Operations and Two Cell Complexes by Brayton Gray

We are concerned with a spectrum $X(f) = \{X_n\}$ where $X_n = S^n \cup_f e^{n+k+1}$ for n > k + 1, and $X_n = S_n$ otherwise. This is constructed for any $f \in G_k$, the k-stem of the stable homotopy groups of spheres. We will obtain invariants of f by asking questions about X(f); e.g., is X(f) a ring spectrum? If so, what properties does it have as a ring spectrum?

<u>Definition 1</u>. A spectrum $\underline{X} = \{X_n\}$ is a ring spectrum if there is a map $\bigcup:\underline{S} \longrightarrow \underline{X}$ called the unit, where \underline{S} is the sphere spectrum, and a multiplication:

$$\mu_{m,n}: X_m \# X_n \longrightarrow X_{m+n}$$

such that the diagrams:

61

commute, and $\mu_{0,0} = 1$.

In the case of X(f), ζ exists, and $\mu_{m,n}$ is easily defined if $m,n \leq k + 1$. $\mu_{m,n}$ can be defined for all m and n if $\mu_{k+2,k+2}$ can be defined.

<u>Definition 2</u>. A ring spectrum $\underline{X} = \{X_n\}$ is called homotopy associative if the diagram

commutes up to homotopy.

<u>Definition 3</u>. A ring spectrum $\underline{X} = \{X_n\}$ is called homotopy commutative if the diagram:

commutes up to homotopy.

It is obvious that one can define higher order associativity and commutativity as Stasheff does for H spaces [7]. We first ask for conditions on f which determine whether X(f) is a ring spectrum. The following theorem is due essentially to Toda [8, p. 28], although its roots go back to Barratt [1].

<u>Theorem 4</u>. If $(1-(-1)^k)f \ge 0$, we can define $f^* \in G_{2k+1}/I_k$ where $I_k = \{0\}$ if k is even and $I_k = f \circ G_{r+1}$ if k is odd. X(f) is a ring spectrum iff $f^* = 0$.

Furthermore, if $(1-(-1)^k)f \neq 0$, X(f) is not a ring spectrum. Define

$$a_{1}(f) = (1-(-1)^{K})f,$$

and

$$a_{2}(f) = f^{*}$$
.

Then $a_2(f) \neq \emptyset$ iff $a_1(f) = 0$, and X(f) is a ring spectrum iff $0 \in a_2(f)$.

Theorem 5. (Toda [8, p. 30]).
$$g \circ a_2(f) \subset \{f,g,f\}$$
.
Theorem 6. $a_2(f \circ g) \supseteq f^2 \circ a_2(g) + a_2(f) \circ g^2$.
Theorem 7. $0 \in 2a_2(2f)$.
Theorem 8. $a_2(m) = \begin{cases} \eta & m \equiv 2 \pmod{4} \\ 0 & \text{otherwise} \end{cases}$
 $a_2(\eta) \equiv \nu \pmod{\eta^3}, a_2(\eta^2) \equiv 0, a_2(\eta^3) \equiv 0, a_1(\nu) \equiv 2\nu \neq 0,$
 $a_2(\nu^2) \equiv 0.$
Theorem 9. If $0 \in a_2(f)$, we can define

$$C_2(f) \in G_{2k+2}/f \circ G_{k+2}$$

 $0 \in C_2(f)$ iff X(f) is homotopy commutative.

<u>Theorem 10</u>. $C_2(4L) = \eta^2$, $C_2(\eta^2) = \nu^2$, $C_2(\nu^2) = \sigma^2$. C^2 is equivalent to the U_2 product considered by Adams, Barratt and Mahowald [2].

<u>Theorem 11</u>. If $0 \in a_2(f)$, we can define

$$a_3(f) \in G_{3k+3}/f \circ G_{2k+3}$$

$$0 \in a_{3}(f) \text{ iff } X(f) \text{ is homotopy associative.}$$

$$\frac{\text{Theorem 12.}}{\text{Theorem 12.}} a_{3}(f \circ g) \supseteq f^{3} \circ a_{3}(g) + a_{3}(f) \circ g^{3}.$$

$$\frac{\text{Theorem 13.}}{\text{Theorem 13.}} a_{3}(m \iota) = \begin{cases} \alpha_{1} & m \equiv 3 \pmod{9} \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_1 \in G_3$ has order 3.

Modulo the vanishing of the above obstructions, we would like to generalize a theorem of Hoffman [5]. This has proven useful in making certain constructions (Gray [3], Hoffman [4]).

Let $G_m(f) = [X_{m+t}(f), X_t(f)]$, the group of stable homotopy classes.

<u>Theorem 14</u>. (Hoffman [5]). There is a differential in G(tL) for t odd:

d:
$$G_m(tL) \longrightarrow G_{m+1}(tL)$$

such that:

a)
$$d(\alpha \circ \beta) = d(\alpha) \circ \beta + (-1)^{\deg \alpha} \alpha \circ d(\beta)$$

b) $d^2 = 0$ if $(t,3) = 1$
c) $d(\alpha) = d(\beta) = 0$ implies $\alpha\beta = (-1)^{(\deg \alpha)(\deg \beta)}\beta\alpha$.

Lemma 15. Suppose X(f) is a ring spectrum with multiplication $\mu_{m,n}$. Then there is a unique (up to homotopy) collection of maps:

$$\mu^{m,n}: X_{m+n+k+1} \longrightarrow X_{n} \# X_{n}$$

such that

a)
$$\mu_{m,n} \circ \mu^{m,n} \simeq 0$$

b) $\mu^{0,0} \simeq 0$

c) the diagrams:

commute up to homotopy.

Ş

Now for $\alpha \in G_m(f)$, we define $d_L(\alpha)$ and $d_R(\alpha) \in G_{m+k+1}(f)$ as the compositions:

$$X_{x+t+k+m+1} \xrightarrow{\mu^{s,m+t}} X_s \# X_{m+t} \xrightarrow{\underline{1}\#\alpha} X_s \# X_t \xrightarrow{\mu_{s,t}} X_{x+t}$$
$$X_{s+t+k+m+1} \xrightarrow{\mu^{s+m,t}} X_{s+m} \# X_t \xrightarrow{\underline{\alpha}\#1} X_s \# X_t \xrightarrow{\mu_{s,t}} X_{x+t}$$

respectively. They are independent of s and t for s and t large.

Let $\overline{\mathbf{x}} = \mathbf{i}\mathbf{x}\mathbf{j} : \mathbf{X}_{m-k-1} \longrightarrow \mathbf{X}_n$ where $\mathbf{x} : \mathbf{S}^m \longrightarrow \mathbf{S}^n$ and let [,] denote the graded commutator. <u>Theorem 16</u>. $d_{I}(\alpha) - d_{R}(\alpha) = [\overline{C_{2}(f)}, \alpha].$ <u>Theorem 17</u>. $d(\alpha \circ \beta) = d(\alpha) \circ \beta + (-1)^{\deg \alpha} \alpha \circ d(\beta)$. <u>Theorem 18</u>. $d_{L}^{2}(\alpha) = d_{R}^{2}(\alpha) = [\overline{a_{3}(f)}, \alpha].$ <u>Theorem 19</u>. If $a_1(f) = a_2(f) = 0$, and the Toda bracket $\{f,g,f,h,f\}$ is defined, $gha_3(f) \in \{f,g,f,h,f\}$. If $a_1(g) = a_2(g) = 0$, {f,g,f,g,f} is defined. Theorem 20. In G(f) $[\alpha,\beta] = d(\alpha)[\overline{1},\beta] + [\alpha,\overline{1}]d(\beta)$

provided $0 \in C_2(f)$.

If $C_{p}(f) \neq 0$ the answer is more complicated. Theorem 21. (Toda).

- X(3L) is not homotopy associative 1)
- $f \in G_{2k}$, $3f \simeq 0$ implies $\alpha_1 f^3 \equiv 0 \pmod{3}$ 2)
- 3) $\alpha_1 \beta_1^3 = 0$ where $\alpha_1 \in G_3 \otimes Z_3$ and

 $\beta_1 \in G_{10} \otimes Z_3$ are nonzero generators.

These are easily seen to be equivalent: 1) \implies 2): 1) implies that $a_3(3L) = \pm \alpha_1$. Since $3f \ge 0$ and $f \in G_{2k}$, $a_1(f) = 0$ and $0 \in a_2(f)$ by Theorem 7. Therefore, $0 = a_3(0) = a_3(3f) = 27a_3(f) + \alpha_1 f^3$. Hence, $\alpha_1 f^3 \equiv 0 \pmod{27}$.

Other results similar to Theorem 19 can be obtained. For example:

Theorem 22. If $fg \ge 0$, $0 \in a_2(f)$, and $0 \in a_2(g)$, then $\{2f, f, g, 2g\} \cap 2\{f, g, f, g\} \neq \emptyset$.

The general pattern of these results, however, is not yet clear.

BIBLIOGRAPHY

- M. G. Barratt, <u>Spaces of Finite Characteristic</u>,
 Quar. J. Math., Oxford (2) 11 (1960), pp. 124-136.
- [2] M. G. Barratt and M. E. Mahowald, Lecture this conference - unpublished.
- [3] B. I. Gray, <u>On Desuspending Elements with Nontrivial</u> e-<u>invariant</u>, Topology (to appear).
- [4] P. Hoffman, Thesis, Manchester University (1966).
- [5] P. Hoffman, <u>Relations in the Stable Homotopy Rings</u> of <u>Moore Spaces</u>, Proc. Lon. Math. Soc. Vol. 18, (1968), pp. 621-634.
- [6] J. P. May, <u>The Cohomology of Restricted Lie Algebras</u> and of Hopf Algebras; <u>Application to the Steenrod</u> Algebra, Thesis, Princeton University (1964).
- [7] J. D. Stasheff, <u>Homotopy Associativity of H-spaces</u> <u>I and II</u>, Trans. Amer. Math. Soc. 108 (1963), pp. 275-312.
- [8] H. Toda, <u>Composition Methods in Homotopy Groups of Spheres</u>, Annals of Math. Studies, Number 49 (1962).
- [9] H. Toda, Extended pth Powers of Complexes and Applications to Homotopy Theory, Proc. Japan Acad., 44 (1968).