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On A Family of Tertiary Operations(I)
By Richard O. Hill, Jr.

1. Over the past several years, a great deal has
been discovered using secondary cohomology operations.
However, relatively little has been done using higher
cohomology operations. One of the reasons for this is
the difficulty in determining enough information about
the relations which determine the operations, which in
many cases is almost insurmountable already for teriary
operations. It is our purpose to report on a method
which enables us to evaluate certain types of tertiary
operations with only a small amount of specific infor-
mation about their relations, and to give an example in

which this method applies.

Let A Dbe the mod 2 Steenrod algebra. In his

thesis Peter May [6] states that there are elements

.al=-1
e, e 12t HA)

products hth.hk

linearly independent from a Z, basis for HB(A). We

, 1 > 1 which together with those

which Adams [1; Th. 2.5.1] shows are

will show that the tertiary operations Yi associated
with cy are defined and contain zero on certain

universal Thom classes.

(I) This research was partially supported by the
U.S. Army Research Office (Durham). It is part of the
author's Ph.D. thesis [4] submitted to Northwestern
University under the direction of M. Mahowald.
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In particular, let BO[k] be the total space of
the (k - 1) - connected tovering of BO, and let

U, be the Thom class of the universal bundle over BO[k]

k
induced from the universal bundle over BO. For

i=ta+b, 0<b<3, let (i) = 8a + 2P,

Theorem 1.1. Let 1> 1. If k < o(i + 2), ¥y

is not defined on U,. If k > g(i+ 2), ¥; 1is defined

on Uy and O e ¥;(Uy). If i=1, v, 1is not defined

on U, for k< w(2) =24 and ¥;1(U,) = 0 mod 0 for
k > U,

In proving this result, we also show the following:

Let ®3 4 be secondary operation based on the relation

i i i-1 i+1 L] J
Sq2 Sq2 + 23 ng -2 ng =0
w(

2

i.e., the operation associated to hi e H2(A).

Theorem 1.2. If i < o(i), ®; ; 1s not defined on
s

U

ik I K> (i), ¢y 4 is defined on Uy and 0 = g ,(Uy)

mod O.

We note that the ®v; 4's and the ¥;'s are defined
3
similarly on UBF’ i.e., the Thom class of the universal
sphere bundle. Gitler and Stasheff [3] proved that

0 £ @) 1 there and recently Mahowald has shown 0 f L
2 2
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for i > 1. It can also be shown that ¥y is non zero,
but the question for ¥y for i > 1 1is more complica-
ted since it is not known whether ¢y is a permanent

cycle or not in the Adems spectral sequence.

2. We will construct our tertiary operations in
the sense of Maunder [5]. We require a chain complex

d d
2 )
C2 < C

d
1
Co < 1 3

which is admissible in his sense. Fix i > 1 and let

Co = A o C dimc = O
C;=@Aoc; 0<Lj<i+l d-:uncJ.=2J
- : DY SR
Co=@®A o 5k 0<Jj<k<i+ 1, dim cj,k'2 + 2
K#£ZJj+ 1
C5=A o b, dim b = 11 o 2371
, 2J
Define dl(cj) = 59 c. To define d,, we follow Adém
[1] and use the Adem's method [2] to write the Adem relation
k j. ok
2d oK o odiofr
Sq° sq° + Z_Ar Sq 59" = 0, A, € Z,
od  of k-l 2 = 0 (recall j < k and

as S S S
R F L %k, e

J #k - 1) where aj k.r € A, and we define
s 3

2j K-1
dz(cj,k) = 89" ¢ + ET:O a5 x,r Cr
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As we will require it later, we note here that we can

choose the is the

k-1
k
subalgebra of A generated by {Sql,....,Sq2 }, since
od ok
Sq- , Sa € A

' .
aj,k,r s in Ak-l’ where A

k-1°
To define d3, we construct an element 2z ¢ 02 lloii'l
such that d2(z) = 0 and which corresponds to May's
element cy € HB(A). Since cy is represented by Massey
i i-1
2 . 2 2
product <hi’ hi-l’ hi+l > we start with 2z' = Sq° Sq

ci+l, i+1 and add to 2z' other elements of Co to get

z. Now dg(z') = Z?+l Yy €y where vy € A and in fact
3=0
Yipl = Sq Sq Sq . We will first find explicit

elements Bj i+l € A such that
s

-1 Zl
d, (z' + B. Ye, ) =0 o ca,; C
2 szo J,i+17%5,i+1 jo0 9 J
and show that there are elements Bj x € A such that
2
dg(z Bj,k cj,k) = E§=O Gy Cys where the first summation

is taken over 0< J<k<i, k# j+ 1.

1
To shorten notation, we write Sqg

l,....,ir.

i i

1s42...5q T as

i

Sq
i ,4-1 i+l 1 i-1 441 _i-2

Then Sq° ’2  *2 = sq® (sq® ¢4 25 ) sq°

i-l+2i+l_23’2j)
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i i+l 5i-1 -2 i ,1-1, .3+ .F AJ
_ g2 R, Z% 2t, 2t Tt rpd 2
J=0
i ,i+l i-1 -2 i 141 ,1i-1 .3
_ 5q2 22t Ef rsq2 +2 2t e
J=0
J 1+l k 51-1 3,5k
+ Zk Sq2 +2 -27,2 2Y+2 J
=0
_ 21+2i+1
Thus: Propositicn 2.1 We can let Bi-l i+1 = Sq
2'+21+l i-1 23 i Li+l ok ~i-1 k

J J
_ 2742 -27,2 -29427,
and Bj,i 1= Sqg + Z o Sq

As we shall need it in our application, we note here:

Corollary 2.2: Each B, is a sum of admissible

J,i+l
monomials, each of wihich has excess > 21+l + 21_2

b4

i+l

0<Jj<i-2, and By, 5,7 has excess = 2t 4+ 2

Even though we have done it for the 's it

Py, 141
would be a practical impossibility to determine all the

BJ,k's explicitly, mainly because of the complicated form
of the aj K r's. We will be able to prove they exist by
i E

proving:

Theorem 2.3 The Sequence

d i d
Aoc <2 @A o, L ep e, k 0L I <LkLi, &k i+ 1
JO J J’ - -
is exact.
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This allows us to compute the Wi's. For, up to this
point, all that we have constructed is a z" =
o
Z:Bj,i+lcj,i+l and we have yet to complete 2z to z.

To do this, we need to know that there are 'S ¢ A

J,k
such that

() Py,x%5,%) = da(2")

where the first term is summed over 0< jJ<k<i, k #J+ 1.
i

Since we have constructed z" so that d2(z") c® A . Cys
J=0
Theorem 2.3 gives us the result, and we define

‘.‘\ .

and define dj(b) = Z,

Before proving 2.3, we point out a corollary. Ad ms

[1; p 79] notes that any secondary operation e« assoclated
.. J
with a relation Z?aj Bj = 0, where Bj = Sq2 , 1s a

linear combination of the "basic" operations ©. p» Where
b4

is the secondary operation associated with the
r m
relation Sq2 Sq2 + Z‘a 2l = 0 and consequently

r,m,i
associated with the elements Crom € 02 , above. However,
]

the only thing which limits which Pp m's is the degree
b

Cr,m

of the relation. Now by his reasoning and by Theorem 2.3,

we have
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Corollary 2.4 If ¢ is a secondary operation

J
associated with a relation E:aj Sq2 =0 and jJ< i,

then ¢ 1s an A-linear combination (in the sense of

Adams [1; p 79] )of the Adams operations e where

r,m
r<m< 1.

Outline of proof of 2.3. Let Ar be the subalgebra
r+1
of A generated by (Sql,...,Sq2

1, 1let
H*(A.) = Ext, (Z2,,Z,), &and let h. = {[:23]} € Hl(A )

r Ar 227272 J - >l r’?
where g7 € Ar* is the projection of the Milnor basis
element El € A¥, Then by a straightforward modification

of Adam's proof for H¥*(A) [1, Th& 2.5.1], we have

Theorem 2.5
(0) HO(Ar) has as a base the unit element 1.
(1) H(

Ar) has as a base the elements hj, 0<j<r+1

(2) HQ(Ar) has as a base the elements hj hy

0L J<k<<r+1, k#j+ 1.

Thus similarly to Adams [1, pp 87-8],under the duality
between Ext, Tor and the generators of a minimal resolu-
tion, we may construct the first three terms of a minimal

resolution of 22 over Ar
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£ dl d2
0 <{— 22 <--—-DO <= Dl <——-D2

as follows. Let D, = A, e ct', dim ¢! = 0, and
r+l .
g(c!) = 1; let D, = @ A, e cl, dimc! = 29 and
1 j-0 J J

od
dl(cj') = Sq cj' and let D, = ® A c'j,k’ 0<Jx«

2
. ' _ nd k
k<r+1, k#Jj+ 1, dim ¢ ik = 29 + 27, and d2(c'j,k)
2j k-1
= o+ . c! where th . !
Sq chy ZT:O ag,k,r r? ere e aJ,k,r s are

the same as in the un-primed case by their choice above.

Therefore, we have the sequence

dl'r+1 d, ' '
A ct' <—= @ A_ ci!t <—— ® A J x O Jj<k<r+1

r . r °J
J=0 K £J+1
is exact. However A is an Ar module and by Milnor

and Moore [7, 4.4], A is a free A_-module.

Therefore the sequence

A o)

led, led}
Ae@ C!<—=A QA Cq <—= A @ C}
r r

is exact., Since the Cj"s are free

1 ~ ~
A® CO = A o Cy» = ® A o ¢ and

Ap r J= 3’

! ~v .
A @h Co=™A o s ke 0L Jj<Lk<r+1, k#J+1,

and under these isomorphisms, l&dé corresponds to dj.

By letting r =1 - 1, we are done.
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At this point, we have a chain complex, €,
d da d

1 2 )
Ciu ©«—C <— Gy < Cs

where d3(b) =2 = E,Bj,k cj,k which we claim determines
a tertiary operation Wi; we have only to show that &
is admissible in the sense of Maunder [5 ; 2.3]. To do
this, by Maunder [5 ; 2.4.1] it is sufficient to show

Ejaj,k 5,k T 0 mod O indeterminancy

where mj x are the operations associated with
2

S S / S = 0, 1.e., are associated
q q + Z-lr,___o aj’k’r q ;] b ] e

with the chain complex

dp
C0 <Z—---C1 <—= A cj,k
But E:Bj,k wj,k is a secondary operation ¢ associated

with the chain complex,

d d
1 2
Co <— Cl <— A e z

which has zero indeterminacy since d2(z) = 0, and differs
from the zero operation by primary operation vy € A such
that vy ¢ ¢ ¢ (Coker dl)llozi'l? by Adams [1, Th. 3.6.2].
But it is easy to check that d; 1s onto in dim 11-21'1,

so0 vy = 0.



What we are really doing here, of course, is to

determine:

Corollary 2.5: \ is based on the relation

<J<k<i+1l, k#J+ 1.

i_" _
LPi,k P,k =0 O

3. In [12], Stong has determined H*(BO[k]; Zs)-

As we shall need some of his results, we quote them here.

As above, for n = 4a + b, 0 < b < 3, let o(n) = 8a + 2P,

(Thus, the (n + l)St

non-zero homotopy group of BO is
in dimension ¢(n), and consequently, the (n + l)St

different BO[k] is BO[¢(n)].)

Proposition 3.1 (Stong). In H*(BO[o(n)]; 22),

Won #0 and Wy =0 for i<2" If p_ : BO[o(n + 1)]

*
—> BO[op(n)] is the projection, then p, = O mod 2 in
< 2n+l

dimensions

Corollary 3.2 Let MO[k], be the Thom space of the

universal bundle over BO[k], let U, e H*(MO[ (n)]; 22)

be the Thom class, and let P35k be the mod 2 secondary
b

od ok k-l o
+ a Sq = 0,
) J,k,r

\

operation associated with Sq Sq

. ) _ 0 . '
0<J<k, k#Jj+ 1. Since Sg (Un) = U, Wp and Py, x

: 2P
is defined on Un only when Sq Un = 0, p < k, we have
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(). ®4,x Ls not defined on U, for k > n,

(11). wj,n—l(Un) is defined, and

(ITI). O € mj’k(Un), k<n -1,

We can be a little more precise with II:

Proposition 3.3 (I). &, 1 ,_3U, = O mod O.
»

(II) For n < 3, there is at least one j, O £3<n-3,

such that 0 £ ®5, n-1 (u,).
Note that these two propositions include 1.2.

Proof: Part II was essentially proven by Stong in [12].

By Adams [1], for n > 3 there are Yi,3 = Yi,j,n € A such
that Sq2n = Y’y s 3, 0<<1< j<na=~-1, AL +1

L i,J i)J’ - - - ! :
Therefore,

o |
O#AW U =S89 U =
n n n Z.ljsn"l

Y1,5 91,5 % = ©
7
+ ) 4]
L.‘i-<_n_3 i,n"l n’
by 3.2. We will outline the proof that ®.1 . n-1Uy) = 0
2

below,

We now construct the setting in which we prove
Theorem 1.1. Let E —£ X vbve an m-plane bundle, D —> X

and S —> X Dbe the associated disk and sphere bundles
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A,SA the

restrictions of D, S to A, respectively. Assume that

to p. Let A c X, closed, and denote by D

{DA, S} 1is an excisive couple in D, so that the inclusim

map, i, induces an isomorphism
i%® ¢ H*(DA Js, 8) —> H*(DA, S)

(see Spanier [9, p 188]). Let U ¢ H(D, S) be the Thom

m
class and U, e H (Dys SA) be its restriction to (D,, SA)’
so that
*
' (x) 2> () 2o g™%(p,s)
and
r p* r UUA r+m
H (A) > H (Dy) —= H (D, S,)

are the Thom isomorphisms. Hereafter, we confuse nota-

tion and denote by wvU the isomorphism

oU = (U) o p : H'(X) —> H™™(D, s) and by uU, the
isomorphism vU, = (i*)-l(uUA) o p* : H'(A) —> Hr+m(DAJS, S).
Further, there is a homomorphism Hr(x,.A) — Hr+m(D,DAFB)

given by the composit
*
H (X, A) &= #"(D, D,) £> E™"(D, D, 5)
v
which we denote by UX,A'
Proposition 3.4 The homomorphism "UX p 1is an
]

isomorphism.
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This result is well known and we outline the proof

only since we will need it below. In the following diagram

=% : -
oo e T™ T (0 U5, <l ™7 (p, s )<E-a™T (0,D,U8 )<Ea™ "1 (D, 5 ). ..

uU

A vU “Uy,A T wUp

(Diag. 1) * *

.. &—HT(A) dyt(x) <Eut(x,a) S utLa)—...
where Jj, Kk, 5, i are the inclusions, the rows are exact,
being the sequences associated with the triple (D, DA , S)

and the pair (X, A), and each of the squares commute (see

Spanier [10; 5.6.8 and 5.6.12]). Therefore, YU

X,o 1sen

isomorphism by the 5-lemma.

Corollary 3.5 H*(D,D,US) = U o H*(X,A), where U

is the Thom class of (D, S).

n i
We now outline the proof of 3.3.1. Let (Sq2 -2 )
2n--l 2n_2n-2 oy
be the vector (Sq » Sq 5000550 )} and let (Sq
2n--l 2n-2 1
be the vector (Sq , Sq yeees SQ7).

21
)
Then as noted

above @, ;7 ,_7 1S based on the relation
b

n ,i i

n i i
- 2 -
#2)(sq% ) = Jsa® F sd® =0

(sq

n
27=1
and we wish i luat ° .
sh is evaluate cpn_l’n_l(Un)c:Un H (BO[ p(n)])
Using the notation of Diagram I, let X = BO[wp(n-1)] and

A = BO[g(n)]. Then, by Peterson and Stein [8]

on_1 ol
cpn-l,n_l(Un) = (Sq )3 (Sq Un_l)
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n ,i

i
22y o P

“L(Bolw(n)1)) + 3¥(0,_,+ B2 ~L(Bo[w(n-1)1),

where 93 is the functioned cohomology operation defined

mod Z?Sq

by Steenrod [10]. But the indeterminacy is 0. For

n

Uye 37 B TH(BO[g(n-1)]) =

]

(0, p e 52 "L(Bo[o(n-1)1))

U «0=0 by 3.1, and

n
i i-1 n ,i i
olt.p 2 pftot oty
8¢ 7% (U e B (Bo[e(n)]) = U o Sq H- " (BO[(n)])
by 3.1 = Un e 0 for dimensional reasons. Thus, we

n Ai

i
have only to evaluate (Sq2 -2 )3(Sq2 Un-l)’ i.e., we

. 2l.1
find an x e H (BO[(n)]) and a

i
Zy € H® (BO[e(n)], BO[@(n-1)]) such that
i n ,i
- 2 2 =27
K (Up_3® 23) = Sa° U,y and ) Sq° "2 (U _; * zy)= S(U,* x). We

- i
- then have o, , . (U ) = U - x. However sq° U =0
»

n-1

for i< n - 1i by 3.2, so we let z; =0, 1<n-1and
n=- *
pick a ¢ e (BO[¢(n)], BO[p(n-1)]) such k (a) = W

2n-l,
- 21’1-1
so that k (U e a) = U - Won-1. Then Sq (U,° @) =
21’1-1 21’1-'1
(sq Un) ca+ U < Sq a+ 0
= (Uge Wpn-1) ca+ U 2 a® =u «a®?+ U +a?=o.

Thus, we must have x = 0,

We are now ready to prove 1.1. We again use Diagram I,

this time with A = BO[o(n + 1)], X = BO[¢(n)], and we will
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use a Peterson - Stein formula for tertiary operations,
i.e., Maunder's Axiom 5 [4], and we proceed similarly to

the above. Since Yn-2 is based on the relation
ZBi,rcpi,r=0,0§_igr_<_n-l,r;éi+l, by 2.5

it is defined on Uj ‘if ¢i,r(Um) is defined and contains O,
simultaneously, 0 < i <r<n ~ 1. Therefore, for

n>3by 3.2 ¥ o is not defined on U for m < o(n)

and is defined otherwise, by 3.1 and 3.2.

The case for Yl is exceptional and trivial. Since
Ht(BO[BD =0 for t < 8, ¢&,r(U3) = 0 for r < 2. Theérefore,
¥1(U3) = 0 is defined and € Uy « H2(BO[8]) = Uze O = O.

Now Yl(Uk) = 0 for k > 3 follows by naturality and for

dimensional reasons.
To evaluate Yn-2(Un+1)’ we find an

X e Hll.en-B-z(BO[cp(n +1)]) and

ol or 1
Zy,r € H (BO[@p(n)], BO[e(n + 1)) such that
- %
k (U, o Zi,r) € mi,r(Un) and
XBir‘(Un"z:'n.r)"'c"x 0<igdrdn-1, r#i+ 1.
4 ’

We then have

X
X eUyq € ¥, o(Up4)+ImJ

it
o
‘.

- % ° n"3_
However, Im J  =U_ ..+ 3 HT? "~2(Bo[o)]) by

n+l J
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3.1, since 11 o 2032 ¢ 1l

By 3.2 and 3.3, we can choose z; p=0for r#n-1
2

ori=n-1. Further ai,n_l(Uno zi,n-l) = U e ai,n-l zi,n~1

by the construction of 51 n-1 in §1 and since qu U, =0,
2
p < 2n; and Bi,n-l(zi,n-l) = 0 by [11; II§5], since the
i i< - 3. herefo
excess Bi,n-l > dim zi,n-l’ 0 < n 3 Therefore

0 = zrﬁi,r ¥; , SO Wwe must have x = O.



95

[1] Adams, J. F., On the Non-existence of Elements of
Hopf Invariant One, Ann. Math. (2) 72 (1960},
-164 .

[2] Adem, J., The Iteration of Steenrod Squares in

Algebralc Topology, Proc, Natl. Acad. Sci. 38
TISB§77'7§5:;§6“EX

[3] S. Gitler and J. Stasheff, The First Exotic Class
of BF, Topology 4, W1965), 257-266.

[4] Hill, R., Thesis, Northwestern University, 1968.

[5] Maunder, C. R. F., Cohomology Operations of the n-th
Kind, Proc. London MaE%. Soc., I3 (1963), 125-154

{6] May, P., Thesis, Princeton University, 1964.

[7] Milnor, J., and Moore, J. C., On the Structure of
Hopf Algebras, Ann. Math (2] 81 (1965), 21l-264,

[8] Peterson, F. P., and Stein, N., Secondary Cohomology

Ogerations : Two Formmlas, Am. J. Math. Ol
» =305,

[9] Spanier, E. H., Algebraic Topology, McGraw Hill, 1966.

[10] Steenrod, N. E., Cohomolo Invariants of Mappings,
Ann.Math (2) 50 (Ignsg, 95%-988.

[11] sSteenrod, N. E., and Epstein, D. B. A., Cohomolo
Operations, Annals of Mathematical Studles (50)
Princeton University Press, Princeton, (19627.

[12] stong, R. E., Determination of H*(Bo(k,....,)'ze)
and H*(BU(k,....,);Za), Trans. Am. Math,

Soc., 107 (1963), 526-544




