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EVALUATING SECONDARY OPERATIONS ON
LOW DIMENSIONAL CLASSES

S. Gitler and R. James Milgram

1. Introduction.

We let A denote the Steenrod algebra G(2)

[3] and suppose apf = O is a relation of degree r + 1

in A,
T
1.1 ap = Zk:o By, = 0
with Qs Bk € A and degree Qs degree Bk are hoth

positive. 1In [1] Adams established the following

result: assoclated with the relation

SqlSq4 + SqQSq3 + SqASql =0

there is a secondary operation & so that if
X € Hz(x) satisfies Sql(x) = 0 then &(x) is

defined and
X7 e 8 (x).

Later, L. Kristensen [6] using cochain operations
was able to evaluate certain kinds of operations &
associated with relations of the form 1.1. More
recently, Mahowald and Peterson [8], Mahowald [7]

and Hughes-Thomas [5] have been able to evaluate



further &®'s but using "invariant" methods.

Our object here is to prove the Theorem 1.5
which includes all these previous results and whose
proof turns out tc be surprisingly simple.

We assume the relation 1.1 (of degree r + 1)
satisfies r < 2q. Let B(q) be the left ideal in A
generated by those elements which are zero on every
cohomology class of dimension ¢ q (see [3]). Also,

we suppose that

1.2 By € B(a), Bo ¢ B(g+l) so that

1 1
5o(xq+l) = (BOXQ+1)2 for some B, € A,

1.3 By € 2(a+l) or a, € B(q + dim Bi) for
i=1,2,...,n.

1.4 Let V:A —> A ® A be the diagonal map so that
gl it it 1 — o =j
¢(ao) = Z(a; ® aj +aj € ao) + 2 ag € ay,

then we require that aJp, is contained in the left ideal

generated by Bl Under these conditions we have

’000 n-

Theorem 1.5: There is a secondary operation ¢

associated with (1.1) so that for any class X € Hq(XD

with ¢ (x) defined we have

it

b3 aiB;x‘J a B;X e & (x).
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Remark 1,6, We can remove the condition that

— 1
ag By € I(Blv.,ﬁn) but then we obtain a possibly

different value for ¢ (x).

As a particular case of (1.5) let

. 2] b-1-3 .
Sqa+b + ‘[a/ ] watb=1. 1

a Q. a-21/°4 ~a
O=1

1.7 sa®sq® = (°7h)

be an Adem relation with a < b. We denote by 2y
b

the operation associated to 1.7 (@ is unstable

a,b
if (b;l) # 0) and we have

Corollary 1.%. There is an operation @a , associated
i
with (1.7) so that for any class X ¢ Hb-l(X) that

satisifes Sq (x) =0 i =1,...,[a/2] we have

sq?(x) ) x e ¢, L (x).

2

Note that under the hypothesis of (1.8) if

2T < a <2 4+ 2" then Sq® is in the ideal generated
by Sql,...,Sq[a/g] so Sq?(x) = o.
In particular the operations ¢ i associated
27,2
with the relations ’
i i - 1-1 I+l _~d AJ
ng Sq2 = Sqe 2 ch
J=0
2t-1

are unique, and if there is an x ¢ H (X) on which
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$ . . is defined then

Remark 1.9. A Spanish version of this article

has appeared in Acta Politecnica (in Mexico).

Remark 1.10. In a recent paper, Kristensen and

Madsen prove a theorem very similar to 1.5 by using

cochain operations.
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2. A fibration of G, W. Whitehead

In [13] G. W. Whitehead introduced a fibration to
study the suspension map on the cohomology primitives
of the Eilenberg-MaclLane spaces K(TM,n) (see also [2]).
Let G Dbe an associative H-space with unit; then G

admits a'classifying.space B [11]. Let =G be the

G
suspension of G and denote by G*G the join of G with
itself, We then have a fibration
2.1 G¥G —> =G —a—> BG
u

which we obtain by considering the constructions of Milnor
or Milgram [11], for the classifying space By. Hence we
have the principal fibration

G —> G*G —> =G

u

so g 1is the classifying map for u., It is known (and
evident from the construction) that q 1is the adjoint of the
identity G —> G and that if we identify G*G with
(G AG), where GAG is the smash product of G with

itself, then u 1is the suspension of the multiplication
u: G x G —> G

(see [2]). The fibration (2.1) is very useful, since if

G is q - 1 connected it follows that G*G is 2q connected



’/2

and BG ‘s -connected so the Serre exact sequence s
valid in dimensions < 34.

Since ¢ is an H-space H¥*(G) it a Hopf alsebra
and we write P(H¥(G)) for the primitives. Given an

arbitrary space X we write Q(H*(X)) for the .indecom-

posables in H¥(X), (see [41]).

Thecrem 2,2, If G 1s an associative H-space with unit,

B, its classifying space and G is qg-l-connected, then

o%: a(it () —> P71 (c))

is an epimorphism for i £ 3q.
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3. Massey-Peterson fiberings

Let F +>E 2> B bea fibering. We say it is a
Massey-Peterson fibering [9], [10], if the Serre sequence

for the fibering satisfies

B =ET-’O®E?-’* 2L 0 Lo
e

Now note that if F —+->E' 2.5 B' is a rivering so
F=0F,E=08,B=08",1=0(1") and p =0(p'), then

the Serre spectral sequence for F > E > B is a

spectral sequence of Hopf algebras and we have (see [12]

for a particular case):

Theorem 3.2. Let the Massey-Peterson fibering F > E > B

be the loop fibering (as above) QQ_F' —> E' —> B'. Then

for any x ¢ P(H*(E)) one of the following holds

i*(x) #0 or x = p*(b).

Proof: By assumption H*(E) is a Hopf algebra and E_

in the Serre spectral sequence for F > E > B

1s the bi-graded Hopf algebra associated with the filtered
algebra H*(E). Evidently if x e P(H*(E)) then the

image of x in E is also primitive, but the only

-}

* *
primitives in E_, belong to Em’o @ Eg’ and since

o0



%
pru*(B) 1g 1 °°

. :
while i¥*(H*(E)) = Fo’  the result
follows.

Remark: Theorem (3.2) is still true if we only suppose

F, E, B in the Massey fibering F > E > B are

H-spaces with unit and p, I are H-maps.

Corollary 5.2. Let F > E > B be_a 2-stage Postnikov

system with stable k invariant_that is the loop space of

another fibering; then F > B ~-> B satisfies the

hypothesis of 3.2.

Proof: See [9] and [10].



b, The proofl of 1.5.

Given the relation (1.1) we construct the operation ¢
associated with it as follows. Iet t be an integer much
larger than n and consider the fiber Et in the map f

ft n
4,1 1 -E—> K, —> 1T K .
t t k=0 t 4+ dim Bk

. *® .
defined by ft(wf,t + dim Bk) = B, v, where Kq is a
K(Ze,q) and Yg OF Y, IS the fundamental class in
dimension q. As is well known, we have the fibering

n

3,2 m (X

i P
M 1) > E, > Ky

t + dim Bk -
and (since t >> r) in the Serre exact sequence
5 = f} v, &0 for the class m = 2 a we have
(W%,k) P kYt ,k

5(m) = 0 and m = i*(vt) for some Vv ¢ H*(Et)'

Now there is the suspension map oy of degree -1
ot:H*(Et) — H*(Et—l)’ and we say a sequence
(Vl’VQ""’Vt"") of elements V. e H*(Ei) is a

representative for % if

(i) ct(vt) = v,y for all t

(i) i*(vt) pX OV, g

Clearly two such representatives for ¢ differ by a

primary operation (v, + vl =6 y.).
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Next we must examine the Et for small t., Renumber

the Bk 1)

Bo € B(a) B, ¢ B(q+l)

Bye-eB € B(g+1)

and the remainder are arbitrary. Then let £, be the

t
fiber in the map

_ = g n
B, 2>k —%> (T K

. Ix K .
t K=mt1 t + dim Bk t 4+ dim Bo

where gt*(wi,t + dim ak) = B (7,) and we have

Lemma 4.3

(i) Eq+l ig homeomorphic to
_ m
E X T K .
g+l k=1 U+ dim Bk-l,
(ii) Eq ;s_hgmgomorphlc to Eq X Kq + dim B, -1
(where E_ is the fiber in the map
m )
h,: XK, —> mT K .
t t K=mt1 t + dim Bk

but not as an H-space. In fact

s , -
(i11) Yq,q + dim B -1 in H (Eq) can be chosen

so _the diagonal on (Wq,q + dim 50'1) gives

Y

a,q + aim g -1 & 2+ B3(vg) ® B lvy)

t 1T Ya,q + aim -1,
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Proof: (i) follows since the only nonzero k-invariants
in 4.1 with t =g+ 1 are when k = O or is greater

than m, so up to homotopy fq+l factors as J'gq+1

n
where js( T X ) X K

k=gl t + dim Bk

t + dim Bo

is the evident inclusion,
*
(i1) now follows since f_ (v
as well,

(iii): Consider the map

®: Eq+1 — S;q+l + dim(B!)

where §3q+l + dim Bg is the fiber in the map

‘ . 5
E g+l + dim B T2 Xqul + aim gy T 7 K2(grledim gy)

where s*(y) = yU v and CP*('Yq+l + dim ag) = BS Yor1-

Looping ¢ we have

Ip: B, — Q€q+l®dim(55) = Kqraim gy X %o (q+din pY)°

O

1% * =
It is easy to see i*(Qu) Y2 (qrdim 55) Yq,q + dim 81
so we can choose Yq,q + dim B in H*(Eq) as
(nm)*yé(q+dim 55). On the other hand, (Q¢)* induces a
map of Hopf algebras since it is a loop map and it is a

result of [12] (lemma 3.1) that
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= &
V(% (q + din a(;)) Yo(q + aim 1) T L F Y ® Y
1€ (g + aim py)

(iii) now follows.,
Returning to 1.5 we see that vq is a primitive and

can be written in the form

n
+ > a

A %Yq,q + dim B, T, > 4 (Vg + dinm Bk) + W
and i%*(w) = 0.
On the other hand each of the k=1,...,n

yﬁ + dim Bk
are primitive since they are in the image under suspension

of classes in H¥*(E Also, by 4.3 (iii), we have

q+l)'
V(agYy,q + dim Bo) = Za%ﬂg(ﬂd) ® aé'ﬁg(wd)
4.5 + 30,81 (v,) @ agBLiy,)
+ 53y (vy) © @3py (v,) -
(By assumption this last sum is zero.) Now if y equals
% ag B3 (1) U ag88 (1)
then ¥(y) also gives the first two summands in 4.5,

X =W+ y

is primitive and since i*(w) = 0 as is i¥(y) it follows

that x = p*(b) for some b in H*(K).
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On the other hand,

n
4.6 + Z a + a .
y Ke=m+1 k(’Yq + dim Bk) Q'Yq,q + dim o
*
is o(A) for some A in H (Eq+1) by 2.2. Clearly

i*(A) = i*(v SO A+ V= p*(b?t) and b can

q+1) a
be chosen as o(bt).

This shows b is primitive. But the only primitives
in H*(Kq) are stable operations on the fundamental class,
thus b = e(wh) and varying ¢ by the primary operation 6
we obtain &', a stable secondary operation associated
with (1.1) and vé is exactly 4.6. Now since

ak(yd + dim 6k) (k =C, m+ 1,...,17) are in the natural

indeterminacy of &' +the proof of 1.5 is complete.

Centro de Investigacion del I.P.N. and Northwestern
University, University of Illinois at Chicago Circle

and Centro de Investigacion del I.P.N.
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