1968 Summer Topology Conference

University of Illinois at Chicago Circle

The Arf Invariant of a Manifold

By

Edgar H. Brown Jr.

In [1], [2] and [3] the Arf invariant of a manifold is defined for
various classes of manifolds. The aim of this lecture is to discribe a
general technique for defining an Arf invariant which includes the above

as special cases.

In the above papers the technique is roughly as follows: TLet M be
a smooth, compact, closed 2n-manifold. Although we will assume all manifoldr
are smooth, the techniques apply equally well to PL-manifolds. One assumes
. 2n+k .
that the normal bundle vy of M embedded in R » k large, has a special

structure and one considers certain special values for n . In [1] one assume

v 1s framed and n 1is odd but n % 1,3,7. 1In [2] one assumes v has a

Spin structure and n =1 mod (4). Let H(M) = Hn(M;ZE)

Using these special

assumptions and various cohomology operations one obtains a function
@: 0 (M) —> Z,,

which has the following property:

(1) plu+v) = o)+ ov)+ uuv(M)

¢ 1s thus a non-singular quadradic function over ZE' Such functions are

algebraically classified by their Arf invariant Aly) ¢ 22 which is definec as

follows: Let Af s By 5 1 =1,2,...,4 be a basis for H'(M) such that
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MA, = pp, =0, Ap.=0, 1% J and Xiui =1 . Then

Ale) = T o(2;) ofu;)

The Arf invariant of M,K(M), is then defined to be A(g). One then goes
on to show that K(M) is a cobordism invariant within the class of manifolds
under consideration. The techniques in [3] are similar to this but technically

more difficult to discribe. (see below)

We will follow a similar line of development, namely, we obtain quadradic
functions on Hn(M) from special structures on v and obtain an invariant on

M from an algebraic invariant of this function.

We first note the following easily proved lemma. All spaces will be
assumed to have base points. [,] and {,} will denote homotopy classes of maps

and homotopy classes of S-maps, respectively. Let Kn = K(Ze,n). Let

+ 2
A: M —> 85" bea map which is degree one on M.

Let

n + +
Mm: H (M) = [M :Kn] —_ {M :Kn-;

be the obvious map. Recall {Sen,Kn} &122 . Let «a be the generator.

Lemma 2. The function

n +
6: H (M) x2Z, —> M K}
defined by 6(u,t) = mn(u) + t ¥ o is an isomorphism if one defines addition
on the product by
(w,t) + (v,8) = (u+v, uuv(M) + t+s) .

Note that this lemma shows that functions ¢ : Hn(M) —> Z2 satisfying

(1) are in 1-1 correspondence with homomorphisms @ : {M+,Kn}‘———> Z, such that
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— % - -

o (A a) =1 The correspondence is @ —> @ where o(u) = o 6(u,0)

Note also that 11 there is a u e H (M) such that u” % 0, no such =
*

will exist since A a = €(0,1) = 2 €(u,0). But there will always be a

- — ¥
homomorphism @ such that Aa) = 2.
e P ®

+ .
M ,Kn] —> 7, For thic reason

we generalize the motion of a mod

2 quadradic function as follows:

Let 1i: Z2 be the homomorphism sending 1 to 2. Let L

—> 4 v
+

a. linite dimensional vector space Z

over o

Definition 3. A function ¢: V—>7) 1is quadradic (non-singular)

if there is a non-singular pairing p:V & V —> Z,, such that
() elutv) = o(u) +oe(v) +ip(u@v)
Note that if p(u®u) = 0 for all ue V, o = ip' where
o' vV —> 22 satisfies
o(u +v) = o) + ov) + plu&v) .
Lemma 9. Quadradic functions ¢ : Hn(M) —> 2, are in 1-1 correspondenco

+ —, ¥
with homomorphisms <« : {M ,Kn} ——> 7, such that p(da) =1

To obtain algebraic invariants of these quadradic functions we compute

their assoclated Grothendeck ring. Let ®; Vi _— ZM , 1 =1,2, be
quadradic functions. Py and ¢, are isomorphism i1 there is a linecar
isomorphism n : Vl —_ Vg such that Py = P0 - The sum

ot 2 V) @V, > 2 is defined by (ml + ,) (u) @l(u) + o (n)
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V, x Vo, —> 2, given by (u,v) —> ml(u) qb(v), defines, via (h) a
quadradic function qaqb : Vl ® V2 —> Zu . Let Q2 be the Grothendeck
ring consisting of the free abelian group generated by the isomorphism
classes of quadradic functions modulo the usual relations.
+ - +
Let vy, v : 2, —>172 be given by v{1) = £ 1.

2

Theorem 6.

= 7 [t]
“ /(ht,tg-Et)

where 1 = {v+} and t = [t} - {y=1 .

We are interested in applying our results to cobordism theory so we

need a notion of cobordism for quadradic functions. For a M with a certain

structure, we will obtain a ¢ : H (M) —> Z, If M= 3N, we will see that

R

*
@) = 0, where j* : H'(N) —> Hn(M). Recall,

i% +
1 () L 1 ) S 1 ()

is exact and &(j*¥uovv) = uvdv.

Definition 7. A quadradic function o : V — Zu is cobordant to zero

if there 1s an exact sequence of vector spaces over Zg,

a b
Vl —_V —> Vg

such that @a = O and a non-singular pairing u' : Vl @‘VE —_—> Z2 such

that p'(u ® bv) = plau € v) where p 1is the pairing associated to ¢ .
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Lemma 8. The elements of Q2 represented by functions cobordant to
zero form an ideal generated by t-2 .
Since Ut = o, QE/(t-E) is cyclic of order 8. For a quadradic function

®, :Lét Alp) € Zg be defined by
A((P) 1= {QP} € Qg/(t_g)

We summarize the various properties of A in the following theorem:
Theore . i A +- = A + A .
9. (1) Ale+w) = Ale) + Ay)
ii A = A A .
(11) Ale9,) = Ale) Al,)

(iii) If ¢ is cobordant to zeroy A(y) = O.

(iv) A(p) = dim V mod 2 where ¢ : V —> Z),.

(v) If o =1i@', where o' : V—> Zpy s
A(p) = 4 Arf invariant of o'.

(vi) If U is a finitely generated free module over Z and
y: U—>7 1s a quadradic function with determinant I 1, then ¢ induces

a quadradic function
P U/EU —> 2,

and A(yp) = signature of §, mod (8). (Any element of QE/(t—E) may be
represented by the reduction of an integer form but it is not true that any

Pp:V—> ZM is the reduction of an integer form. For example



14

(U 22 + Zg —> ZLL’ by 9(0,1) = ¢(1,0) = 2 and ©(0,0) = o(1,1) = 0,

has rank 2 and A(g) = L4.)
We next describe how quadradic functions may be obtained in cobordism
theory. Suppose ( = {gk} » k=1,2,... 1is a sequence of real k-plane

bundles and hk: Qk + Ol _ Ck+l are bundle maps, where Ol is the trival

U

line bundle. For example gk might be the universal bundle for Ok’ e

Spink, etec. Let T(Qk) ‘denote the Thom space of gk and Uk its Thom class.

If M is an m-manifold, a { structure on M is a map h : yp —> gk where

+
v is the normal bundle of M embedded in R k. In the usual way, one forms

cobordism groups @ (C) consisting of cobordism classes of pairs (M,h) and

one has Qm(g) ~ T (T(gk))-

Suppose M 1s a closed 2n-manifold and h : y —> Qk is a (

structure. Recall T(y) is the 2n+k, S-dual of M .
Consider

d

MK~ (s y L)

2n+k
B >

{S2n+k

T(v) ~ K J2(C) A K]

where d is the S-duality isomorphism.

Let w be image of o wunder the map

2n 2ntk _k 2n+k
87,0 = 5770,87 Ak 1 —> {77 n(g) Ak D

induced by the inclusion of S5 into () as a "fibre".
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Lemma 10. (i) w = T(h)y @ ¥ & (Recall X : M —> K, is the
map of degree 1.)

n+l )

(ii) w+ 0, if and only if x(Sq U = 0, where ¥ is

k

the canonical anti-automorphism of the Steenrod algebra. Furthermore, w is
divisable at most by 2.

n+l

Suppose x(Sq~ ) U, = 0. Then we may choose a homomorphism

en+k

Y - {S :T(Ck) A Kn) —_— Zu

such that «~(w) = 2. By lemma 5,

P, HH (M) —> Z),

defined by u) = T(h de(u, 0 is a quadradic function. Let
% Y *

A (1) = A(q,)-

Theorem 11. AY defines a homomorphism

AY : an(g) —> Zg

A({M,n}) = Euler characteristic of M mod 2. If

gt Ny (Framed) ——> an(g) is the obvious map, Ag = 4K where K is the

Kervaire invariant.
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Examples

(1) 1f gk is the trival bundle over a point, an(g) = 05, (Framed),

{S2n+k

,T(6) ~K 1 ={s",K} =2, v is unique and
k n 2

A =LK

(2) 1If Qk is the universal Spin, bundle and n =1 mod k4,

U
k
n+l.\V 2, n-1 1,2, n-2
x(8a7 )" = x(5a78q T + 8q7Sq"Sq U,
n-1 2 n-2 2.1
=(x(8a777) 897 + x(8¢°7) 8q"sa7)y,
=0
since SqEU = w,U_ and Squ = w U A is then 4 times the invariant
k 27k k 1k v

constructed in [2]. 1In [2], the construction depended on the choice of a
secondary cohomology operation. This choice corresponds to the choice of v .
\
(3) Let gk be the universal 0, bundle over BO, and let uy

+
o l)U where v is the W~ class

be its Thom class. x(Sq e = Vo Y Nl

+
corresponding to Sqn l. (If M is a closed m-manifold,

s H ) — ()

. . n+l
1s given by Sqg X=Vo+1 X« If m=2n, Va+1 1s zero on M. )
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Let p : Bk,n — BOk be the fibratlpn with Tibre Kn and k-invariant

:*' . - .
Vn+l' Let Ck P gk . an(gk) is the cobordism theory considered by

Browder in [3] and A, 1in this case, is 4 times Browders invariant, when
,Y/

the latter is defined.

Another way of constructing this cobordism theory is as follows:

Let M be a closed 2n-manifold and let ¢ : Hn(M) — ZM be a quadradic

function. Define (M,9) to be cobordant to zero if M = 3N and ¢i* = 0

- where J¥ : HY(N) —> HHM). et 52n be the resulting cobordism group.

Then the map an(g) —> 0, eiven by {M,h} —> {M,qh} is an isomorphism.

(4) The following was suggested to me by Dennis Sullivan:

k-1

Let Ql be the universal real line bundle and let Ck = Ql + 0 QQ(Q)

1s then the cobordism group of surfaces immersed in R3.

+
{82 k,T(gk) ~ Kl} Q:Z“- One choose vy so that A of Boy's surface is 1.

One then obtains Tony Phillips' result that Qg(g) ~ Zg.

Theorem 12. Ay : QQ(Q) ~ Zg- One may describe o : Hl(S ) —> Z),

3

for a surface § immersed in R~ as follows: Let u e H'(S) and let

1
Sl « S represent the dual of wu. Let T be a tubular neighborhood of S in 8.

3

Then T 1is a twisted strip in R”. Then ¢o(u) = number of twists of T

in R3 modulo 4. (The Moelius band has one twist. The number of twists only
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makes sense mod (4).) A(p) is the obstruction to making Hl(S) zero,

)
by surgery, in R+.
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