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The obgtruction theory based on a particular gquotient

1)

group of W*(Vn)(
by
Mark Mahowa1ld(2)

We shall be interested in the obstruction theory
problems associated with VQ-M-BSOn~J BS0. The Steenrod

shetruction theory chows that the 1ifting question for a map

£:X - BSO such that £/X5,%X ic the k-skeleton, reduces to

calculating a cohomology class @M+1(X) « Hk+l(x;wk(vn)).

If A« vk(Vn) and B = WK(VH)/A, there are

) H

k+1 (
A

X;h) - Hk+1(X;vk(Vh))

coeflicient homomorphisms

k+1( k+1(

3} tH

A X;B).

X;m (Vv )) —H

Our purpose here 1s to present some technigues which seem to
be useful for calculating & claasC) such that

@ = Q) 1 @) = o
in terms of other 1nvariants for & particular subgroup.

The subgroup in question in each dimension is the one

(l)This talk is based on joint work of the author with
S. Gitterand J. Milgram.

\
(E’This work is supported in part by a grant from the

U. 8. Army Research office (Durham).
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of highest filtration in the sense of Adams [2]. These are
the elements near the edge 1n the Adams Spectral Sequence for
Vh. The relevant homotopy theory ie done in [5] and here we
show how these calculations can be used to shed light on the
obstruction theory.

The following device is possibly a useful way to
illuminate this program. Let Y = = V A BSO[8k]) 1
the stable category where BSO[8k] is the 8k-1 connected fiber
space over BSO, 8k > n. Clearly H*(Yn) ~ H*(V (2 QQ&&D (3)
through dimension 16k-2 and thus through the stable range of
Vh. Also there is a map X:Vh_—»Yh. Let An be the fiber
of A. Then there is a factorization

An ——> B spin n

1y
Po

Y —> Q
noy n

1
lpl
B spin
through the stable range. The main results of thls paper deals
with Py - The following seems likely:

ConjJecture. Suppose X is a 2n- 2 dimension complex.

If f:X — B spin 1ifts to f':X-ﬁ-Qn then there is a 1lifting
f":X — B spin.

(3) @ 1s the mod 2 Steenrod algebra and @i is the

subalgebra generated by SqJ j < ot
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This conjecture is false for BSF bundles but seems likely for
BSO bundles.

Finally the importance of getting cohomology operations
such as found in this paper can be seen when the bundle in
question is the normal bundle to a manifold. Then the Thom
complex 1s the Spanier-Whitehead deal of the Manifold with an

~external basepoint. Thus any cohomology opefation on the Thom
class corresponds to an operation in the manifold which reaches
the top dimensional class. In other words, the obstruction
question is given in terms of the homotopy structure of the
original manifold. 1In [4] this notion is exploited.

2. In this section we will give the necessary constructions
and definitions which will enable us to state the form of the
main theorem (2.7) about cohomology operation to which we
alluded in the introduction. The proof of tiie main theorem
and of several preliminary lemmas will be left to latter
sections.

In effect, we will work in the stable category. KX(Z,0)
1s the stable object whose cohomology mod 2, for example, is
@Vﬂ@o where () is the Steenrod Algebra and(ﬁ% is the sub-

algebra generated by Sq° and Sql. ZSK(Z,n) is the stable object

sugch that

i (2gK(Z,n)) = EY(K(2,n)).
Clearly there is a map p:ZgK(Z,n) — K(Z,0). Let K(Z,0) be
the universal stable object all of whose cohomology between

1 and 3 inclusive vanishes. Let ZSR(Z,n) be the analgously
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defined complex. Let F, = 2ZK(Z,n) = K(Z2,0) be 2 fibration
1 p

in the stable category with Fn as the fiber. This defines

F .
n

Proposition 2.1 g) F  1s (n-1) connected.

b) There is @ map :RP = F_which induces an epimorphism

* )1’1+5 _

= Zg and (ker *)™1 _ g

in cohomology. c¢) (ker
for all other 1 < 7 with integers for coefficients. d) With

Z2 for coefficients we have the following table for the kernel

n+4 n+5 n+6 n+7
2
¢ Sq T
ZLQ- z2 ng z2+z2
- R T |
Sq2 Sql

The proof 1s a straight forward check of the relative
cohomology of the map p.
The next thing we need to do 1s to define g resolution

of Fn which will be useful for us. Let Go be a graded group

such that
t o,t,m
Go = Ext™ Y(H*(P_)325), t < nt7, t # nHh
= Exto’t(ﬁ*(Pn);Zg) ® Zg, t = ntb;
t~
= Ext© (H*(P ),2,) ® H(F,P 52) n+8 < t < 2n-2
=0 t > 2n-1

By K(G) where G 1is any graded group we mean HtK(Gt,t). There
1s a map £ iF — K(GO)'such that f * 1s onto with integers
for coefficients through dimension 2n-1. Let p':F F_

be the fiber gfpace induced by fo and let




2

_QK(Gp) ??(Gg) (“{T(GS)
11 _Rg_ F2<_i —F S o

N <— N G .. N .

be a minimal Z2 decomposition of the sSpace Fnl. By this we
mean a tower of fiber spaces such that

1) the Fiber in a product of Eidenberg Maclane
spaces, K(Ze;k);

2) the maps ps* are zero; and

3) the composit maps QS+1K(GS) —+Fﬁ+l —*QS+1K(GS+1)

are zero in homotopy.

Thus we have defined a resolution of Fn‘

S
2.2 K(G,) OK(Gy ) 07K(Gy)
T\f 1 T
o]
1 s
F <——— F " <— , . . < F°
s+1
n n pS n p
S,t _ . —_
Let E = Ht(K(GS)). Clearly the map AP F

induces a map &szxt:’t(ﬁ*(Pn), ZE) - gS»t (which may rfail
to be uniquely defined is s = 0O or 1). A key result leading
to the main theorem of this section is the following.

Proposition 2.3 The map §¢ 1s an isomorphism for s

and t satisfying:
T s = Bk,k # 0 4k + 1 Uk + 2 4k + 3 0
t -n< 12k + 8 12k + 10 12k + 12 12k + 17 4
The proof is given in sectiqn 3.
Theorem 4.4 of [3] implies that there is a resolution
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of F, ~tZsR(Z,n)-» K(Z,0) based on the resolution 2.2.

2.4 Let

' Y s-1
BK(GO) K(Gl) Q K(GS)
] o ]. ‘T

~ 1 2
K(Z,0) « A" = o o =A S -

represent this tower. Let o € E°’% and 1let 1, € Ht's+l(ﬂs—lK(G ))

s
be a cohomology class such that m*(10> # 0. (Recall

a € Ht(K(GS)) - The cohomology operation determined by a,
m(a), has as its universal example in the sense of Adams [1]
the triple (Ai, ,g;(ﬁd)). Where # is the fundamental class of
R(z,o) projected to Ai.

In addition we have a MPT for Vh-* BOn[4]--BO[4] as

given by [ 3 ]. Let

2.5 BK(Ly)  K(Ly) 0% 1(k(z,)
BO[4] «EY . . .« Eng.-..,

K(L_) 0SK(L.)

.‘rO T S

where Vh e th -

is a minimal resolution of Vn'

Recall that Vh is homotopically equivalent to Pn
through the 2n - 2 skeleton. Thus the map A induces a map
Ex S’t(ﬁ*(Vh),Zg)-w 't 1n [5] extensive calculations of
the left side are made and we need only the following partial

results.
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Proposition 2.6 The following tables represent a

} v T oot
portiop of a subset of Exq@ (H*(Vh),z2).

S—)-H{=3 [
2 c1
1
0 al b1
t -s-n-08km 0 1 2 3 -5 6 7
Table 2.6.1
A subset of a portion of Exqgf’t(ﬁ*(Vh),Zg) for n = 1 mod 4.
al
s - bk = 3
.2 03
0 a3
t -s-n- 8k = 0 1 2 3 4 5 -7 8
Table 2.6.2

A subset of a portion of Ex?cf’t(ﬁ*(Vh),Zg) for n = 3 mod 4
with hoaé(k) = aB(k+1).
Recall that associated with an element o E'Ex%:f’t(ﬁ*(Vh),Zg)
there is a characteristic class k, € Ht~s+l(Ei;22) which is
called the k-invariant associated with .
The main result of this section is the following:
Theorem 2.7 Let US be the Thom Class of the universal

bundle over Ei, Then for each o given in the tables 2.6.1

and 2.6.2 U, v k, Era%*(q)us).
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The theorem is proved in section 4. The special case
of the theorem is due to Thom for s = 0 and for s = 1 is due
Mahowald and Peterson [6]. A related theorem is also theorem

A of [5].

5. Proof of Proposition 2.3
| First observe that for s = O the proposition is

obviously true. As a second stép we will prove the following.

1 1

Proposition 3.1 The induced map Vn-» Fn produces an

epimorphism in cohomology.’

Proof. Consider the diagram
1 3
—~H (5} ~ H*(K(G,)) —2>> H*(F ) —
L W R P
* — -
. — H (vn) - H (K(LO)) H*(Vn)

Let B € H*'l(vi). Since L* is onto there is a class B such
that X;ﬁ = 8B. The group GO was constructed so that fg/kerxg
is onto ker \A¥*. Thus if fgﬁ # 0 we can add to it a class vy
such that f¥ (B+vy) =0 and XS(E + Y) = 6B. This proves
that Xi is onto which 15 the proposition. M

Now consider the cofibration V,' —F !~ F /v 1,
Clearly 2.1 asserts that the cohomology of this sequence splits

into short exact sequences.

o—ul(r v ) —wd(r ) ~vl(v 1) - o,

Thus we have a long exact sequence in Ext

~ ~ ~ o)
. .-*EX@’t(H*(Vi),ZQ )—,&Exté’ t‘(H*(F}l)’ZQ )__)Ext@,t(H*(Fi/V}l),Zg )—». .
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Where & 1isg

job)

map of degree (1,0).
Next observe that H*(Fé) and H*(V ) are both A Iree.
Clearly H*(F: /V ) is thenQD free too and thus the Adams edge

theorem applies and glves the proposition immediately.

4. Proof of Theorem 2.7
As a first step we have:

Proposition 4.1 For each s we have a commutation

diagram

MO[4]
n

6]

S
K/ *n ¥
. -

p
‘s
n

:>l

Where us*(u) = Ug.

The prool is immediate.

The above proposition assures us that ©, 1s defined on

U for each a € E°? t

Proposition 4.2  Suppose n = 1 mod 4 and theorem 2.7
is true for a (k) by (k) and ¢y(k). Then the theorem holds

for h,a ( ), (k), hobl(k), hocl(k) and a,(k+1).

1
Proof. Consider the diagram
i
MELH{ - MEgk""l ol ®4k

n
lus lus+1 J}'S+1

4ic bx+1 ~ bk
A=Ay < 7RGy )
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Where C}uk is the fiber of the top row. Since the fiber of

Eﬁk+1-» Eﬁk is QMKK(LMK) which is (8k-1+n)-connected as is

4k,”(

easily seen from Ex ﬁ*(Vn),ZE). Thus, through dimension

8k-3+n, @@uk = K(Zg,8k) X K(Zg,8k+2) and u'St¥ 15 an 1so-

morphism. Now us*'f(ta ) = U U ka for a suitable choice of
1 1
ka by hypothesis. A similar statement holds for tb . Now
1 1

the universal example for Op
a

171 o'l

satisfy:

241 1
n * = Sq + 1
and 1 2 Sq La Sq b

1 1 1

2
i*v1 = Sqgt

. — ¥*
Thus, us+l*(vj) #0 for j = 1 and 2 since T*y5*! vy £ 0.

- S+1*
Clearly, d§+1vj = 0 and so d§+1u Vj = 0. Thus, the'
k-invariants k and k, can be chosen to satisfy
hoa h b
' 171 o1
Uik, , =uwv andvuk = uSty, .
171 071
In an entirely similar way we use the defining relation
2 2 1 2, .
for h1 al, Sq th 5t Sq th b to prove the theorem for h1 al,
11 o1l
2,1,2 1
the defining relation for h _c.,, Sq 1. 2 a+ Sqt to
o1 h1 hocl

prove the theorem for hocl; and finally the relation for

2,1,

hocl

al(k+1), Sq (%) to complete the proof.

Proposition 4.3  Suppose n = 3(4) and theorem 2.7

holds for d3(k),03(k) and aé(k). Then the theorem holds for
2
hldB(k), hldB(k), a3(k+1) and d3(k+1).
Proof The proof is entirely similar to the proof of

proposition 4.2,

and “h b.° vy and Vo respectively,
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The defining relations are h.d, (k) Sq“t
‘ 193 dy
2 2 1
c 1 q
hldB(k) Saq h.d. + Sq 101
172 ~
33(k+1) qu’l’glh ot Sqlt,,
03
dy (141 sq°r Ly,
3 2

We will use 2 and 3 to give an induction proof of
theorem 2.7. First observe that the theorem 1g clearly true
for al(o), bl(Q) and 85(0). The key to the inductioh 18 the
following result.

Proposition 4.4 Under the usuzl projection

p:V, w>V’n+2 we have: &) if n = 1 mod 4, p4b1 = a 3 and
D¢y = Cz; b) if n = 3 mod 4, DuCz = hib1 and pﬁa% = hocl'
This result can be rather easily read off of the table given
in [5].

Now we can prove theorem 2.7. The argument is similer
in each case. Thus we will do Jjust one case. Consider
a%(k) for n = 3 mod e. Recall that this is a class with
filtration (4k+3, 12k+11+n) We start with n + &k + 7.
Clearly al(o) and bl(O) for this case satisfy the theorem;
thus 4.2 implies h°b (C) does too.

Now consider mapping the tower for n + Sk + 7 into
that for n + 8k + 9. Proposition 4.4 implies that if the
theorem holds for hgbl(O) it holds for CB(O)‘ Also clearly

the theorem holds for aB(O).

Now map the tower for n + 8k + 5 into that for n + Glr k-

g
[y
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Proposition 4.4 implies that if the theorem holds for 05(3)
it holds for cl(O) and if 1t holds for 83(0) it holds for
bl(Q).

Now cuppose by induction the theorem holds for cl(i}
and bl(i), 1 <J<kand n# &(k-J) + 5. Clearly it holds for
a;(0) and thus 4.2 implies 1t holds for hgbl(i) and h_c, (1),

1 < J. This implies the theorem for n + 8(k-j) + 3 and a%(i)
(o)

and thus 4.3 implies the theorem for hoc3(i) and 83(i+1) for

and 03(1), 1 < J. Again the theorem is clearly true for a

AN

1< 3.

Now this implies the theorem for bl(i+1) and cl(i),

}.J.

Jand n + €(k-j) + 1. The theorem is clearly true for

<
al(O) and so 4.2 implies the theorem for h§b1(1+1) and h_c, (1)
i< 3.

Finally this implies the theorem for n + &(k-j) - 1
and a%(i) and 03(i+1), i < J. The theorem is clear for aB(O)

and thus 4.3 implies the theorem for h003(1+1) and aj(i+1)

3
which for n + €(k-j-1) + 5 implies the theorem for Cl(i) and
al(i), 1< g+ 1.

| This completes the induction and the proof of the

theoremn.
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