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LOOP OPERATIONS

by David Kraines

In this paper we introduce a new class of higher order
"cohomology" operations of several variables from
H*(X) to H*(QX), the loop operations. The kP order loop
operation < Ul,...;Uk>> is defined as a subset of

8
Hn_z(QX) if the k—rfold matrix Massey product < U u

1reees >
contains 0 in B™(X). The primary loop oparation is the loop
suspension homomorphism o. The secondary loop operation is
related to the operation <a,b,$%> defined by Spanier
(p.522 [111]).

Loop Operations can be axiomatized, they can be described
by universal examples or with the Eilenberg Moore spectrél
sequence, or they can be constructed from cochains using the
main result of the author's paper [5]. We shall start with
the last approach.

Throughout this paper we shall assume that X is a simply
connected space whose singular cohomology over a fixed P.I.D.
R has finite type. Let C*(X) be the normalized singular cochain
algebra modified so that CO(X) ~ R and Cl(X) = 0. PFinally let
QC*(X) be the quotient complex of indecomposable cochains,

Theorem 1. With the above notation

Hi(ex) ~ H(sLgc*(x))

1

where (s *A)4 = AL rop g complex A.
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This is the main result of [5]. As a corollary of
the proof of this theorem we have that the natural pro—

jection _
BC*(X) — T(X) — qc™(x)

from the reduced bar construction of C*(X) to the indecom—
posable cochains is a :ecochain equivalence.

The projection © : C%(X) — (s_]‘QC*(X))q-;1 is a
cochain map of degree —1. If we identify s_lQC*(X) with

C*(SZX), then 1t induces a homomorphism

o: H %(x) — ﬁq_l(szx) which is the ordinary
loop suspension homomorphisn., |
Recall that the k- fold Massey product #s SUpseee,uy >
1s defined as a subset of H™(X) if there is a defining

system of cochains (ai jz’lfijjf_k,(i,j) #(1,k), such that
2

a; 4 1s a cocycle representative of us and
, X

L.
Sai,5 =T 4 ey Lt

where a = a(see [4]). This definition can be

trivially extended to the case where (Ul,...,Uk) is a

multipliable system of matrices with entries in B (X).

That is U, and'ui+1 are multipliable and the matrix product

Ui"‘Uj '1s a matrix whose entries are homogeneous classes and

which is 1 x 1 if (i,]) = (1,k) (see [7]).
If 0€U , then there is a defining system (a4 J.) for

’

-~

Z and a cochain al,k such that \gal,k—al’k.
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We will call the total set of cochains A—:—(ai j), for all
s

1<i<j=<k,a total defining system for M .
Assume 0<2{ and let A be a total defining system for Z( .
Then T a is a cocycle of QC*(X) since &§a is decom—
1,k 1,k

posable,

Definition 2. Let (Ui,...,Uk) be a multipliable system of
matrices with entries in H *(X). We say that the kth order
loop operation “9 = < Ul,...,Uk>S2 is defined if k=1 or

if the matrix Massey product = <U1,...,Uk>contains 0
SH™(X). If it is defined, then Y, is o u; if k=1 and
otherwise 1t i1s the set of all classes WEHH—B(QX) for which
there 1s a total defining system A with =« al,k a cocycle

representative of w. In addition we set <z, = 1€ HO(9X).

Note that if Z./S2 is defined, so is (¥ )82:< Usyonn, U>

i, J

for 1§i_<_j§k. and that the latter is in general not zZero.
Also the loop operations are clearly natural These operations are
not cohomology operations in the usual sense since they go

from H*(X) to H*(QX), but Z{Q is a kth order operation in the

sense of Spanier [11].

The indetermininacy of Z{Q can be described in terms of
lower order matrix loop operations. More precisely, if
x,yQZ{Q, then either x—y & Im o or there are matrices

Vl""’vk—r for some r>1 such that

U V v
< (upvy) (BB gy, L. BTy

1’1 >

U Q

r+2 Uk

1s defined and contains x—y. For example the indeterminacy
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of < u,v,w >, 1is Im 0 together with classes in<(ux\(Z.) > o
These latter loop eoperations are defined if uy +xw=0, that
is an element of the indeterminacy of the Massey triple
product < u,v,wW>vanishes.

Example 3. Let u&H" (X) and vERP(y) and assume uv =0,

m+n—1

Then there 1s a cochain c&C (X) such that §c=ab

where a and b represent u and v respectively. Clearly
< u,v > C Hm+n_2(9.X) is the set of all classes

{t(c+2z)} where z ranges over all cocydesin Cm+n—l(X).

But {T2z}=0 {z} and so < u,v >, 1is a coset of o gm+ =11y

in HUY BT 2(0x),
Example 4. Let u and v be as above, but do not assume uv=0.

By commutativity

+ v
< (uv) (— u)>$2 is defined and

1s represented by + 7(a « b). It will be seen in Example 17
that +cuov is in this coset.

As an application of the above let X=SMv S® and let
u and v be the generators of H%(X) in dimensions m and n respec—
tively. Then we may express the low dimensional classes of

H*(QX) without indeterminacy as follows:

dimension generator
0 < >s_a = 1
m—1 < u >9=cu
nfl SV >o = ov
em — 2 < u,u>g
2n — 2 < V,V>g
m+ n—-2 < u,v >‘(‘2 and < v;u>9.
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Purthermore we have the relation

< u,v >, + < v,u>,=+ <y > SV >o .

Y 94 - &

We now list some elementary properties of the loop

operations,

Property 5. if r € R, then » < Ul""’Uk:>9(:<U1""’rui""’uc>9

Property 6. < Ul,...,Uk:>Q4-< Vl""’vk>9 C
< Uq Vl)’ ( o v ) s eee, (V ) >0

~Property 7. If W is a matrix with entries in H (X) and if

both loop operations are defined, then

S Upsee s UgW, e, U =0 = < Upyees, Wil o, UL

The last two properties imply that

s . Nid 4 lr
S Ups el e,y > o< “1""’“i’""uk>9(:<u1’""ui+ui""’uk

since (u u ) = u (1,1) and (1,1)(33) =(u u )(See Lemma 1[6]).
Note that the entries of W in Property 7 are allowed to be
from HO(X). In fact if

< Ul,...,Uk:»SB is defined and W is a square matrix
is

with entries only in H “(X), such that (UpsoeosUsW,eae,Uy)

& multipliable system, then a generalization of the proof of

Theorem 6 [4] shows that < Ul""’in""’U is defined

kR
and contains 0.
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From this point on we shall assume that R is a prime
field. This condition could be weakened, but then the
results become more technical,

Under this condition the Eilenberg Moore spectral

sequence [3] has

E2 = TorH%(X)(R,R), J. P. May[6] has

described the elements of this module as equivalence classes

of slide cycles. These equivalences classes are written.

{ UiseeesUp}, where (Ul""’Uk) is a multipliable system and
UiUi+1::O for i=1,...,k-1. The equivalence relation is
essentially Property 7.

Theorem 8. If X, = < Uj,...,U >o is defined in H*(gx),

then the slide cycle {Ul,...,Uk} lives to an element € in Eg -
Furthermore if we consider © as a coset of a subgrqup of

H*(QX), then #,C&. Conversely if €EE , then & is
QL

o’
represented by a slide cycle {Ul""’Uk} in B

2
ab = <VUpse.e,U >o 1s defined. Finally for every wCEH%(QX),

such that

there 1s a loop operation Z[SB with w& Z(’SB'

The proof of this theorem uses Theérem 10 and Corollary 18
of [6], which characterizes the differentials in the Eilenberg
Moore spectral sequence; together with the cochain equivalence

B C¥(X) — qc®(X). This theorem implies that the loop

operations are related to the operations determined by the
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differentials in the Eilenberg Moore spectral sequence. But
the loop operations have, in general, considerably less in—
determinacy. Thus theorems about loop operations give results
about the differentials.

Tne reduced bar construction has a coalgebra structure

induced by the diagonal map on BC (X) determined by
k

W[al,...,ak] =:§: ;;[al,...,ar]®@%+1,...,ak].
r=o0

H*(QX) has a Hopf algebra structure and the map
Torc-)e<X)(R,R) — H"(QX)

is a coalgebra isomorphism (see [37). 1In fact for R==22,B.

Drachman [2] has introduced a product structure on

M

BC"(X) so that the map is a Hopf algebra isomorphism.

Theorem 9. Assume 2%2=< Ups oo, 2 is defined in

go '2(9x). Then
7 - : .
k(./{i’j)sz < ui,...,uj>Sa is defined
, 2.7
and V(%) C z (2 pg® <’”r+1,k)se
r=0

The generalization of this theorem to matrix loop
operations 1s more difficult to state but as eagy to prove,
Example 10. Assume that X=S8Y. Then all Massey products
are defined and vanish in H(X). Define a coalgebra map from

~it 3 .
TH" (Y) to H (®SY) by sending v ®..8 %o < SVyseeo, SV >

where s : H{(Y) — Hq+1(SY) 1s the suspension isomorphism,
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Note the loop operation is always defined. Using the fact
that o 1s a monomorphism together with Theorem 9,’this ma?
is seen to be a monomorphism. Using Properties 6 and 7 the
map is seen to be an epimorphism. This gives an easy proof
that H (RSY) & TH (Y) as coalgebras.
Later in the paper we shall see that this map is an

lsomorphism of algebras over the Steenrod algebra modulo the
indeterminacy of loop operations. More precisely there are

formulas mod 2

t y 21 8%
Sq < ul,...n%{>9C ], <38gq Uqyeee,89 g
Zai=t

and

S Ups e, >o< Vl""’vj>QC§:< Xl""’xk+j>9

where the sum is taken over all shuffles (Xl,...,x ) of

k+J
(ul,...,uk) and (vl,...,vj).

Example 1l. Let X be the n dimensional complex projective
space CP™ ., Then H(X) is a truncated polynomial algebra

of height n on a 2 dimensional class u. Also H%(QX)z E(x)eT(y)
where E(x) is the exterior algebra on al:dimensional class x

and T'(y) is the divided power algebra on a 2n dimensional class Vo

Then with no indeterminacy.

n—j __j+1

y=y1:<u ,u >Q fOl" all jzl,o-a’n—lo

. n n
Y. = < u,u,...,u,u >

5 (21 fold)

tY)

Xy. = < u,un’,,,,un,u>52 (2 1+1 fOld)-
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2n+1l

If X' =0p® >3 then QX' has the same homotopy type as

QX and so H*(RX') ~ E(x') ®T(y') where dim x'=1 and
dim y' =2n. However the classes have quite different
expressions in terms of loop operations. We still have

x'==<u'>Sa where u'QEHZ(X'), hut now y'.= <v',...,v'> i fold)

ol

2n+1(X'). Note that in both cases the divided

where v'E&H
powers are neatly expressable in terms of loop operations.

Now assume that f :Y—> X and u,vEH (X) satisfy

’,

fu = 0 and u v = 0. Then the functional cup product

e m+n—1 (

v is defined as a coset of £ H )+ BT ) e% (v
>~ |

£l

in Hm+n—1(

Y).

Theorem 12. o(u ~ v) = (Qf)%<<u,v>9 as cosets of

m+n— 1(X) m+n— 2(

of “H in H QY).

Proof. Recall that u v is represented by the cocycle
E ﬁ?a ) —_ El i
= # . _ # _ #
éc = aq . Since T ¢y = f <a1,2) = (Qf)" 7a

result clearly follows.

f (az)) where a1,2 = ajay and

1,2’ the
This Peterson Stein type formula can be generalized to

arbltrary loop operations. The generalization, together with

Theorem 9, can be used to axiomitize the loop operations.

Uniqueness can be shown using universal examples, which we

now describe,

Definition 13, Let = CNl,...,Nk) be a set of matrices whose

entries are integers., Replace each integer n in Ni by an

r,8

arbitrary cohomology olass Vs of that dimension. If the
]

set of matrices (Vl""’vk) 1s a multipliable system, then

we say that 7L 1s the dimension of (Vl”"’vk)'
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Theorem 14. Let § be the dimension of some multipliable

system. Then there is a space E=E(t) with the following
properties.

a) There is a multipliable system (vl,...,vk) in H'(E) with
dimension JT such that ‘V'52=< ViseeesVy >0 is defined and
contains a canonical class B.

b) If (U "Uk) is a multipliable system in H*(X) with

1,0-

dimension N such that‘%9==< U .,U,_>_ 18 defined, then

1’.. k 9
for every w&U, there is a map £ :X—> E such that f"('Vi = U,

i
and (Qf)*ﬁ==w.

c) &E has the homotopy type of a product of Eilenberg

Maclane spaces.

d) The submodule of primitive classes PH (E) = Imo .

Such universal examples have been constructed for the
non—matrix case by G. Porter [9]. He shows that properties a),
b) and c¢) are satisfied by these spaces. His methods can be
extended to the matrix case or semi simplicial theory can be
used. Property d) implies that although QE splits as a
product of K(m,n)'s as a space, it definitely does not split
that way as an H-—space.

Using thils theorem we show that the shuffle product and

the Cartan formula on E1==TffYX) of the Eilenberg Moore
spectral sequence pass to the limit and induce the correct
formula on the associated graded module E°H (9X). These
formulas will give us information about the structure of
H*(QX) as an algebra over the Steenrod algebra. V. Puppe [10]

has proven the Cartan formula, mod 2, using entirely

different techniques.
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Property 15. Assume that u§::< Ups e,y >o and

1ﬂ§ = < VisesrsVs>g are defined and that k< j. Then

W, =<w

Q 1,0'o,w

j+k>9 is defined and

?(Q VQ C ui (Product formula)

where, up to sign,

. ) iIf k<i < j

i
] vi—k . 0
g uk 0
| . - if j <1
0 RN V.
J
O N . . ui_j
- For example, up to sign,
S UplUg T o S VL Voyg > C
0O 0 vy O v
u, v, o\ "1 2 ( 5)
< (uy,vy) {2 1 (ug Vo O o Vg | \ug | >g
0 uleE 0 Uq Vo 0 U,
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This is nothing but the shuffle product disguised in matrix
fdrm. If all loop operations were defined, then by Property
6 and 7 the product formula reduces to the situation described
in Example 10. The generalization to mabrix loop operations
1s again more difficult to state but nearly as easy to prove.
Property 16. Let R==Zp and let Pt be the Steenrod pth power

if p is odd or Sqt if p = 2. Define

¢ v :
6DU= T . ‘
o
and 1et(}7t U be the top row and
R

ODt U be the last column of the above matrix. Then
C

(compare Milgram [8])
t _ At t ~t
(P 20g = <0 Useens PIULswen, 00570 >0

t
is defined and PU( Z(g) (P )o (Cartan Formula)

We prove both of these formulas in the universal example
by induction on the order of the loop operations. By apply-
ing V to both sides of the above inclusions and using the
inductive hypothesis, 1t is seen that the formulas are true
up to a primitive. But PH  (SE)=TIm owhich is contained in
the 1ndeterminacy of the right hand sides. ‘The formulas

then follow immediately.
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Example 17. The product formula states that, up to signs,

Cuov= < u>< vV >, C < (u,v)(i ) > If a and b represent

8 Q°
u and v respectively then, up to sign,

ékaqkﬂzab+ba:(ab)€)and
so t(avb) represents cu ov . Thus the v product in
C*(X) induces the cup product on ImoC H*(QX). (See Example 4).

Note, howsver, 1f R==Z2 and u=v then aa+aa = 0 and so

n—1

) On the other hand (ou)(ou) = Sq ou

0E< (u,u)(u

>52.

need not be 0. But it is contained in Im 0 and thus in the

indeterminacy of <(u,u),(3)>9, so there is no contradiction.
This example does show, however, that the product formula

does not give complete information about the algebra structure

of H*(QX). Similarly the Cartan formula cannot be used to

detect the nontrivial Steenréd operations in H*(stk). Yet

we have seen in Example 11 that the operations do detect

the divided vowers. We close this paper with two last examples.

Example 18. Let X = gkt

k+2
(

0P%, k>2, R = Z, ,and let

llGHk(X) and veH X) be the generators. Then H%(QX) is

generated by loop operations < WogeessW » . Where w 1s u or v

r L
and r is arbitrary. In particular there are non zero classes

with no indeterminacy

A, = < Uysaes,u>

- ( r—="fold)

&

@r TSV yee., V>

with dim a, = r(k—1) and dim B = r(k+1). Since qu u=v,

the Cartan formula shows that qurar = B, for all r.
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Example 19. Borel [ 1] has shown that

H" (B Spin (10); Z5) = 22[w4,w6,w7,w8,wlo,x52l4w7.wlo)

where (w7 wlO) 1s the ideal generated by the product w

7 Y10°
It can be checked that Xgp = < Wy, Wig, Wo, Wig > Also it is

not hard to see that H*(Spin(lo};zg) 1s an exterior algebra

on primitive classes < Wi o for i=4,6,7,8,10 and the

class y = < Wgs Wi >g Where Vy,. = 1ley + < Wy >g®<Wy o> +y 8L,

Haverford College
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