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On the structure of the operation algebra
for certain cohomology theories.

By ILeif Kristensen and Ib Madsen

Let h denote a cohomology theory. By (@ (h,h) we
de..ote the algebra of all stable cohomology operations of h
into itself. We shall study the (Steenrod) algebra - t(h,h)
in the particular case when h is a "two-stage" cchomology
theory H(2) associated with a finite collection %ki% of

elements in the Steenrod algebra &, i.e.

H?é) = [ ;K(Z)(n)]

-

Ss 1 _ : |
where 1K(2)(n)3 is an ) —spectrum with K(Z)(n) the
following pullback

Kipy(m) —> 72' L(2,,n+deg k1)

l’ 1.t ) ‘L

K(2,,n) ——"> i K(Z,,n+deg ki) .
i

The mapping L(Z2,m—l)~——9 K(Z2,m) denotes the standard
fibration of Eilenberg-llacLane complexes. The additive
structure of the operation algebra, which in this case is
denoted <2(2,2), is fairly easy to describe. The multipli-
cative structure, however, is far more difficult. We describe
a connection between the multiplicative structure of 58(2’2)
and Massey products in Z, Ina particular case with a
single element in (T -as k-invariant 2k:% = {S ©. 1) we

give a complete description of the operation algebra. This



amounts to evaluation of a certain set of Massey products.
In this case the spectrum K(2) is in an obvious way related
to mod 2 connective k-—theory. The operation algebra for
connective K—theory h:; been determined by D.Anderson and
M. Meiselman. The relationship between these Iwo algebras
seems worthwhile studying.

It is possible to determine 52(2,2) also in other

cases. The method works equally well in the mod p case.

l. Cochain functors, In the papers Koch, Kristensen

and Madsen [1967] and |1967a] we studied cochain functors
for general cohomology theories. These cochain functors are
basic for the work in the present paper. In this section we
shall review certain parts of the thecry of cochain operations
and describe cocheain functors needed in this paper.

If U 1is a graded Zz—vectorspace of finite dimension,
let €(-,U) denote the usual cochain functor with coefficients
in U. (In case U = Z, we stick to the notation C). ILet
Ul""’Up and V Dbe graded Zz—vectorspaces as above. A
family € = G(nl,...,np> of natural transformations (non—additive)

n

1 o i
9<nl,...,np> 1 ¢ T(=3U09) X ...x0 P(_;UP)——>cn+1(_;v)’

where n = n; o, is called a cochain operation of degree i,
provided

9(03...,O,xi,0,...,0) =0
for 1 <i<p and x; & C(X;Ui). The set of all cochain

operations is denoted
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@*(Ul,...,Up;V) ,

and has a differential 7

Y
‘g X ...X =69X ...X + Z Q‘X .106 . L ) .
(ve)( 1°? ’ p) ( 17 ’ p) 101 ( 1? ) )Xp)
’ 1
The cycles under V are denoted th‘(Ul,...,Up;V).
For V = Z, the cohomology of G’(Ul,...,Up;Zz) is

given by the exact seguence
7 ‘ I3 o)
(1.1) C*(Ul,...,Up;Zz)——> zc~(Ul,...,Up;z2)———>Q(Ul,...,Up;zz)—e 0

The term Cf(Ul,...,Up;ZZ) is the module of "multistable"

cohomology operations:

b
PEEES H(—3Uy) —> H(—;3,) .
i=1
We note that

&(Ul,...,Up;zz) T A(U52,) @ ... @ (,Z(Up;zz)

and that

(V)Y @@ ‘Hom(U,V) .

The proof of (1.1) dis given in Koch, Kristensen and Madsen
[1967], see also Kristensen[1965]. Usually, we shall make

no effort in notation to distinguish between an element of
Z(?(Ul,...,Up;V) and its associated element of

Ci(Ul,...,Up;V). In each case it will be clear from the - .
context whether a given letter denotes a cochain operation

or a cohomology operation,



An important consequence of (1.1l) is

Proposition 1.2. Let

a ¢ :?(U;Zz) ’

where U 1is a graded Ze—vectorspace of dimension n,.
We consider a as a function in n variables

and sume

[
n

(1) éa(xl,...,xn) + a(éxl,...,éxn) = 0
(ii) a(0,...,0,%x.,0,...,0) =C , L <3 {n .
Then *there sxists o cocunziin cneraslion L(xl,...,x
(1) 6;;(31, ...,:&1) - ;t(é:%L,.; .,6:%1) = a(zﬁ',...,:gl)

(12) a0 L0535, 0,

Let a ¢ Z(-. By Proposition 1.1 there is a two

variable cochain operation d(a;x,y) with
(1.2) 8d(a;x,y) + d(a;6x,8y) = a(x+y) + a(x) + a(y) ,
d(a;x,0) = 0 and d4d(a;0,y) =0 .

Further, to each & ¢ & +there is an operation d(e;x,y)
with

6d(8;x,y) + d(6;86x,8y) = 6(x+y) + 6(x) + o(y) + d(ve;x,y)
(1.3)

d(6;x,0) = 0 and d4(e;0,y) =0 .

If a and b are in Z ¢~ then a possible choice of

d(ab;x,y) is



(1.4) d(abix,y) = ad(b;x,y) + d(a;bx,by)
+ d(a; 7d(b;x,y), bx + by)

+ d(a;6d(b;x,y), d(b;8x,8y)) .
1
Now, we are ready to describe the cochain functor for
a "two stage" cohomology theory. TFor convenience let us consi-

der the case with only one k-invariant k ¢ £ %kig = {k}.

e construct a new "cochain-functor" 0(2) = C[k} , ke 72 O,

cB(x) x ¢l

C(2) )

(1.5)
6(x,w) = (6x,8w + k(x))

(x+y,w+v+d(k;x,y)) .

(x,w) + (¥,v)

Notice that 0(2)(X) is not an abelian group but only a loop
with some further structure on it; in fact the functor 0(2)

is a c.g. functor (Definition 2.3 in Koch, Kristensen and
Madsen [1967&]). The associated cohomology functor H(2)= H[k]
has as spectrum the two stage Postnikov system,{K(z)(nj& with
k—-invariant k. |

The short exact sequence of c¢.,g. functors

0 — ¢itm-l _ay cn(2)-1> ¢t — o

has an associated long exact sequence on cohomology level

J k

n+m—-1 « 2y gR kK, g

n
(1.6) eee —> H7 % —> H (2)



which is the same as the mappings seyuence associated with the
fivration K(Z,,n+m-1) - - K(z)(n)—wm> K(Zz,n).

Accoriing to (1.2)

(1.7) X (k) (x) = d(k;x,x)

1

is an element of 2 (* . The associuted element in & depends

only on £ (k). The mapping

(1.8) gL —> €
is a derivation of degree -1 (formula (1.4)). The dual
K - " )
mapping M : C{*——mé &”" was determined in Kristensen{1965].
)
It is multiplication with %, ¢ &,

In general H(?)(X) is not a Zy,—vectorspace. We have
(1.9) 2(x,w) = (0, & (k)(x)) .

which is ~ 0 if #f(k)(§x3) ¢ Im(kx) < H(X). If

(k) = 0 in (! then this is the case for all elements in
Let (- y ;s =1 or 2, denote the set of {non-

(r,s)

additive) natural transformations, again called cochain

operations, from C(r) to C(S), (C(l) = C). There is a

differential V on C;(r s) (Koch, Kristensen and Madsen

?

[19673] section 3) and a short exact segquence

Lap \4 > £ P
(300 Fre) 72 B0 (p,e) T {(p,5) > 0,

giving the cohomolozy of C“(r ) The term (i(r s) is
9 ’



the graded group of stable operations from H(r) to H(o).
Using (1.9) one can prove that tue functors -{(—,H) and
(z(H(z),—) are "exact" in the sense that applied to (1.6)

they give exact sequences

, ' s X . X 5
¢ e \> (k', &> C—( --’J"'"> ():( 2 1) ’—g"‘> é(, "'w> LI )
H

(1.11)

Ny key (2 o @
PP h}"(z’l)—"} (s(z,l)-vgm-/} CL(2’2)——1'L> C‘L(z’l)_>..-

Hence we get short exact sequences

. X ~ X '
0 ~—> Coker(ck) 4 Ci(z 1) & Ker(vk) —> 0
(1.12) ’
0 -—> Coker(ke) -Zx3 C?t(2 2) _d.%5 Rer(keo) ——> 0 .
b

Together with (1.7) they essentially determine the additive
structure of Ci(2,1) and 52(2’2).

The (7 -module structure of Ci(Z,l) and the algebra
structure of Ci(2’2) is more difficult to determine. It
requires determination of lassey products in (T. These
Massey products we study in section 2,

It is not hard to see that H(2) = H|k] has a cupproduct
structure if and only if k dis gprimitive in the Hopf algebra
(2. If k 1s primitive there are usually more pfoducts than
one, Using cochain expressions for such a product one can
show that at least one is associative. This has been carried

out by H.A. Salomonsen,



2. Massey vroducts in {3} . The Steenrod algebre is the

——osr AL

cohomology of (& = C?(ZZ;Zz). 3ince ¢ is almost a craded
algebra over Z2(left distributively is missing;

a(b+c) # ab + ac) we can define MNassey products in (7 .
- ?

Let
(2.1) a < (i (‘[3:V4); be (4 (V2,V3); c & (i (Vl’VZ) )

where Vi, i=1,2,3,4, is a finite dimensional zraded vector—

space. Let ab =0 and bec = 0 and let on cochain level
VR=ab, VS = bec .

then the cochain operation

(2.2) m = Rc + aS + d(a;85,38) ¢ C‘(VI,V4) )

is V-cycle. Hence it determines an element in (i(Vl;V4) ,

which represents the lMassey product
E(m) ¢ <a,b,e> € C’?(vl,v4) .
The indeterminacy is given by
aa(vl,v3) + ({(VZ,V4) c .
We use the following properties of the Massey product in (¢ .
Proposition 2.1. If ab =0, bec = 0 and cd = 0 +then

a<b,c,d> = <a,b,c>d .
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Let a,b ad c¢ be as shove, Ve consider ike metrices .
(2.3) t=lsa,2(a)l, B= C =i, ,
b 0| | A(e)

where X is the mapping defined in (1.7).

Proposition 2.2. If a, b and ¢ are as in (2.1)

and A,B,C as in (2.3) then
¥ (<a,b,e>) ¢ < A,B,C > .

The proof of Proposition 2.1 is straightforward whereas the
proof of Froposition 2.2 is more involved. It uses expansions
of the type (1.4) for the compositions Rc and aS (see (2.2)).

Next we consider the diagonal 'y' in the Steenrod algebra.
Let U,V and Vi, 1 =1,2,3,4, be finite graded Boolean

algebras. Then
Yo & -— &, &, &(uv) .

Let us use the notation

\,"(a) =2 a't® a"

-~

for the diagonal of a, and likewise for b and c. Let
r=a®b Dbe arelation, i.e. ab =0 in(i(Vz,V4). In what
follows we omit this tensor product sign. e get (again

omitting some tensorproduct signs)

¥ (r) =2 a'b' & a"p"

]

“ =
2r' &Goa + L og' g "



where r' and " are relations. Also (s = bc)

2 bret & bre!

i

Y (s)

[}

ZS'@B” +Zﬁ'(}'§ st
where s' = . 3’1' ’3’2' , s =2, 79“1" 3’2" .

Hence we have the identity

(2.4) 2 bre! & bre" :’EZ 7,1' 2,2' ® B" + 2 g1 ® ?,ln 3~2

143

,i.e.

each term b'c'® b'"c" on the left cancels one of the terms

on the right., The remaining terms cancel in pairs.

an element 7! X 1+ from each such pair.

The diagonal of our third orderrelation is as follows

~

'l{#(rc + as) = L r'c'@ ac" + L ate'® rte”

+ 2 a's' ® avp" + % a'g'® a's"

Ve assume that

(2.5) 770(1'0 +as) P L o' @® 4" + L d'Q o"

where 4', 4" & & and o',c" are third order relationms.

The additive relation o« 1is given as follows: Terms

form

D(alrldl} 8,T5) D(alrl® T50,)
]‘)(rlc1 & azrz) R D(rlcl@ r2c2)

are equivalent to zero, where

We pick

of the
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D(ayry & a,r,) = 3 alBl’#iéb a,rs
+ L a;ry & a,B, ’2"2 ,
Ty =L B Uy, T =L B3,
and similarly for the others,

Proposition 2.3. Let a, b and ¢ be as dove. Then

for x,y € H'(X;V)
¢a,b,0>(xy) = Lm(e')(x) a(y) + L a'(x) m(a")(y)
+ T ager (Deagen(y) + a( £g(x)-Bo(x))
+ 2, deg(b*)deg(c") H(a)(b'e'(x)*bc"(y))
+ L R(a)(Fr(x)- 5(3)

where m(o) denotes the Massey product associated with the

third order relation o. The terms
Zabq o € Q(V,,v,) Q‘cv4 A(V,,7,)
5 B'O @ By & Q(Vy,V5) @VB ((vy,75)
are computed in Kristensen tto appear]. and
L3 @ e L(vy,Vy) Ry, QCT7y)

is described in connection with (2.4),.

As a corollary to.Proposition 2.2 we mention
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Corollary 2.4. If a,b,c ¢ Ker(¥: £— ¢ ) then

X (<a,b,e>) ¢ a&k + e
and

<a,b,c> N Ker()}) # 8 .

1

Massey products of length 4 and 5 can be defined in a
similar fashion. The lack of distributivity in & makes the
defining formulas rather involved. Because of this complica—
tion we are not able to define llassey products of arbitrary
length, e notice that the obvious generalization of Fropo-
sition 2.1 is valid also in the case of lMassey products of

length 4 and 5,

3. fi-ﬂnodulgugﬁrycture of _62(2,1)4‘ Let us assume

Ker(ck) = Cz(al,...,as) .

if ajk = §79j then

Qj(x,w) = Gj(x) + aj(w) + d(ajéw,éw + kx)

defines an element in C?(2 1) also denoted by Qj‘ The
b

submodule B < Ci(Q 1) generated by Ql,...,QS maps onto
]

G (see (1.12)). The ( -module structure of 52(2 1) is

determined if we can determine the element

3 b,Q & .im(coker(ok))

J
whenever ). bjaj = 0. An easy computation gives
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Proposition 3.1. If L b.a. = 0 then

J d
a1'§
. AR Y
j (<[b1,...,bs}, 3 ] , kK>) = 2054 .
s
If k = ql = Sq(o"'.po’l) then ker(oqi) = (l (q'l).

. 1
An easy application of section 2 gives

< 93085 ,94 > =0 .
Remark: In fact one can prove that even the symmetric Massey
product represented by 9,8 + eqy + d(qi;ég,eé) (Ve = qiz) is
zero for suitable choice of &, All third order relations con-—
sidered in this paper have a symmetric form, and all Massey
products considered are symmetric, thus have less indeterminacy.

Hence we have

Proposition %3.2. If k = g. then as an @ —module (f 1
1 (2) )
is generated by 1 and Q with relations

qi’]-:O)qi'Q:O.

4. Some lemmas in the Steenrod algebra.

CTTReR DTS LT —a

Let Dj: & ——> ((j =1,2) be the mappings
(4.1) D;a = gq;a , Dya = aqy
where q; ¢ ({ as above is dual to E} € A*, since qi2 = 0,

D, end D, are differentials. The element q; ¢ & is
primitive; thus Dl and D, are derivations of the coalgebra

structure. /e define D: & —> to be the sum of the
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above differentials, i.e. Da = q;a + aq, - This differential

is a derivaetion

bra structure.

511 ¢ (% take

N )
Dl( §n) =

(4.2)  Dy(E )

K" :__9
D)

of the algebra structure as well as the coalge—
We notice the dual mappings on a generator

the values

X
=0 if nféi,Dl(%?i):l,

2i L .
=%y if n>21,D(5,)=0 if n< i,

|
Wh

ot . * .
n—y if n>1,D(§n)=o if =n ¢ i,

It is now very easy, using Ktimneth's formula, to establish

N

the following proposition. e use the notation % for a

cohomology class determined by the cycle &

Proposition 4,1, The homology of

as an algebra,

(.3
P

- X X
ax under D is

N o o]
(4.3) H(GSD) = @ —?—[,;-;El’-]— & @ ZE?“ , m =2,
( \C;V) /U\=i+l ( Z;(,L)

/

The coalgebra structure in H(CE*,D*) is induced from that

%
of (.

.y X
Let Py € (1 be the element dual to £.2 ¢ (T,

7 J

Then by dualizing the above proposition in the case i = 2

(which is the case of particular interest to us) we get

Corollary 4.2. 1If 1

2, then as algebras

VAN, SN 1
)

(4.4)  H(D,D) JA (25) = A(PgBy,Bp0e-- ) (pg = 54
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Here as usual the A/B denotes A/ﬁA whenever B 1is
a subalgedbra of A,

Let Z and Z' be the kernel and cokernel of the
differential D. Since D1 and D2 commute with D they

induce differentials on Z and 2Z'. !

Lemma 4.3. The vectorspaces 2 and A' are acyclic with

respect to Dl as well as D2.

This lemma implies exactness in the sequence below

(4.5) 0> 2z/2q; —> [?/e’iqim._% Q/&qi_..) 2'/2'q;~—> 0

5. The multiplicative structure of Ci(z 2) when k = Sq(o'l)
)

In this and the following section we specialize our
considerations to the particuler simple two-stage cohomology

2

theory H(2) with k-inveriant %k = ap (= Sq3 + Sq Sql).

The éz—module é222 1) is known in this case by
’
Proposition 3.2,

@2’1) = ée/é(\,k“/\(Q') ’

where /\(Q) is the exterior algebra in one generator Q
(of degree 5). Using the sequences (1.12) and (4.5) we get

a short exact sequence
o 7 js
(5.1) 0—> z/ax HNO-D ({5 )~ z/z 8 N@)— o,

(deg a, = —2, deg j« = 0). Suppose T € (2,2) is an element
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with ju(T) = Q (In section 6 we give cochain expression for

a specific T with this property). Then as Z2—vectorspaces

(5.2) éi}z,z) = (z2/2x & s_Q(Z'/Z’k))QQ,A(T) ;

where 5_2(Z'/Z'k) denote the graded vectorspéce Z'/Z'k  with
degree lowered by 2, DNotice that s—z(Z'/Z'k) has the struc—
ture of a Z/Zk bimodule, inherited from the multiélication
in 6%w Any function

a: 2/7k & 2/7k—> s 2(2'/7'k)

with the property

(5.3) xa(y,z) + a(xy,2z) + a(x,yz) + a(x,y)z = 0

defines an associative algebra structure on 2/Zk €>s_2(Z'/Z'k),
(see e.g. Cartan and Eilenberg 1956 , Chapter XIV). The map
a 1s called an extension cocycle for the algebra.

The multiplication in 2/Zk © s 2(2'/2'k) is
(5.4) (29,2')(25,2',) = (272,,272"', + 2'12, + a(zy,2,)),

Two mappings a and b define the same structure iff they
~are homologous, i.e, if there exists a mapping

c: Z2/2k & 72/2k—> Z'/7Z'k with
(5.5) xc(y) + c(x) y = a(x,y) + b(x,y) .

We now make 2/Zk 6;5—2(2'/Z'k) an algebra by specifying
an extension cocycle a(k). Let p; € Zz/Zkx be as in section 4

(PO = Sql; p; = (é;i )%\)~ If I = {11,12,...,ir% is a set
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of non-negative integers, let pp = pii pi2,..pir.

] | , pI_ ‘{_Vl].pJ— {,\)k . p\)_'_l when lepI, z2=pJ
(5.8) a(k)(zy,2,) = ot T ot o

0 otherwise A

The resulting algebra will be denoted X(k). Notice that
(5.6) sa¥s that the extension is almost inessential (the
only non-—trivial 'extension' is (pi,O)'(pi,O) = (O’pi+1))'

The algebra X(k) has a differential on it,
(5.7) D(z,z') = (D(z'),0), where D(z') = kz' + z'k

or, with other words, X(k) is an algebra over the Hopf elgebra
/\(T) (T'(zl,zz) = D(zl,zz)). Using the notion of semi-tensor
product, in sign (& (Massey and Peterson [19651), we are now

ready to state the main result of this paper

Theorem 5.1. For k = Sq3 + Sq28q1 )

Q(2’2) = /\(T) @ X(k) .

6. . Proof of Theorem 5.1,

Lo e Yl

The general idea behind the proof is the use cochain
representatives for elements in él(z,z) and by this being
able to express the multiplication in terms of Massey products,
The Massey products involved are evaluated using Propositon 2.1

and in addition the fact that the spectrum K(2)’ k = Sq3 + SqZSql
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is the bottom stage of the spectrum for connective K-—theory.
Our first aim is .fo define a mapping w: Z/Zk E)S—QZ'/Z'k
H

(1) im(w) is a subalgebra
(6.1)

(ii) W'Z/Zk is a section to

@2,2) 2% z/me Na) 1555 2/

We first need some preparational work. TLet Pj and & be

elements of (Z) with

(6.2) ve = kk, V’Pj = pjk + kpj (pj as in section 4)

The expressions

m(k’)(x) = k6(x) + Ok(x)

(6.3) -
m(kzpj)(X)= kPj(X)+ij(X)+ij(X)+9pj(X)+d(k;kpj(X),pjk(XI

(see (1.2))

are cocycles if x itself is a cocycle. In fact they repre-—
sent the Massey products

<k, k,k>

(6.4) | 'k D D
ws (10>

Lemma 6.1. There exist choices of 6 and Pj such that the

Massey products m(k3) and m(kzpj) both are zero (in 6& ).

The proof of the above lemma is very typical for the

arguments used in this paper. We therefore give an outline.



According to Proposition 3.2 we may choose & such that

m(k3) = 0. Using Proposition 2.1 with a = [k,pj], b=c¢c¢=
'k p. D
LO kJ\l , d = \k% we get
{k,m(kzp.)] = [p.,m(kB)} =0 .
J J

Thus m(k2pj) "determines an element in H(éz,D) (ef. section 4
If we vary the choice of Pj by a primary cochain operetion
a VVa = 0) the Massey product will vary with Ek,zﬂ. It is
therefore enough to prove that m(kgpj) is zero in H(Cﬁ,D).

From Proposition 4.1 we get

2 -
m(k pj) = :A.plpjk , Ae Z, .

Finally we apply Proposition 2.3 to0 see that 2 = 0.
We need one more element in Gﬁ. Let (X‘ECO be such that
(6.5) VX =1x6+ ex + d(k;566,66)

The 4-fold Massey product m(k*%) = <k,k,k,k> is defined as

follows on a cocycle x,
(6.6) m(k*)(x) = kN (x) +Yi(x) + eo(x) + d(k;k6(x),0k(x)) .

Using essentially only Proposition 2.1. (generalized to 4—fold

products) one may prove ¢

Lemma 6.2, There is a choice of 7K¢(d7 such that m(k4) =0

in Cz .
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The expressions

w(py)(x,w) = (py(x),By(x) + p5(w)),

(6.7) W({a,k])(x,w)=(Ya,k](x),i?,é](x)+&§,i](w)+d(k;ak(x),ka(x)),

2(x,w) = (8(x)+k(w), K(x)+6(w)+d(k;8(x),0(x)+k(w))),

(a € Z(@,{?,k} = ak + ka) are cocycles in C(2) whenever
(x,w) 1is a cocycle (6x = 0, &w = k(x)). A (non—trivial)
computation shows that all three expressions define stable

cohomology operations, i.e. elements w(pj), w([a,k]) and T
~
. 4"

Define

(6'8) W(pjl-.opjn) = w(pjl)"w(pjz)o'Oo W(pan)

whenever 0 < jl < j2 < eee jn. From Corollary 4.2

we have

(6.9) 7/7%k = /\(po,pl,...) @ im D , (D(a) =

k])

[
Hence, all together, we get a map W = 2/7k —> G%(Z 2)*
H
Taking w on Z'/Zﬁcto be a, (see (5.1)) we have obtained a
mapping

w=2/7k & s—z(Z'/Z'k)-—~——> \Q(z,z) .

It is an easy conseqguence of the defining expressions (6.7)

that w has the required properties (6.1).

Proposition 6.3. The mapping w 1is a homomorphism of algebras

w: X(k)—> Ci(Z 2} where X(k) is the algebra defined in
H

section 5.
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Proof. The proof consists of checking all the relevent rela-—

tions such as [w(p;,0),w(py,0)] = 0 (1 £ 3), w(pp? = w(0,p,,7)
etc. We sketch the crucial fact, that is, w(pj)2 = W(O,pj+1).

A conputation on cochain level gives

w(py)%(x,m) = (0,m(kp,?)(x)) (6x = 0, kx = 6w)

where

2 ‘ .
m(kpj ) Pj-pj + pj'Pj + kRj + Rjjk + d(pj'ipjk( ))kpj( ))

L

nd R.€({ ke R. = p.p.
2 ;€& hes VR P3P

It is clear that m(kpjz) represents the Masséy product

e 2] [

As in Lemma 5,2 m(kpjz) ¢ C% is a cycle under D and it is
therefore enough to determine m(kpi?) in H((&Z,D)/H(& ,D) k.
Using Corollary 4.2, m(kpj2) = P (;Xé-ZZ). Note that

2Y if we were

Pjs1 would be in the indeterminacy of m{kp,
allowed to clioose :j freely. 1ilowever, P, has %c be closen
such that m(kzpj) = 0 (cf. Lemma 5.1)., We now apply Pro-

position 2.3. to get ;} =1,

Remark: In the above use of Proposition 2.3 it is essential
to have some information about the terms 2 aé‘@,aa and

2 Bé@ 68 (see Kristensen [to appear] ).

Proposition 6.4. The element T & (212 2) commutes
’

with the subalgebra X(k) C CE(Z 2y
?
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Proof. A compufation on cochain level using (6.7)
gives
[T,D(a{j = a%(ﬂa,m(k41j) ,
(6.8) \
Ve = e, (m(E7py))

where m(k4) and ,m(kBpi) are the Massey products

| n(k) = <k,k, K |
(6.6) . . - .
3 /‘ (k 1 k py k ]>
k7p:) = \ik,)psl » ’ ’ .
m(k”p;) \L p,l o kJ [O , —! b,

These Massey products are defined since we already proved
that m(k3) and m(kzpi) are zero. The obvious generali-

zation of Proposition 2.1 gives
(6.7) D(m(x*)) = 0 and D(m(k’p;)) =[p;,m(x")]

The indeterminacy on m(k4) coming froem choice of X € (-
(v X = <x,%,%>) is im(D). Since HYO({,D)/H (({,D)k=0
we can choose X such that m(k4) =0 in d/dk.

Remark. By a heavy use of Proposition 2.1 (generalized
to 4-fold Massey products) one can in fact prove that
m(k?) = 0 in ({. Ve will not give this rather technical
proof here. However, the result is used below.

. In order to prove that g&(m(kapi)) = 0 or, equiva-—
lently, that m(kspi) =0 in 2'/Z'k we use the well-known

spectral sequence (Atiyah-Hirzebruch [19603)
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By, = H( X ,k(pt;Z )) ’
(6.8) ° .- .

Eé:): Eo(k(.ﬁv\; ;Zz)) .

Here '23 is a spectrum and k is the connective K~theory

with coefficients in 2 \

2.
1 U 2
Let L, = S° U, e and let BU(%,...,c0) be the
(t-1) connective covering of BU. Ve put BUL(t,...,%?) =

L .
BU(t+2,...,09) 2 , where x¥ denotes the space of maps fromn
Y to X (compact—open topology). The spaces BUe(t,...,C“)
obviously form an () —spectrum. This is the spectrum for
k(-;Zz). ‘e shall study the spectral sequence (6.8) with
3£==€BU2(t,...,cO)z . According to Adams 51961 ] (see also

Maunder [1967 ] ).

CHY(BUH(2642, .00, 00)58,) = /0K (1)

in the stable range. Hence if X = gBUz(t,...,C“)z we

get
| E,P1°% - (@/6x),

e need the following lemma concerning the differentials in

this spectral sequence

Lemma 6.3. The first few differentials are‘

"

(1) d5(a) = D(a)

n(kZa)

(i1) dg(a)

(iid) d7(a) = m(k3a)
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Proof. The first three k-invariants in BUz(t,...,’“)
are k, Qu(kz) and Qu(ks). Here Qu(kz) is the secondary
operation &--nclated with the relation k2 = 0 while
Qu(k3) is the tertiary operation associated with the relation
xQu(k®) = 0 (or <k,k,k> = 0) (see e.g. Stong [1963]).

If one uses the description of the above spectral seguence
given in Koch, Kristensen and Madsen {1967a]. (20) p. 175 )
it is not hard to compute the differentials and obtain the
claimed results,

It is well-known (and easy to prove) that the only non-
vanishing differential in this spectral sequence is d3
(Mewnder [1967 |). Thus in particular m(k’p;) = 0 in B,
i.e. ﬁ(k3pi) =0 in H(G,D)/H({ ,D)k . Since the indeter-
minacy on h,K3pi) contains im(¥) we have for an appro-—
priate choi: . that m(k3pi) =0 in 2'/72'k,

e -~ - — e

We clo : this section by

Proposition 6,4, The element T é‘(i(z 2) has T2 = 0,
]

Proof. Computing on cochain level we get n2 - a (m(ks)),
X-

where m(ks, is the lMassey product

m(k?) = <k,k,k,k,k> .

This product is defined since m(k4) = 0.

Now we use pm(ks) = 0 and Hle(Cz,D)/Hg(Ci,D)k =0 .
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7. Adams spectral sequence.

Let X and Y be CW complexes of finite type and
let %X,Y}(z) denote the 2-primary component 'of the track
group §X’¥§' Let H(2) be an arbitrery two stage cohomology

theory with k-invariant %k and operation algebra C?(Z 2)*
?

Proposition 7.1. There is = spectral sequence

(Er(X,Y),dr), natural in X and Y, with

Bp = Bxt g (H(5y(1),E 5y (X))

2,2)
E,_= EO({X,Y}(Z)) .

If 2 is another CW-complex of finite type, there is a

pairing of spectral sequences ,
Er(X,Y) & Er(Y,Z)—-~> ET(X,Z) .

This pairing is compatible with the composition pairing in
homotopy.

Proof. Except for the converging part which is treated
in Lemma 7.3 below the theorem is proved by appealing to

work of loss [ 1968].

Definition 7.2. An element g ¢ {X,YE (2) 1s said to

have Adams filtration 2 1 with respect to a cohomology
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theory h if there exists a sequence of speces YO,Yl,...,‘z1

and maps yj = Yj-~“> Yj—l such thet

(1) ¥{=n(¥;))-—> n(¥;) is zero

~

(ii) Yy = sy for some
(113) @ € im(§X, Y33 o> 1 K} py)

Iet m be the smallest integer for which k" = o,

where %k is the k—invariant of H(2) .

Lemma 7.3. If an element aoc §X,Y§(2) has Adams
filtration less than or equal to 1 with respect to the
usual cohomology functor H, then o« has Adams filtration

less than or equal to m(i+l) — 1 with respect to H(2) .

Proof. Let f£: Z—> W be a map with £ Hipy(¥)-> H,y(2)
the zero map. /e use the functorial sequence (1.6) to conclude
that f£Y(w) ¢ im(k:H(Z) —> H(Z)) for any w ¢ H(W). Thus

fl £, f

. 4. L o ‘n—"l . . . .
if Zl > Z2 > Z3 Deee TP én is a string with

va
£y H(z)(Zi+1)~—w> H(z)(zi) the zero map then

im((£, o ...£0) s H(Z)-—> E(27)) < in(® 5(2q) > K(Z))) = 0
an the lemma follows.

Ve owe this proof to D. Anderson.

Obviously there are serious problems in connection with

A . Kk,
the determinaticn of F ~§(Cl(2 2)). Low dimensional compu-—
?

tations, however, seem to reveal interesting phenomena,
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