism γ

$$A_{\gamma} : \Omega_{2n}(\zeta) \longrightarrow Z_8$$

 $A({M,h}) = Euler characteristic of M mod 2. If$

g : Ω_{2n} (Framed) $\longrightarrow \Omega_{2n}(\zeta)$ is the obvious map, Ag = 4K where K is the Kervaire invariant.

(1) If ζ_k is the trival bundle over a point, $\Omega_{2n}(\zeta) = \Omega_{2n}$ (Framed), $\{s^{2n+k}, T(\zeta_k) \land K_n\} = \{s^{2n}, K_n\} = Z_2 \land is unique and$

$$A_{\gamma} = 4K$$

(2) If ζ_k is the universal Spin_k bundle and $n \equiv 1 \mod 4$,

$$\chi(Sq^{n+1})^{\bigcup_{k}} = \chi(Sq^{2}Sq^{n-1} + Sq^{1}Sq^{2}Sq^{n-2})U_{k}$$

$$= (\chi(Sq^{n-1}) Sq^{2} + \chi(Sq^{n-2}) Sq^{2}Sq^{1})U_{k}$$

$$= 0$$

since $Sq^2U_k = w_2U_k$ and $Sq^1U_k = w_1U_k \cdot A_\gamma$ is then 4 times the invariant constructed in [2]. In [2], the construction depended on the choice of a secondary cohomology operation. This choice corresponds to the choice of γ .

(3) Let
$$\zeta'_k$$
 be the universal O_k bundle over BO_k and let U'_k

be its Thom class. $\chi(Sq^{n+1})U_k = v_{n+1}U_k$ where v_{n+1} is the W^u class corresponding to Sq^{n+1} . (If M is a closed m-manifold,

$$\operatorname{Sq}^{n+1}$$
 : $\operatorname{H}^{m-n-1}(M) \longrightarrow \operatorname{H}^{m}(M)$

is given by $\operatorname{Sq}^{n+1} \chi = v_{n+1} \chi$. If m = 2n, v_{n+1} is zero on M.)

Let $p: B_{k,n} \longrightarrow BO_{k}$ be the fibration with fibre K_{n} and k-invariant v_{n+1} . Let $\zeta_{k} = p^{*}\zeta_{k}' \cdot \Omega_{2n}(\zeta_{k})$ is the cobordism theory considered by Browder in [3] and A_{γ} , in this case, is 4 times Browders invariant, when the latter is defined.

Another way of constructing this cobordism theory is as follows: Let M be a closed 2n-manifold and let $\varphi : H^{n}(M) \longrightarrow Z_{4}$ be a quadradic function. Define (M, φ) to be cobordant to zero if $M = \partial N$ and $\varphi j^{*} = 0$ where $j^{*} : H^{n}(N) \longrightarrow H^{n}(M)$. Let $\widetilde{\Omega}_{2n}$ be the resulting cobordism group. Then the map $\Omega_{2n}(\zeta) \longrightarrow \widetilde{\Omega}_{2n}$ given by $\{M,h\} \longrightarrow \{M,q_{h}\}$ is an isomorphism.

(4) The following was suggested to me by Dennis Sullivan: Let ζ_1 be the universal real line bundle and let $\zeta_k = \zeta^1 + 0^{k-1}$. $\Omega_2(\zeta)$ is then the cobordism group of surfaces immersed in \mathbb{R}^3 . $\{S^{2+k}, T(\zeta_k) \wedge K_1\} \approx \mathbb{Z}_4$. One choose γ so that A of Boy's surface is 1. One then obtains Tony Phillips' result that $\Omega_2(\zeta) \approx \mathbb{Z}_8$.

<u>Theorem 12.</u> $A_{\gamma}: \Omega_2(\zeta) \approx Z_8$. One may describe $\varphi: H^1(S) \longrightarrow Z_4$ for a surface S immersed in R^3 as follows: Let $u \in H'(S)$ and let $S^1 \subset S$ represent the dual of u. Let T be a tubular neighborhood of S^1 in S. Then T is a twisted strip in R^3 . Then $\varphi(u) =$ number of twists of T in R^3 modulo 4. (The Moelius band has one twist. The number of twists only

17

makes sense mod (4).) A(ϕ) is the obstruction to making H₁(S) zero, by surgery, in R⁴.

Bibliography

- 1. M. Kervaire, A Manifold which does not admit any differentiable structure, Comm. Math. Helv. 34 (1960).
- 2. E. H. Brown, Note on an Invariant of Kervaire, Michigan Math. J. 12 (1965).
- 3. W. Browder, The Kervaire Invariant of Framed Manifolds and its Generalizations, Annals of Math to appear.