Perturbation Theory in Homological Algebra

V.K.A.M. Gugenheim and R. James Milgram

Let A_1, A_2 be (graded, augmented, connected) algebras over a ring with unit R. (In the present exposition we assume characteristic 2. This is merely to avoid signs.) $A_1 \otimes A_2$ has a canonical multiplication; in the theory of Hopf algebras a twisted multiplicative structure frequently occurs which has the following properties:

 $a_{2} \circ a_{2}^{i} = a_{2}a_{2}^{i}$ $a_{1} \circ a_{2}^{i} = a_{2} \circ a_{1}^{i} = a_{1} \otimes a_{2}^{i}$ $a_{1} \circ a_{1}^{i} = a_{1}a_{1}^{i} + \text{terms in } A_{1} \otimes I(A_{2})$

where $a_1a_1 \in A_1$, a_2 , $a_2 \in A_2$, • denotes the "twisted" multiplication, juxtaposition the canonical one and we have identified a_1 with $a_1 \otimes 1$, a_2 with $1 \otimes a_2$; $I(A_2)$ is the augmentation ideal of A_2 , i.e. the terms of degree > 0.

When this structure is iterated, we are given algebras

 A_1 (i = 1,2,...) and again $\bigotimes_{i=1}^{\infty} A_i = A_1 \otimes A_2 \otimes \cdots$ has a canonical multiplication denoted by $\Phi_0(\omega \otimes \omega^i) = \omega \omega^i$ as well as a twisted multiplication $\Phi(\omega \otimes \omega^i) = \omega \cdot \omega^i$. To express the appropriate condition which is roughly that $\omega \cdot \omega^i - \omega \omega^i$ consists of terms "further to the right" it is convenient to introduce a "weighted filtration" which is fundamental to all that follows. If $A = \bigotimes_{i=1}^{\infty} A_i$ we define $F_p = F_p A$ as the

69

submodule generated by all elements of the form

where $a_{i,n_{i}} \in A_{i,n_{i}}$, $A_{i,n_{i}}$ denoting the n-dimensional component of A_{i} , and such that

$$n_1 + 2n_2 + \dots + in_i \geq -p$$
.

Clearly $F_pA = A$ if $p \ge 0$, $F_p \subseteq F_{p+1}$, $\bigcap_p F_p = 0$, $\Phi_o(F_p \otimes F_q) \subseteq F_{p+q}$.

We now introduce our assumptions:

- AO) Each A, is a commutative algebra.
- Al) (Convergence Assumption) There is an increasing integer function $\gamma(i)$, $\gamma(i) \longrightarrow \infty$ as $i \longrightarrow \infty$, such that $A_{i,n} = 0$ if $0 < n < \gamma(i)$.

A2)
$$(\Phi - \Phi_0)(F_p \otimes F_q) \subset F_{p+q-1}$$
.

In the elementwise notation, if $\omega \in F_p$, $\omega \in F_q$ then $\omega \cdot \omega \cdot - \omega \cdot \epsilon F_{p+q-1}$; this means that the difference is composed of terms "further to the right" -- i.e., with bigger subscripts. It can be verified, for instance, that the usual representation of the Steenrod algebra (due to Milnor) does satisfy this condition.

From now on, let A denote the algebra \otimes A_i with the "twisted" multiplication Φ . The problem we wish to consider is the computation of Ext_A(R,R).

For each A_i we choose a resolution (e.g. the standard construction) $W_i = U_i \otimes A_i$; with differential d_i and contracting homotopy s_i . We assume -- as in standard construction -that $s_i W_i \subset U_i$.

It is well known that

$$W = \overset{\infty}{\otimes} W \approx \overset{\infty}{\otimes} U_{i} \otimes A$$
$$i=1 \qquad i=1$$

with differential

$$d = d_1 + d_2 + d_3 + \cdots$$

(using an evident "abuse" of notation) is a resolution for the algebra with product Φ_0 . The appropriate chain-homotopy is $S = S_1 + S_2 + S_3 + \cdots$ with

$$S_i = A_1 \otimes \cdots \otimes A_{i-1} \otimes S_i \otimes \epsilon_{i+1} \otimes \epsilon_{i+1} \otimes \cdots$$

where A_i denotes the identity and ϵ_i the augmentation of A_i .

Our aim is, by a sequence of "perturbations" to derive, from d, a differential D which is also a differential of $\overset{\infty}{\otimes}$ U_i $\overset{\infty}{\otimes}$ A, but is compatible with $\frac{1}{2}$ instead of $\frac{1}{2}$.

As a first approximation we take D, defined by

$$D_{1}(\omega \otimes a) = (d\omega) \cdot a$$

where $\omega \in \otimes U_i$, $a \in A$ and \circ denotes the twisted multiplication. Here we must explain that, since the A_i are commutative (cf. (AO) above), W_i and U_i are algebras. We give $\otimes U_i \otimes A$ the canonical algebra structure, using the product Φ for A.

It will be convenient to retain the symbols Φ and \bullet for this multiplication. Clearly, now, D_1 is " Φ -linear", as required; but $D_1^2 \neq 0$ and

is, in general, not equal to zero. The following, however, follows from (A2):

If $\omega \otimes a$, $\omega \otimes a'$ have filtrations p,q respectively, then (1) above has filtration $\leq p + q - 2$ (2).

The filtration used here is the following: An element of $W = \otimes U_i \otimes A$ is given as filtration the sum of the "internal filtration" derived from that of A + the homological degree. Thus, if $a_i \in A_{t,n_i}$ and we use the standard construction, then

$$[a_1, a_2, \dots, a_k]$$

has filtration $\leq -t(n_1+n_2+\ldots+n_k) + k$. D₁ thus decreases filtration by at least 1, and S increases it by at most 1.

We now describe the mechanism by which, starting from D_1 , by a sequence of perturbations D_2, D_3, \ldots , we derive the required differential D. First, some notations and definitions: $I(W_i) = I(U_i) \otimes A_i + U_i \otimes I(A_i)$ is the augmentation ideal of the construction $W_{i}, \Pi_{i} \approx W_{i}$ is the projection onto the summand

$$W_1 \otimes W_2 \otimes \dots \otimes W_{i-1} \otimes I(W_i).$$

Thus $\Pi_0 + \Pi_1 + \Pi_2 + \dots = identity.$

In the remaining formulas we assume that $\overset{\boldsymbol{\omega}}{\underset{i=1}{\otimes}} W_i$ is always written in the form $\underset{i=1}{\otimes} U_i \overset{\boldsymbol{\omega}}{\underset{i=1}{\otimes}} A = W.$ $\iota_i: U_1 \overset{\boldsymbol{\omega}}{\underset{i=1}{\otimes}} ... \overset{\boldsymbol{\omega}}{\underset{i=1}{\otimes}} W$

$$l^{i+1}: U_{i+1} \otimes U_{i+2} \otimes \dots \otimes A \longrightarrow W$$

are the injections.

Suppose now $G:W \longrightarrow$ is a map of R modules. We define $L(G):W \longrightarrow W$ and $\theta(G):W \longrightarrow W$ by

$$L(G) = \sum_{i=1}^{\infty} \Phi\{\Pi_{i+1}G\iota_{i}\otimes \iota^{i+1}\}$$
$$O(G) = \sum_{i=1}^{\infty} \Phi\{S_{i+1}G\iota_{i}\otimes \iota^{i+1}\}$$
$$= L(SG).$$

Observe that if G decreases filtration by at least p, then so does LG; while θ G decreases it by at least p - 1. The following can now be proved; the verifications are quite tedious: 1) L(L(G)) = L(G)

2) If G = L(G) and H = L(H) then GH = L(GH)

3) We denote by [G,H] the commutator GH - HG.

$$[D_1, \theta G] = \theta [D_1, G] + L(G) + X(G)$$

where X(G):W ----> W has the following properties:

- (i) L(X(G)) = X(G)
- (ii) If G decreases filtration by p, then X(G) decreases it by at least p + 1.

The "error term" X(G) arises because the expression (1) above is, in general, not zero. It owes property (ii) to (2) above. 4) $D_1^2 = L(D_1^2)$ 5) D_1^2 decreases filtration by at least 3. It is clear that D_1 decreases filtrations by 1, hence D_1^2 by at least 2; the fact that it is "one better" is due to $d^2 = 0$ and the relationship (A2) between Φ and Φ_0 . We now define, inductively,

$$D_{n+1} = D_n + \theta(D_n^2) \quad (n \ge 1)$$

and prove

6) $D_n^2 = L(D_n^2)$ 7) D_n^2 decreases filtration by at least n + 2.

Proof: by induction, n = 1 are (4) and (5) above. Now:

$$D_{n+1}^{2} = D_{n}^{2} + [D_{n}, \theta(D_{n}^{2})] + \{\theta(D_{n}^{2})\}^{2}$$
$$[D_{n}, \theta(D_{n}^{2})] = [D_{1}, \theta(D_{n}^{2})] + \sum_{i=1}^{n-1} [\theta(D_{i}^{2}), \theta(D_{n}^{2})]$$

and

$$[D_{1}, \theta(D_{n}^{2})] = \theta[D_{1}, D_{n}^{2}] + L(D_{n}^{2}) + X(D_{n}^{2}).$$

Hence

$$\begin{split} \mathbf{D}_{n+1}^{2} &= \mathbf{D}_{n}^{2} + \mathbf{L}(\mathbf{D}_{n}^{2}) + \theta[\mathbf{D}_{1},\mathbf{D}_{n}^{2}] + \mathbf{X}(\mathbf{D}_{n}^{2}) \\ &+ \sum_{i=1}^{n-1} [\theta(\mathbf{D}_{i}^{2}),\theta(\mathbf{D}_{n}^{2})] + \{\theta(\mathbf{D}_{n}^{2})\}^{2} \\ &= \mathbf{X}(\mathbf{D}_{n}^{2}) + \theta[\mathbf{D}_{1},\mathbf{D}_{n}^{2}] + \sum_{i=1}^{n-1} [\theta(\mathbf{D}_{i}^{2}),\theta(\mathbf{D}_{n}^{2})] \\ &+ \{\theta(\mathbf{D}_{n}^{2})\}^{2} \end{split}$$

by the inductive hypothesis and (6). Now, due to L(X(G)) = X(G), $D_{n+1}^2 = L(D_{n+1}^2)$ follows from (2). Since D_n^2 decreases filtration by n + 2,

$$X(D_n^2) \text{ decreases it by } n + 3;$$

$$\theta[D_1, D_n^2] = \theta[D_n - \theta(D_1^2) - \dots - \theta(D_{n-1}^2), D_n^2]$$

$$= -\sum_{i=1}^{n-1} \theta[\theta(D_1^2), D_n^2]$$

decreases filtration by at least n + 3; and the same is true of $\sum_{i=1}^{n-1} [\theta(D_i^2), \theta(D_n^2)]$. This completes the inductive proof of (7).

Since

$$D_n = D_1 + \theta \{ D_1^2 + D_2^2 + \dots + (D_{n-1})^2 \}$$

it follows from the "converge assumption" that if $\omega \in W$ there is an n such that

$$D_m \omega = D_n \omega$$
 for all $m \ge n$.

We can thus write in a well defined sense

$$D = \lim_{n \to \infty} D_n = D_1 + \sum_{i=1}^{\infty} \theta(D_i^2)$$

and it follows from the convergence assumption and (7) that $D^2 = 0$.

To prove that D is the required differential we must prove that W with differential D is acyclic. To prove this we set up the spectral sequence induced by our filtration. In this spectral sequence, $\{E^{r},d^{r}\}$ say, since D_{l} - d decreases filtration by 2, it is immediate that $d^{l} = 0$, $d^{l} = d$. Hence E^{2} is trivial. Hence, by convergence, so are E^{∞} and H(W).

This completes the proof of the fact that $\{W,D\}$ is a resolution for A.

Suppose we are given two algebras A, B each with the sort of twisted structure discussed above, and constructions $\otimes U_i \otimes A = W$ (for A, as above) and $\otimes V_i \otimes B = W$! (for B) together with a map f:W \longrightarrow W! compatible with the untwisted multiplications of A, B and the untwisted differential d; in particular, then, df = fd. By an entirely similar method of successive perturbations we can derive from f a map $F = W \longrightarrow W$ which is compatible with the twisted multiplications and such that DF = FD. This can be applied, in particular, to the diagonal map $W \longrightarrow W \otimes W$ which induces the multiplicative structure of Ext. Applying this, now, to the spectral sequence which we just used we obtain the following

- Theorem: There is a convergent bigraded spectral sequence $\begin{pmatrix} p,q,t\\r \end{pmatrix}$, d_r) with $d_r: E_r^{p,q,t} \longrightarrow E_r^{p+r,q-r+1,t}$ such that (a) $E_2^{p,q,t} = H^{p+q-t,t-q}(E^{O}A)$ (b) $E_{\infty}^{p,q,t} = E^{O}(H^{p+q-t,t}A)$
- (c) (E_r,d_r) has the structure of a differential algebra
- (d) The isomorphisms (a) and (b) are isomorphisms of algebras $E_2 \longrightarrow H^*(E^0A), E_{\infty} \longrightarrow E^0(H^*(A))$ respectively.

Throughout this statement, p + q - t is the homological dimension, t the "internal dimension" from A. Note that due to condition A(iv) on twisted multiplication, $E^{O}A$ is isomorphic as an algebra to A with the untwisted multiplication Φ_{O} ; except that the grading of $E^{O}A$ is the <u>filtration</u> of A.

It is readily seen that this spectral sequence is analogous to a well-known spectral sequence of P. May. It is not, however, the same spectral sequence as we have used a different filtration.

If certain conditions are satisfied (and they are in the case of the Steenrod algebra), our method is, however, also compatible with the filtration used by May; and we obtain his spectral sequence.

The combination of the perturbation method with the May spectral-sequence appears to be an exceedingly powerful method of computation.

Complete details, computations and other applications will be given elsewhere.

ś