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ON SECQIIDARY COHOMOLOGY OFERATIONS II

By
Leif Kristensen

Introduction. The purpose of this paper is to give

a detailed study of cochain operations giving rise to
secondary cchomology operations. The main theorem is
concerned with the problem of expanding o(xy), where

© is such a cochain operation and x,y a pair of co-
chains. Such an expansion was studied in Kristensen
[1965] in order to obtain a Cartan formula for secondary

operations.

A primary term z gr(x)8"(y), B',B" € G, vas left
undetermined in the mentioned paper. The primary term
in the expansion on cochain levels is determined in this

paper (see Theorem 2.1 and Lemma 3.2).

As a consequence of this, the question of a Cartan
formula for secondary operations is completely solved
(see Section 3). The formulation of the Cartan formula
in Kristensen [1965] was not very good. In fact, as it
is formulated the theorem is not very useful. With a
slight modification of the formulation, the theorem can
be used. However, the Cartan formula for secondary
operations will be considered in detail in the complete

version of the present paper. The proof of the Cartan
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formula for secondary operations is also very much simpli-

fied.

As another application of Thecorem 2.1 below, we
have computed Massey products < a,b,c >cC, a,b,ceC, in
the Steenrod algebra. This has as a consequence that the
action of ¢ in the cohomology of two-stage spaces with
stable k-invariant now is known. The details about this
is explained in a forthcoming paper. There are applications
of more geometric nature, e.g. to the problem of sections

in the tangent-bundle of a manifold.

In Kristensen and Madsen [to appear] we studied the
algebra of operations in various cohomology theoriles. Ve
gave a complete description of this algebra in case the |
spectrum for the cohomology theory is a two-stage space

> + Sq25ql. The multiplicative structure

with k-invariant Sq
of this algebra is related to Massey products in G. With
the improved technique for computing Massey products, mony

other cases are within reach,
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1. Cochain Operations. We shall use the thcory of cochain

operations as developed in Kristensen [1963], [1965] end in
Kock, Kristensen and Madsen [1967]. In particular, ve shell

use the exact seqguence.

v

(1.) Lp(Ul,...,Up;zz) > (U e 5 UL37,) £

a(Ul,....,Up;zg) —> 0.

Here, Ui(l < i< p) is a finite dimensional graded vector-

space over Z,. An element of <9(Ul,....Up;Z2) is a family

e = {9 < nl,""an>}

of natural transformations (non-additive)

o< . nl np
8< My, .ee,ny > C (=,U1)x...x C "(-,U_)

P
n+k
—>C " (=,2,)
where n = ZTni. The integer k is the degree of 6. We

assume further

8(0,...,0, xi,O,...,O) =0

for 1<i<p and x;€ C(X,U;). The differential is

defined by
p

(70) (%, -+ %) = 80(x1, .. ,%,) +.zle(xl,...,6xi,...,xp).
1=

The term G(Ul""’Up322) is the module of "multistable"

cohomology operations:
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P
M @ H(-3U5) —> H(-32,)

we note that

G(Ul,...,Up;ZQ) = G(Ulgzz)-@...@G(Up;Zz)
and that
G(U;V) = ¢ Hom(U,V).
An important consequence of (1.1) is
Proposition 1.2. Let
ac((U;z,)
where U 1is concentrated in degree zero, UO = 228...&22

(n summands). We consider a as a function in n-variables

and assume
(1) Ba(xy,...,x ) + a(bxy,...,06x

(ii) a(o,...,0,x.

520,...,0) =0 1<1i<n,

Then there exists a cochain operstion A(xl,...,xn) with

it

(i) 5A(xl,...,xn) + A(6xl,...,6xn) a(xl,..,xn)

(ii) A(O,...,O,xi,O,...,O) =0 1<1i<n.
Let aeZ&. By Proposition 1.2 there is a two variable
cochain operation d(a;x,y) with

(L.2) ba(a;x,y) + d(a;6x,5y) = a(x+ty) + a(x) + a(y)
d(a3;x,0) = 0 and d(a;0,y) = O.
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Furthermore let us define

d(asfx; 1) = d(azxy,...,x,)
n_-l

= Vala:

= Lg(d’xi’xi+l +ouuot X
i=1

n)
Then
8d(a;{x;1) + da(a;ex.}) = a(rk ) + Té(x )
31Xy 30X b = AN Xy ) A .
To each © ¢ & there is an operation d4(@;x,y) with

(1.3) ‘ 5d(03z,y) + d(©;6x,5y)
= O(x+ty) + 0(x) + o(y) + a(¥Vo3x,y)

d(e;x,0) = 0 and d(6;0,y) = O.

‘Next, we consider the cochain Cartan formuls. With defi.-
nition of the cochain operations sql, and d(sqi) as

in Kristensen [1963] using Steenrod’s‘%ﬁ-product we have

Proposition 1.3. There are cochain operations
Tnegy(ZE,ZQ;ZQ)
satisfying
(1) T,06y) = sa®(xy) + sat(x)sa” ()
+ d(sq"36x.y,x6y) + deg(x)d(sq";x6y,x6y)
(ii) T, (x,1) = 0 and T, (1,¥y) =0

0 1if Bx = By = 0, dim(xy) < n-1.

(i11) T (x,¥)
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. . 1 n-i~1
(3v) 1 00y) = Jides(y)sa (x)sd™ T (y)
if 0x =07y = 0 dim!{: ;) & nott,

g/

For cocycles x,y and 2
A\ m i
(V) Tn(XYJZ) + Tn(x,yz) + L__Sq (X)-Ln_j_(Y;A)
Ll n-.
+ T (x,¥)sq 7 (2) 0,

The cochain operationsg Tn assocliated with sqn or more
general Ta associated with ec? are crucial in this

paper. Ve list some more prousreties,

In Kock-Kristensen [1965] we consideresd Lhz problon of

expressing T corresponding to a composition of two

ab
cochain opecrations in terms of Ta and Tb . TFor the co-

. . i .
chain operations sg the result is

Proposition 1.4. Therc is a cochain operation T

k",j,j
k= s
associated with sg quJ such that for cocycles x and vy
{ = k—'j' Y‘r'1 i j-—i
Ty-g,3C0¥) = 0 VT5(0,y) + )T (sa”(x),507 7 (y))

et .
+ d(sqa I5sqd (xy), fsatx.sadi(y)))
‘ s . -
+ Yideg(y)n(sq"™9) (satx-sq91y)
R
+ w(sqt 9)sqd(xy),

and if r = zb(j)sqk—aqu,C(J)ezz, then

Ty
T, = LP(J)Tk_j’j.



122

Let us consider the relations (a,b,keZ)

b-1~] belewjyyn K=Ja.d
(1'4) r(a:bik) = El(k+b«g-2j) -+ (j+b~i)]”q JSqJ:

in Steenrod's algebra G. We consider r(a,bj;k) as an

element in % - the free associative algebra with unit

. a i . .
gencrated by $q~, > 0. There is a diagonal

e Sf;_> ?T
inducing the diagonal in G. An easy computation gives
< e s PO DU |
(1.5) ¢(r(a,b3;k)) = ZF(a—Ql,b-l;k~l—3)@quSql
+ 38q98qT @ r(a-j,b-isk-i-j)
qu (g ~JyP-LliR=1=d).
In (1.4) we replace Sq™ by the cochain operation sqT and

consider r(a,b3;k) as a cochain operation.

Lemma 1.5. With T. as in Proposition 1.4, we have

for cocycles x,y and 2

T(a,b3k)(X,¥,2)~.0
where
T(a:bsk)(X,Y,Z) = Tr(a,b;k)(x’yz) + Tr(a,b;k)(xy’z)
. j N ‘
+ E%q 5q (X) Tr(a—j,b—i;k~i—j)(y’z)
A} Janly,
+ ) Tr(a-2i,boi3k-1-3) (Xs¥)sasa7(2)

< . . ..
+ LF(&—Ql,b-l;k—l—J)(X)oTj,i(y,Z)

\r fmd o
+ L$J,i(x,y).r(a-j,b—i,k-i—g)(z).
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A .
Iet a ¢ G have diegonal

(1.6) pE) =) A T \ZJ'

Fad

g P 1"
If a, a', a

and a are cochain operations reprcsenting
these operations end if T, 1s assoclated with (1.6) then
(by Kock~Kristensen [1065] p. 135-136) there are

At,A" and n(a) € Z ¢ such that for cocycles x and

<!

of dimension p and q

(1.7) T (x,y) + T (v,x) + d(asxy,yx) + a(xv y)
+ Yar(x)wat(y) + E(x)eqE(y) + Yal (x)wat (y)

+pq (a)(xy) + n(a)(x)en(a) ()
ro N () () + AT ()t (y).

This can be improved in case a = sqn. First however wve
examine m(a) a little closer. The element a (see(l.6),
we use simplified notation) is the image of a under the

mapping (algebra morphisme)

*® *

dual to the Frobenius mapping (?: G —> G, %ﬁ(x) = xg. The
equation (1.7) can be used to determine ( on Massey pro-
ducts in the Steenrod algebra. This is done in a forthcoming

paper. We consider another mapping
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(1.8) n: G —> G
related to (. Besides being additive it has the properties
(i) n(ng) = 0, n(Gng,l) C Gn

(i1) n(ab) = n(a)c(p) + m ¢(x(a))c(v) + ¢(a)n(p)

where 2m = deg(b),

(111) n(s®™) = (ns1)sa”

(iv) (pr1)i(a)sa®(u) + asa® t(u) + s¢™Pr(a)(u) = o,

for a e 02n+1 and for any p-dimensional cohomology class u.

Also for | the diagonal in Q.

(V) un = (CUPC + C7n + neC) Y.
The dual
* * *
(1.9) n:Qo—>0G

of mn has the properties
* .
(1) n (gi) = gi-i-l
(i1) = (aB) = Ela262 + 0 (2)B% + a®n’(B)
We return to (1.7)

Proposition 1.6. With T, as in Proposition 1.3,

we have for x and y cocycles of dimension p and q

T_(x,y) + T, (y,x) + d(sq%xy,yx) + sg®(x4y)

+ Eéqi(X)“fsqn"i(y) + pg ¥(sq")(xy)

+ E: (ij+1)sa*x-sqvy 0.

itj=n-1



2. A System of Cochain Operations. A sysien

{R(aabsk)}: a,b:szs
of cochain operations is sald to be permissible provided

(1) V'R(a,b3;k) = r(a,bsk)
(see(1.%)),

(ii) If u 1is a l-dimensional cocycle
R(a,b;k)(u) = 0

except when k=3 and excess(r(a,b;k)) = 2 in which czse

R(a,bsk)(u) = u,
From Kristensen [1963] it follouws that permissible systems
exists.,
Let us consider a system of cohomology operations
A(a,b3k) ¢ (G » c)k_l
given by
(2.1) A(a,b3k) =
1 o.1l . k-j- j-2 k-j=- j -
(sa'e 5q(®H)Te(4) (sq8 I 35092 4 sqk-3-2543-2))
where C(Jj) is the coefficient from (1.4), and where the
right module structure of G @ G is given via the diagonal
. Also, s5a(®1) = 5425 + 5¢7. 1In the obvious fashion

we also consider A(a,b3;k) a cochain operation in two

variables.
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Theorem 2,1, There exlsts a unique permissible system

{R(2,b;k)} of cochain operations satisfying
R(a,b3X)(xy) + Tpig ) (6¥) + A2,b3%) (x,y)

+ JR(a-2i,b-13k-1-3) (x)-sqdsq® (v)

| joi e .

+ )8q°sq” (x)-R(a=j,b-13k-i-3)(y) 0,
for each pair of cocycles x and y. The system is unique
" in the sense that if {R'(a,b;k)} is snothcr such systen
then

R(a,b3;k) - R'(a,b3k) ¢ 2 @

determines the zero cohomology operation for all a,b and k,

The proof of uniqueness is easy. 1In the proof of

existence we make use of the Cobar resolution (see Adams

[1960])

ol
2)
o
l

F(R): G—>Ce G —> G~
with homology

H(F(0))

i

Extc%(Zg,Zz)
A{QiSi _>_ 0]}

i

where Q = Sql’Ql = Sq(o'l),--.,Qi - Sq(o,o,...,o,l)‘

The proof is by induction over the dimension k.
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Proposition 2.2. Let {R(2,b;1)} be as in “heorc. 2.1,

i
< ~
er(ai,bi;k) =0 ¢

then

E;R(ai,bi;k)uqo,

i.e. determines the zero element in @.

In Kristensen [1963] we determined the value of cochain
operations similar to R(a,b;k) in low dimensions, Laoe ve
have

Proposition 2.3. If

R(a,b3;k) = qu"quq - qu'tSqt + term of excess > a,

where 2q > k-q and t = k-q/2, then if x is a cocycle of
dimension < g-1°
R(a,b;k)(x)~s0.
If dim(x) = g-1
R(2,b3k)meysa" (x) 509 (x) + a(x)?

where 1i+J = k~-q, i< j, and a ¢ 20(22,22).

Remark 2.4, The unknown operation o gives rise to
an element G ¢ G. The proof of Theorem 2.1 could be
extended so az to yield the value of Q. So far, I have

not carried this out.
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: - r (\_ '
3, A Secondary Cartan Forimula, Let ;avuv + b= 0 bc a
: oot Dot 2

relation in G. Let ¢ be a secondary opecration associated
with this relation. The operation ¢ is defined in di-
mensions less than the excess of b, and commutes with
suspension in this region. It is additive except in the
top dimension. The deviation from additivity is given in

Kristensen [1963].

A Cartan formula for @¢(xy) is not so easy to describe

gince it depends on the "reacson'" for that

av(xy) = 0.

N - (] ‘ X ___V| o "
Let the diagonal of 2, be @(av) = ,al Gag .
Definition %.l. Ve say that x and y are comple-
-
mentary classes with respect to the relation igvav + b =20

provided

t ' = n ==
av(x) 0 or av(y) 0
for each term a' ¢ a" in (a ), all wv.
N v Vv

Here we shall only consider the complementary case,
Let O(a,b;k) Dbe the secondary operation associated with
relation r(a,b3;k) (1.4). These operations are unique in
the sense described in Theorem 2.1. The Cartan formula can
be derived from the following Lemma. If Sq(k-t)Sq(t)

appears in r(a,bj;k) let the set of integers {0,1,...,t)
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be divided into two dilsjoinsd subeols  Tf and X" suoh
= - ' : j - Nal . K3 .- h} Ct j g . -~ 1
that Sg (%) = 0 for 1 ¢ It and Sq (v) = for 1 ¢ T",

Then (denoting by x  and y  coeyceles represcating the

cohomdlogy clesees) if Gwi = sqi(x)) ij = SQJ(Y), ioe It
j e 1",
t
du, = sq (xy),
where
m - N -t"'. \T 't"‘.
ay = T Gey) 4 ) wsa ) oy sat I Gy

It P J

Hence we can wrile dowun a cocycle representative Tor ¢ (xy)

(3.1)  d(a,bsk)(xy) = {R(a,b3k)(xy) + Ep(t)sqk‘t<ut)}.

Lemma 3.2. The class (coset) &(a,bsk)(xy) is repre-

sented by the cocycle
YR(a-21 b1 3%-1-3) (x) +sadsq’ (y)
NG i - . . C
+ )sa?sa’ (%) R(a-3,b-i3k-1~3) (y)

K-t -9
+ }ﬁ‘c(t)'sq“ v Ssqt J(x)sqsvj
-1

+ Aa,bsk) (x,y),

where - A(a,b;k) is the primary term described in (2.1).
We remark that the TLenra could as well have been Torm-

ulated for a linecar conb’nat on of the relations r{a,bik).
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In order to get a Carten formula for the secondary
operations we only have to a ssemble the cocycle given in
Lemma, 3.2 to a sum of products of operations on x and con

Y. In this paper we shall only give an example.

Example 3.3. We consider the relations

l,n n+1

o SqlSqn -+ (nil)Sq

2n

r: SqESqn + Sq N2

n+lsql +(ngl)sq

£3 7

(_.'["5

. . . 1l.n
The assocliated secondery operations we denote ¢

¢2.n' An easy application of Lemma 3.2 giveé:
if n = l(mod 2) and Sq° 1 = 0, s¢°T(y) = 0, 2141 < 1,

(L.e. x and y complementary) then

Ql,n(xy) - Zbl,21+l(x)sqn—2i—l(y)

+ Ysa7t (x)ot PR (y),

if n = O(mod 2), p+tq = n, where p = dim x, g = dim v,

and x2 = 0 , then

0" P (xy) = xsqt(x)8a%  (y) + o1 P(x).52
+ 8aP"H(x) y-sqt(y),

1,2(mod 4) and Sqix =0, Sq°y =0 provided

i=1,2,3(mod 4), i< n, then

0%+ (xy)

if n

M

il

250"t ()02 M (y)

Ch2.n=4i L3

+ (x)8q 7 (¥),
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if n = 0,3(mod %), ptq = n+d, and x2 = 0, y2 = 0,

Sqlx = 0, Squ = 0, then
0% " (xy) = 07 P(x)-50% (y) + saPH(x)02 U (y)
+ %507 (x)5¢T 2 (y) + 5P (x)-y.84%(y).
These operations have nice applications for instance in the

study of H-spaces. We note that the primary term A(x,y)

(see Lemma 3.2) is zero in the case considered above.
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