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On some applications of the cobar construction
by

Byron Drachman

The purpose of this note is to discuss several applications
of the cobar construction, First we define a diagonal map in the
cobar construction, so that H(nX)=HF(C,(X)) as Hopf algebras,
strengthening the original result of Adams, The homotopies
involved may bte used to define operations (non-stable) to study if
a space 1s a second suspension or not. Once one has a diagonal map
in the cobar construction, one may take the cobar construction of
the cobar construction. At this point, one has the chains of the
double loop space. But the second iterate fails to be (co)
associative. However, one can introduce (co) associating homotopies
in the same spirit that Stasheff has solved the problem for the
dual situation. Namely, if X 1is an H-space that is not
associative but has an Ao form, one can go ahead and form its
classifying space, Thus with the same type of analysis, one can
iterate the cobar construction n-times,

Fuller detalls of the iteration of the cobar construction will
appear in a joint paper with R,J. Milgram, to whom I am indebted
for valuable conversations in this research.

Before defining the diagonal map in the cobar construction, I
wish to give motivation by discussing the dual situation, the bar

construction,

1. The bar construction and strongly homotopy multiplicative maps.
Let X Dbe an associative H-space with unit e . The Dold-

Lashof classifying space BQ§X) is a filtered space



(€)=B (X)c By (X) € By(X)C voaz B(X)E vuvz B_(X)

where points in Bn(X) can be written as

[x51t11.e01t ] where (xo,xl,...,xn_l)exn and  (t15e00,t I

r
i

with identifications

e if £.=0
[xg 1ty looelty Xy 1 o%q 1t ene]ty] if
- -1 Ti17i+] n
[xo‘t]_‘...ltnj - <
ty=1 (1<n)

[Xg|tq]eeelty ] if t.=1
\
Now let K be a commutative ring with unit and let A be a
connected DGA algebra over K, Let e:A —>K be the augmentation,
Let Z=Ker €. Let sA be the graded module formed by A by raising

degrees by 1. Then En(A) is defined to be (sK)n, the tensor
product of sA with itself n-times.,

The (normalized) bar construction B(A) is the graded K-mocule
with component En(A) in degree n, (ﬁ(A))o is K. Elements of

§n(A) are written as linear combinations of elements

[ay]eeelay) = [a)]®...® [a]
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Elements of §O(A) . are written as scalar multiples of [ ] = the

unit element of B(A). B(A) has a differential d=d_+d. where

EI
n-1 ' ~
de(laf...lay]) = EJ (-1)u(1)[31|...|aiai+l|...|an]
i=1
n

a([ag|.ela,])

(-l)u(i-l)[al|oco|dai| ooo‘a ]

i=1

n

i
where u(i) = i+ Eﬂ deg agcs B(A) is a DGA coalgebra with coproduct
K=1

AtB(A) —> B(A)®B(A) defined by

n

A[a1|...|an] = 2 [al|...|ai]®[ai+1|-u|an]'
i=o

If one assumes that X is a countable CW H-space with
cellular multiplication, with cubical cells {el,e2,...,en,...},
and if one takes Ce(X) to be the cubical Cw-chaih complex of X,
and one gives Bn(X) a CW structure in a natural way with cells

[ell...len]; then checking the CW boundary gives immediately that
Ca(BL(X)) xﬁn(c,(x)), and hence
H(B (X)) ~»H(B(C,(X)) |

Now we consider the problem of defining a multiplication in the

classifying space, Moré'generally; if X and Y are two associative
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H-spaces and if f:X —> Y 1is multiplicative, then one has induced

in a natural way

B (X) = B (¥).

However, requiring that f be multiplicative is too strong a
condition, Sugawara [-&F] has defined a weaker condition of f so
that there be an induced map of classifylng spaces. Namely, that

f Dbe strongly homotopy multiplicative., That is, that for each

positive integer i there exists
M2 (Xx (IxX)®) = ¥ so that
Mo=f and

(

if tJ=O
Mi(xo’tl’xi""’tn’xn) = ﬁ

Mj_l(xo,.o . ’tj—l,x;j-l).Mi"J(xj ,tj+1’ s o

\ yEpaXy) 1f 4=l

M; egives f homotopy multiplicative,

As one application, if F—>E—X is a principal quasifi-
bering and X 1s a countable CW H-space, using a modified version
of Sugawara's almost covering homotopy extension property [ 6 ], one

(o)
may construct a strongly homotopy multiplicative map {Mi} from
i=o
X —> F which induces

Mi-l(xo’tl’ (XX ’tj-l’xj-lxj’tj+l’ oo e ’tn’xn)
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B 00 —> B _(F)

But X~BOO(QX) hence one has X —> BF' One may prove a ‘generaliza-
tion of the Steenrod classification theorem. Let X be a countable
CW space and F an associative CW-H-space. There 1s a one to one
correspondence between homotopy classes of maps from X to BOO(F)
and equivalence classes of principal F-bundles over X,

In the above, given a map X —> Bp, one does not take an
- "induced fibering ", The construction is more complicated then that,
One should mention that principal F-bundle and equiValence' are in
the sense of Dold and Lashof [ 3 ] if translations in F are mono-
morphisms, and one needs a slight modification in the definition of
principal F-bundle otherwise,

The essential ideas of the proof of the above are contained in
- the author's PH.D dissertation in the classifying space,

Let X Dbe an associative H-space with multiplication
meXxX —> X, Suppose m forms a strongly homotopy multiplicative

map. Then we have induced

B (X)) —> BOO(XX,X).

But
Bo(X) X B _(X)~B_ (XX)

Hence we have

Boo(X) X B (X) = B (X).



Now that there exist a strongly homctopy multiplicative map is a
geometric condition on the space. Such a map may or may not exist.
Clark has given the algebraic analogue of this condition [ ].
Namely, let B and C be associative DGA algebras over a
commutative ring with unit K., A strongly homotopy multiplicative
map from B to C 1is an infinite sequence of K-module homomce: v . si:s

{hl,hz,...,hn,...} where each
h.m:B® cee(M)eea®B —>C
of degree m=1 satisfies
dh (b ® ...®@ b)) + n d(b;® ...8 b ) =

m-1
2 hm_l(-l)U(i)(bl‘g .oo@b
i=1

i°P141® -+ ® by)
m-1
u(i) . \
- ) B DY (e @ b)) (b, 8 B D)
i=1

where

u(i) = i+deg(bl® ceo® bi)

Such a strongly homotopy multiplicative map irduces a morphism of

DGA-coalgebras

B(h):B(R) —> B(C).
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Hence if A are the chains of an H-space X, if there exists a
strongly homotopy multiplicative map A®A —> A then we have
imduced

B(A®A) —> B(4)
ané hence

B(A)®B(A)~B(A®A) —> B(4A).

2, The cobar construction and strongly homotopy comultiplicative

maps.
The cobar construction, (Adams [i ]). Recall that if C 1is

a simply connected DGA coalgebra over K, a fixed commutative ring
with unit, i.e., C 1is connected and C,=0, then the cobar F(C)

is the direct product of the D" for all n>0, where D™ is the
n-fold tensor product of the desuspension of C=Ker (e), and where
£iC => K 1is the augmentation., (Normally one takes the direct sum,
but the free product will be more convenient)., We will use infinite
sum notation instead of the product notation. A typical element is
therefore an infinite linear combination of elements ofnthe form

xz[cl|...|cn], where x has bidegree (-n,m), and m= EJ degree
i=1
(¢;)e The differential in F(C) 1is defined on elements of bidegree

("1,*) by

d 1]
d(c]=[-dc]+ EJ(-l) °6 1 [ci]c;]

i
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where

A(c)=c®1 + 1® c + Eciﬁc{, ASC = CeC
i

being the diagonal mapping of C ., The differential is extended to
all of F(C') by the requirement that F(C) be a DGA-algebra,

The acyclic cobar construction is F(C) = C@®TF(C) with the
contracting homotopy s:F(C) —> F(C) defined by

s(e®[cyfeeeley]) = e(e)ee® [c5]aanfe,]
and differential d:F(C) — F(C) defined so that
ds(x) + sd(x) = x-e(x)®[ 1],
where [ ] is the unit element of TF(C), and e:F(C) —> K 1is

the augmentation induced by the augmentations of C and TF(C).

F(C) 1is a differential C-comodule with coaction
bp(c)sF(C) —> C® F(C)
given by
bpc)(c®2) = a(c)®z

and is a differential F(C)-module with action

F(C)® F(C) —> F(C)
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given by

(c® [cl‘l coefey Doy foeeiby]) = c®[eq]eaafe |byfees]by]

We wish to intoduce some notation at this point to make the

writing of some formulas easier, Let

k

C £® ...(k)...@c,

be the tensor product of C with itself k times,

Then for 1<igk, define Py:c¥ —c¥ by

i
zj=ldeg c
Pi(clg ooo® ck) = ("l)

j(Cl® .‘.®ck)

and also define

ap:ck — cK
by
k
- - i
dele1® o e®cp)= ) (-17P;_1(c;@ .. ®c; 1@dc,®c, @ ...8c,)
i=1
Also, define A?:Ck —> cktl by

A];(C]_@ see®cy)=c,®@ .0 ®cy 1@ A(c)®cy 18 ...8¢c,

Define



S TP -
13" = F(C) by 1 (e1® cee® e )=lcy .00 e, ]

Since ?(C) is defined on 6, if any cy has degree 0O then
ik( Cl® [ o® ck) :OO
The following formula may be verified by induction:
n

s g i+l n
din"lndn + in+1 z,('l) PiAi
i=1

Strongly homotopy comultiplicative maps. (Drachman [ ]),

Suppose C and D are DGA coalgebras over K and hl:C > D is
a homomorphism of DGA-modules (but not necessarily a homomrphism
of coalgebras). Then to say hl is the initial mapping of the
strongly homotopy comultiplicative (SHCM) mapping {hl’hZ""’hn"“}
will mean that for each integer n>1, hn is a K-module homomorphism

of degree n-1

h :¢ —> (D)?

such that
n-1 n-1
- _ i n-1
Unln ¥ Bpd= ) (@ny s+ Y (-Dlp a0 By
i=1 i=1

In particular, for n=2 we have

d2h2 + h2d=(h18)hl)PlA-PlAhl
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which says, except that the signs are different, that the following

diagram is homotopy commutative

c —L& s cec
Fiy
D ———— D&D

The motivation for the above definition is the following:

Iheorem, If C and D are simply connected coalgebras over K and
h= {hl,...,hn,...} 1s a SHCM mapping from C to D, then h

induces a morphism of DGA algebras
F(h):F(C) —> F(D)
Proof. First define F(h) for elements having one bar by
F(h)[e]=1;h)(c) + ihy(e)+.aeti B (c)+...

and then extend F(h) to all of F(C) by the requirement that
F(h) be multiplicative,

A diagonal map for the cobar construction, Suppose C and D are
DGA comodules, The usual way to define a morphism between
F(C) —> F(D) is to hawe a comultiplicative map h:C —> D
inducing
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h,:F(C) —> F(D)

given by

[eglecelepy] = [hlep)|.ue|hlep)].

To say h:C —> D is comultiplicative means the follow.rng die

diagram 1s commutative,

e bp
cec —88h_ . ep

However, in the case that C 1is the chain complex of a space X,

and D=C&C, the diagonal map A:C —> C®C 1is not comultiplicative,
hence A4 tF(C) —> F(C XC)w F(C)®TF(C) 1is not defined this way.

One can, however, form a SHCM map h= {hl,...,hn,...} from C to

C®C where h1=/_\,: C —=>C®C and in this case we have

piF(e) —EH pcoc) —= s F(C)®TF(C),

a morphism of DGA-algebras.

We shall return to these maps shortly.

3o The Geometric Cobar Construction,

Just as the bar construction has a geometiric realization, namely
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the classifying space which is a filtered space whose filtration
corresponds to the Moore filtration of the bar construction, there
is a.geometric realization of the cobar construction., To see this,
let X be a simply connected special countable CW complex, That
is, X has one zero-cell e, no one-cells, and we assume that the
cells are simplicial. We use the maps {en} in Adams' original

%) be the paths in the n-simplex o which

paper [ ]. Let L; ;(o

9d
start at the i—ti-r—l vertex and end at the ;)El;1 vertex, Adams constructs

maps

n
n -_> Lo’n(c )

where eq=w:[0,l] —_ ol is given by
w(X)=(l-x,X) .
1

We show a picture of 05t —> L (02).
; 042

Vo

0,(0)
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6o(0) is the path from v_ to Vo, travelling directly from

o)

Vv, to v, along the edge. 92(1) is the path from v, to ¥,

first going from v, to V1 along the edge, and then going from

v to v, along the edge. 65(t) may be taken as two segments in
the manner indicated.

In general, o may be chosen so that

n

L(fi)ei(tl"“’ti-l)xL((i)enri(ti+1’""tnpl)

if ti=l

6 (tigeceyy,_) =
n'"1? *n-1
Llag)en 1 (Bpaeeesty 1rtigrecerty y)

if ti=0

1

In the above d,:0" " —> ¥, figai —> o™, and Ii:on’i 5 o

n=-1 n-1

are the injections of ¢ as the 11 face, ai and ¢

as the

first and last faces, inducing

L(d,)
Lo p-1(6"1) ——> 1, (¢

L(f,)
i 1 .
Lo’i(d ) i Lo’i(ﬂn)
L(4,)
-1 1
Lo,n—i(on ) — Li,n(cn)

Since L(f;)0,(tyyeeuyty ;) 1les in Lo,i(an) and

L“1>9n,1(t1+1'°-°’tn-1) lies in Li’n(on), thelr product makes

sense,
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n=-1

The above formula defines ¢, inductively on 3I y and then

n

one fills in' as beforé., Then o, is 1-1 onto its image.

Now given a cell en':of' X with attaching map f:a™ — X,

one constructs a cubical cell [en] of one less dimension with

attaching map

In—l

> Lo py (o™ —HE— a0,
Notice that since the oEE-and nJEQ vertices are attached to the base
point e by f, we land in the loop space instead of merely the
path space of X, Let [en] be the image of this attaching map
in a(X). .

Let FXX) be the CW complex consisting of those points
which are in the product on n or more cells [eil]...[eik] (K>n).
Then we have F (X)=F(X) a filtered space

e ol FRX)C F () L. e FHX) € FO(X)© a(X)
F(X) 1is H-homotopy equivalent to 0X. 1In fact, is strongly
homotopy multiplicatively equivalent to QX . (Their classifying

spaces are equivalent.)

4, The Diagonal Map and Steenrod Squares in the Loop Space.

As we mentioned, to introduce a multiplication in the bar
consiruction introduces an extra condition on the algebra. To
introduce a coalgebrarétructure in the cobar construction, we

wanted A:C —> C®C to form the initial map of a strongly homotopy
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comultiplicative map, Fortunately, this is no extra condition
when C is the chain group of a space. The existence of
{h2""’hn”"} (with hl=A) can be demonstrated using an acyclic
carriers argument, h : ¢ — (c®C)? is constructed SO ¢
lies in (o x o)™, and any two such sequences -{hl,h2,...,hn,...},
{hi,hé,.o.,hﬁ,...} can be shown to be homotopic in an appropriate
sense, so that their induced maps F(C) — F(C®C) are homotopic
in the usual sense.

It is possible to give explicit formulas for one choice of

the h,y which we do here. For the sake of notation, we will no

l m
longer refer to these maps as h 's, but as { A } .
n nf -
To further simplify matters, we shall work mod (2) to avoid

keeping track of signs, 1Al:C —> C&®C 1is the standard Alexander-

Whitney diagonal map, That is, if a=<vo,...,vn> i1s an n-simplex

which we write

070y essyn>,

n
B10= ) <O0yuu.yi> ®<iya..,n>

1=0

1

To simplify further, we merely write

Ly =(1,m).

This means

n
1 . .
Al<o’000,n> = 2 <o,.oo’ll>®<ll’.lo’n>
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A2:C —-> C
is given by
Lpo=(1,24
A2‘(l,2 ’3’n)o
This means

1A2<0,o [ ,n> =

E <O’ @ .,il> ®<il,...’12’13,.Q. ,i)_+>® <12, [ 3 3 'i3>®<ii_|" .."n>

0gi <1 <ia<iign

Before giving the general formula, let us give 1A3 and 1A4

explicitly
1A3=(1’2h’3’57’67n) + (l,246,3,7,5,n)

1Ah=(l,2h’3,57,6,810,9,n) + (1,24,3,579,6,10,8,n)
+(1,246,3,79,5,10,8,n) + (1,24+6,3,7,5,810,9,n)
+(1,2468,3,9,5,10,7,n)

We note that the second term of lA3 gives us a term that is not a
Cup-i -
To give the general formula, we define the sequence
{kl,...,kn_l} of positive integers to be admissible if
n-1

1) z;k =2n-2  and
i=1
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2) for each 1, 2<i<n, the inequality

i-1
kaj# 2i-3  holds.
J=1

For such an admissible sequence k={kl,...,kn_1}, we define

i-1 i
uy (k)=((2 };kj)-i+2,...,2 z‘kj-i). That is, u;(k) has listed
=1 j=1
i-1 i
every other integer between (2 z;kj )-i+2 and 2 E,kj-i‘
J=1 i=1

(Summation over the empty set being understood to be 0.)

Then si(k) is defined to be the minimum of the set

{l,2,3,...,3n-3} - {all entries listed in ul(k),sl(k),...
censty_ g (K)ysy ) (k) yuy (1)}

Then finally we define

;:;::::> — (l,ul(k)+l,sl(khl ,u2(k)+1,32(k)+1,

k=(kl,..,,kn_l) is admissible

LI ’un"l(k)+l’sn-l(k)+l ,n)

For example, in lAu appears the term

(1,2%,3,57,6,810,9,n)



which means that this term applied to o¢=<0,...,0> gives

-/- <O,.oo’il>®<i,...’12,13,...,i)_+>®<i2’.oo,j-3>

i i * o @ i ®<i o0 o i >
0<11<i<iq<i<ikig ® <Lyyeeerlgylgrecerin? I5reeale
- s s $ ¢ 8(1 ,oo.,i ,i ’ooa’i >
517518<1951105n 7 8779 . 10

®<18""’i9>®<110"°"n>

Hence we know the diagonal map in the loop space explicity. That

is, returning to the original diagram,

F(C) > F(C) @ F(C)

F(c®C)

@
lA[Cl]= E}inlAn(c) and hence
n=1

a
lA[cl'000|ck]= 2 iS E lAil(cl)® ooo@ lAik(ck)
s=k il+"°+ik=5

where in the above, is puts s-bars around its term., That is,
i(c,®ct @ ®c®&5=[c®c' lc®ct]
sic1®c] Beeo @ @ cy 1®Cfleeefeg®cg

Such a general formula for the maps {lAn} will be useful in
looking at certain (unstable) operations, tut for the problem at

hand we have done too much. Since P is zero except if in each
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1

] 1 - .
term Li® £j, €4 or £] has degree, in each An(o) only one term

remains, That is, we may write the much smaller expression.

P
Talel=p Y ipte (o)
n=]l

where

l61=A=(l,n)

162=(l’2)+,3,n)

la3=<1,2n6,3,7,5,n)

Loy, =(1,2468,3,9,5,10,7,n)

lbn=(1,2468...2-n,3,2.n+1,5,..,,n)

We also note that if ¢ 1s a k-simplex and ndk then lAn vanishes

on g, Hence if c¢=¢ 1s a k-simplex,

k
Talel=p Y 1,18 ()
n=1

The Steenrod Sguares in the Loop Space.

Now that we have a diagonal map in the cobar construction, we
can introduce the cup-i products, For instance, cup-l is defined
by letting

Dlzf‘(C) — F(C)®F(C) to be a homotopy between A and Ta, and

in general
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D, . =F(C) —> F(C)® F(C) to be a homotopy between D; and TDy.

i+l

For example, in defining cup-l, one looks at the diagram

F(0) —2—> F(c) OF(C)
P
F(C®C)
o)
where Dii =¢f 2 ikDi,k where D:SL;,k:CS - (C®C)k is of degree
k=1

k"‘ S+l Y
One cen give simplicizl formulas for the Di k and in general
’

1 Just as in the case of the cup product,
S,k

the D

A. Zacharion [ 7/ ] has written down explicity cup-i products in
the case that A:C —>C®C 1is co-commutative, which of course does
not apply to our case,

The maps {1An} may be used to introduce certain (unstable)
operations to detect if a space can be a second suspension, By
iterating the cobar construction in a suitable manner, one gets
higher order maps which can be used to detect if a space can be an

nEQ-suSpension.

Iterating the Cobar Cors truction.

As we mentioned, starting with a simplidial chain complex,
taking the cobar construction gives us a cubical chain complex with

a diagonal map Cescribed above. Since we have (co-) associativity,



we can iterate the ccbar construction once wrid we have explicitly
the differential in the 27 loop space. Bul then we loore
co-associativity. Hence extra homotopies are needed tc deline the
differential, Jjust as in the analogous case of an H-space which is
not associstive but has a certain collection of asscclating
homotopies, In the 1'11-'--111 iteration of the colar construction, there

will be a differential
"a:FHC) —> FH(C)
determined by an "r-matrix® of functions and also a diagonal map
BaeFHC) —> FHC)®FHC)

determined by an n-matrix of functions,

The matrix for N4 will have entries

n. .
dil,.c.’lnoc '_—> C

il.. .in

for each sequence {il,...,in} of positive integers.

Similarly, the matrix

N, will have entries

21 i
n . . looo D
Ail,oot’i cC >C

n

I will not go into further aetzils about the iterztion of the

cobar construction at this time.,
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