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We are concerned with a spectrum X(f) = {Xn] where
n+k+1
X, = s" U £€ L for g >k + 1, and X = S, otherwise.
This is constructed for any f ¢ Gk’ the k-stem of the
stable homotopy groups of spheres. We will obtain invariants
of f by asking questions about X(f); e.g., is X(f) a

ring spectrum? If sc, what properties does it have as a

ring spectrum?

Definition 1. A spectrum X = {Xn] is a ring spectrum if
there is a map L:S —> X called the unit, where S is the

sphere spectrum, and a multiplication:

m n-xm#xn —> X,

such that the diagrams:

M
m-1,n
K, > s L

X,
l S#1 l s
/ M

m,n
Xm#Xn —> X

T

X #sx

Ny

SX X1
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commute, and My o = 1.
3

In the case of X(f), ( exists, and Moo, 1s
k]

easily defined if m,n {k+ 1. ¥ can be defined for

all m and n if uk+2,k+2 can be defined,

Definition 2. A ring spectrum X = {X ] is called

homotopy associative if the diagram
Mo, #1
f.m
X z#xm#xn LY\ S ¢ m#xn

1#um,n uI&+m,n

u'1/,,m+n
Xz#Xm+n > X£+m+n

commutes up to homotopy.
Definition 3. A ring spectrum X = [Xn] is called homotopy

commutative if the diagram:

X Py
Hm,n
Xn#xm> Hn,m

commutes up to homotopy.
It is obvious that one can define higher order
associativity and commutativity as Stasheff does for H

spaces [7].



We first ask for conditions on f which determine
whether X(f) is a ring spectrum, The following theorem
is due essentially to Toda [8, p. 28], although its roots
go back to Barratt [1].

Theorem 4., If (l—(-l)k)f ~ 0, we can define
£ e G2k+1/Ik where I, = {0} if k 1is even and I, =f°
if k 1is odd. X(f) 1is a ring spectrum iff f = O.

Furthermore, if (l-(-l)k)f 4 0, X(f) 1is not a ring

spectrum. Define

a) (£) = (1-(-1))r,

and

It
H

a (1)

£,7
ot v

o

G

v+1

Then az(f) # @ iff al(f) = 0, and X(f) 1is a ring spectrum

iff 0 ¢ ag(f).

Theorem 5. (Toda [8, p. 30]). g ° ae(f) c {f,g,f}.

2o ay(g) + ay(f) © 6P,

Theorem 6. a2(f°g) 2 f
Theorem 7. O ¢ 2a2(2f).
n m= 2 (mod 4)

Theorem 8. a2(m ) = (f1,81),
0 otherwise

ay(n) = v(mod n?), ay(n®) =0, ay(n’) = 0, a,(v) = 2v £ 0,

2
32(V ) = 0.
Theorem 9, If O ¢ a2(f), we can define

Co(f) € Gy n/T ° Gyop



0 ¢ Cg(f) iff X(f) is homotopy commutative.

Theorem 10. G, (kL) = 02, Cy(n°) = V&, ¢, (v¥) = o°.

02 is eguivalent to the U2 product considered by Adams,

Barratt and Mahowald [2].

Theorem 11, If O € az(f), we can define

aj(f) € G3k+3/f e G2k+3'

0 ¢ aB(f) iff X(f) is homotopy associative.
Theorem 12. a3(f°g) 2_f3 ° aB(g) + aB(f) ° g3.

a; m=3 (mod 9)

0 otherwise

Theorem 13, a3(mL) = [

where a, € G3 has order 3.

Modulo the vanishing of the above obstructions, we would
like to generalize a theorem of Hoffman [5]. This has proven
useful in meking certain constructions (Gray [3], Hoffman [4]).

Let Gm(f) = [Xm+t(f)’xt(f)]’ the group of stable
homotopy classes,

Theorem 14, (Hoffman [5]). There is a differential in

G(tLl) for t odd:
ds Gm(tb)-———> Gm+l(tb)

such that:

a) d(asp) = d(a) » B+ (-1)%8 % o o a(p)

2

b) d© =0 1if (t,3) =1

c) d(a) = d(B) = 0 implies aB = (_l)(deg a)(deg B)Ba.

i



Lemma 15, Suppose X(f) 1is a ring spectrum with multipli-

cation Ry one Then there is a unique (up to homotopy) collection
3

of maps:
m,n, iy
R LT | > Xy
such that
m,n
a) Mpp ° B 7 0
b) 0%~ 0
c) the diagrams:
hm+k+l_uy
') P
P n
b2 —
J#1
umsD .
X ik = Xk

Snk+1#x n+k+l

m
¥ l 173
(- l)(m+k+l (n+k+l)T
m

commute up to homotopy.

Now for a e G (f), we define d(a) and dR(a) € Gw+k+1(f)

as the compositions:

s,m-t Mo &
X b tkHmt 1 > }‘s#X > fxt > Xt
s+m,t 18
sy 9L o s,t
Xs+t+1r_+m+l > Xs+m ft > &s Xt > Xx+t

respectively. They are independent of s and t for s and t

large,
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- PP — R 3 S =1 ¢
Let x = ixj : 1 > X, where x : S > 8

and let [ , ] denote the graded commutator.

Theorem 16, dL(a) - dR(a) = [Celfi,a].
Theorem 17. d(a°B) = d(a) * p + (-1)%88 % o q(p).
Theorem 18. di(a) = dg(a) = [aBZfi,a].

Theorem 19, If al(f) = ae(f) = 0, and the Toda bracket

{f)g’th’f}

is defined, ghaB(f) e (f,g,f,h,f}. If a;(g) = ay(g) = 0,
{f,g,f,g,f} 1is defined,
Theorem 20. 1In G(f)

[@,6] = a(a)(1,8] + [a,I]d(B)

provided O ¢ CQ(f)'

If Cz(f)'f O the answer is more complicated.
Theorem 21.(Toda).

1) X(3L) 1is not homotopy associative-

2) | f €Gy,3f ~ 0 implies o f’ = O (mod 3)
3 -

3) @8] = O where oy e G- ® Z5 and

| By € GlO ® 23 are nonzero generators.
These are easily seen to be equivalent:
1) = 2): 1) 1implies that a;(3L) =+ a.. Since 3f ~ 0
> =" =
and f e Gy, al(f) =0 and O ¢ ag(f) by Theorem 7., Therefore,

0 = a5(0) = a5(3f) = 27a5(f) + a7, Hence, a2 = 0 (mod 27).



2) ==>3): This is clear since 3(G35823) =0, [8].

3) == 1): If X(3L) is homotopy associative, Theorem 19
implies O ¢ [BL,BI,BL,al,BL]. Since G33 @ Z3 =0,

0 = (By,3 ,Bq,3 ,51)5 hence vy = {Bl,Bt,Bl,BL,Bl,BL] is
defined, It is detected by the cohomology operation PBPBP3 +

other decomposables = O, Hence ¢ # 0 € G34 @ 25; by [8]

2,3
2

Other results similar to Theorem 19 can be obtained.

b1 e E is a permanent cycle and alsi # 0, a contradictiion,

For example:

Theorem 22, If fg ~ 0, O ¢ az(f), and O ¢ ag(g), then
{ef,f,g,2g) N 2(f,g,f,g8) # 2.

The general pattern of these results, however, 1s not yet

clear,
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