HIGHER ORDER LINKING NUMBERS

by
‘WeS. Massey

§ l. Introduction

One of the oldest and most useful invariants of algebraic
topology is the linking numbér of two cycles of appropriate
dimensions in Euclidean n-space; in fact, for the case of two
oriented closed curves in 3-space, the linking number coﬁcept goes
back at least to Gauss, who gave a well known integral formula for
its computation.

It is'an eésy exercise to show that the linking number of two
cycles in Euclidean n-space is equivalent to a certain cup product
in the complementary space. For example, suppose that sP and
s are disjoint spheres in Euclidean n-space, Rn, where
n=p+q+1, and 1< p<gq < n-2. By the Alexander duality
theorem, the complementary space, R" - (SPU s9), has infinite cyclic
integral cohomology groups in dimensions p, q, and p + q. There-
fore the cup product of the generating cohomology classes in
dimensions p and q. will be a certain multiple of the generating
cohomology class in dimension p + q. It can be shown that this
multiple is equal to the linking number of sP and 9 (up to a
plus or minus sign). ‘

Several years ago the author introduced the triple product and
certain other higher order cohomology operations which can be de-

fined in terms of cup products of suitable cochains (see [8]).
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It is natural po expect that these higher order cohomology opera-
tions when applied to the complementary space of a collection of
spheres in Euchidean n-space should give information about the
linking properties of the spheres. It is the purpose of this

paper to show the essential correctness of this conjecture. We
shall illustrate some of the possibilities by means of various
examples, and prove some relations between the different invariants
that arise. It is our hope that these higher order operations

will be useful in future work involving the concept of linking.

We can illustrate the basic idea by means of a simple
example, the so-called "Borromean rings" (see Fig. 2 ). As is
well known, any two of these three circles in 3-space are
unlinked; yet it is impossible to pull the three of them apart.
Since all linking numbers are zero, all cup products in the com-
plementary space vanish. Thus the triple product of the three
generating l-dimensional cohomology classes is defined, and it
turns out to be non-zero. This is one way of giving a rigorous

mathematical proof that the three rings can not be pulled apart.

It should be pointed out that the cohomology invariants con-
sidered in this pape; can be defined using any commutative ring
for coefficients. It is not necessary to use the integers mod p
as in the case of higher ordér operations based on the Steenrod
operations. If one is interested in using the field of real
~ numbers as coefficients, then by de Rham's theorem one can use dif-

ferential forms to make the computations.
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§ 2. Definitions, Terminology, Notations, etc.

Throughout this paper for the sake of simplicity we will use

singular homology and cohomology with integer coefficients unless

some other coefficient group is explicitly mentioned. The obvious

generalization to other coefficient rings is left to the reader.

The triple product, as introduced by the author in [lp], will
be used extensively. Note that this definition differs from that
of Kfaines [7] by a sign; see page 433 of [7]. 1In addition to the
properties listed in [10], we will use the following two further

properties of the triple product.

The first property is a sort of Jacobi identity. Assume that
u, v, and w are cohomology classes of dimensions p, q, and T
respectively, and that the cup products uwv, vww, and wwu
all vanish. Then the triple products <u,v,w>, <v,w,u>, and

<w,u,v> are all defined, and satisfy the following relation:
(2.1) (-1)PT<u,v,w> + (-1)%P<y,w,u> + (-1)"%w,u,v> =0 .

This relation is to be understood modulo the smallest indeterminacy
such that all three triple products are well defined; however, we
will usually apply this relation when the indeterminacy is o.

For the proof of this relation, see Kraines [7], theorem 10.

For the next property, assume that u, v, and w are co-
homology classes of dimensions p, q, and r, and that uwv = 0,
vuw = 0. It then follows that v~ou = 0 and wwv =0 also,

_ hence the triple products <u,v,w> and <w,v,u> are both defined,

and have the same indeterminacy. We assert that
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(2.2) <u,v,w> + (-1)5<w,v,u> = 0,

where s = pq + qr + rp. For the proof, see Kraines,, [7],

theorem 8.

Suppose the hypotheses of (2.1) hold; then one can form six
triple products with the cohomology claéses u,v, and w, corres-
ponding to the six possible permutations. For the sake of
simplicity, let us assume that the indeterminacy is zero. It then
follows from relations (2.1) and (2.2) that these six different
triple products span a subgroup of the cohomology group Hp+q+r'l

which has rank at most 2; later on we will see examples where this

rank is actually 2.

When using the Steenrod functional cup product, we will
follow the definitions and notation laid down in [10]. In addition
to the properties of the functional cup product stated in [10], we
will also need the following anti-commutative law. Assume that
u and v are cohomology classes of dimensions p and q re-
spectively which satisfy the following conditions: uwv = 0 and

f*(u) = 0. Then the following relation holds:
(2.3) Le(u,v) = (-1)P9R.(v,u) .
The proof is left to the reader; the most obvious procedure is to use

the Steenrod "cup-1" products.

We will need to make use of the Alexander Duality theorem in
the following form. Let X be a finite CW-complex which is a

subset of the n-sphere, s™. Then there exists a natural isomorphism.




¥ HUX) —> o (s7x),

where it is understood that in dimension 0, reduced homology and
cohomology groups are used. Naturality means that if Y is also
a finite CW-complex and Y C X, then the following diagram is

commutative:

HI(x) —> HI(Y)
(2.4) e \l

_ n_ -

Here the horizontal arrows denote homomorphisms induced by inclusion

' maps.

§ 3. The Case of three disjoint spheres embedded in sh.

In this section, we shall be concerned with the following

situation: S, S and 83 are disjoint oriented spheres embedded

l’ 2’

in Sn, dimension FSi = p.

; Where 1< Py S n-2, the linking member

of any‘two of the sphefes is zero, and
(3.1) Py * P, + Py = 2n-3 .

Usually we will assume that each Si is embedded piece-wise linearly
in Sn, although this is not essential for some of our statements.

Let X denote the complementary space and

9
w; € H (x), Q =n-p; -1, 1i=1,2,3

the cohomology class which is the Alexander dual of the fundamental

homology class of the sphere Si (appropriately oriented). By the
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Alexander Duality theorem, Hn'l(x) is a free abelian group of
rank two, while in dimensions between 0O and n-1 the cohomology
of X is freely generated by the classes Wy, W, and LET Since
any two of the spheres Si and Sj have linking number 0, it
follows that the cup products W{v'wj are all 0. Therefore the
triple product <wi,wj,wk> is defindd for any permutation

(i,3,k) of the integers (1,2,3); it follows from equation (3.1)
that

(3.2) q; + q, *+ q3 =n

therefore <"i’"j’wk> E Hn'l(x) (the indeterminacy is zero, since

all cup products in X vanish).

Corresponding to the six different permutations of the
integers (1,2,3), we obtain six triple products, which are related
by the Jacobi identity (2.1) and the relation (2.2). Although the
group Hn'l(x) is free abelian of rank two, there is no canonical
way to choose a basis, and thus at first sight there seems to be no
eéasy way to specify the six elements of H"‘l(x) determined by these
triple products. We will shortly prove that they are essentially

determined (up to sign) by a single integer.

~

In order to explain how this comes about, it is necessary to
introduce certain other subspaces of S" which are rather naturally
associated with the piecewise-linearly embedded spheres Sl’ SZ’ and
SB' Let Ui be an open regular neighborhood of Si in Sn,
i=1,2,3. It is assumed that these regular neighborhoods are chosen

sufficiently small so that their closures are disjoint. Let Bi
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denote the boundary of U; ; then B, is an (n-1)-dimensional

manifold which is .embedded piecewise-linearly in s". Let M

denote the complement of U = U,U U

1
n-dimensional manifold whose boundary is B = B,U B

2UU3 in s" ; then M 1is an
2LIB3. Also,

M 1is a deformation retract of X, and for the sake of convenience,
we will‘identify the cohomology groups of M and X by means of
this 6bvious natural: isomorphism. We will assume that S" has
been given a definite orientation. This induces an orientation

for the manifold M, and we will orient B

B and B3 so that

1 —2?
their orientations are consistent with that of M. These choices

of orientation single out generating cohomology classes

r e H'(M,B) ,

: -1 .
By € K" (Bi), i=1,2,3.
Now consider the following portion of the cohomology sequence of

the pair (M,B)
*

(3.3) HL (M) 5—> " 1(B) E—> H'(M;B) —> 0.

- All the groups in this sequence are free abelian groups and their

ranks are, reading from left to right, 2, 3 and 1 respectively.
It follows from the exactnesé of this sequence that g* must be a
monomorphism {This fact could also be proved by using the functorial
nature of Alexander Duality). Therefore any element of Hn°1(M)
is completely specified by describing its image under the homo-

morphism g* ; and to describe the image under g*, it is con-

venient to use the fact that {Fl’”Z’”Bl is a natural choice of
basis for the;gruﬁp:’Hn’l(B).
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THEOREM 3.1. Let (i,j,k) be any permutation of the

integers (1,2,3). Then there exists an integer M., such that

*

COROLLARY, The six integers #;, thus obtained are all equal

in absolute value; to be precise,

939
ik

q.q
- = (o1) 371y
(-1) (-1) mys = (-1) My s

;93 + quk + Q9
myy = (-1) Myei
The corollary follows from the theorem by use of the identi-
ties (2.1) and (2.2).

Proof of theorem. Consider the portion of the cohoﬁology
sequence of the pair (M,B) written out in the paragraph above. In
view of the way we chose the orientations 4 and 4y, it follows
that

5(uy) = n
for i =1,2,3, Therefore if x ¢ Hn-l(M) and g*(x) = aypy * ayu, *
azliqy it follows from exactness that a, + a, *+ a; = 0. Hence in
order to prove theorem 3.1, it sufficies to prove that if we express
g <Wi’wj’"k> as a linear combination of iy 5 ”j’ and i, the
coefficient of #s is 0. Alternatively, if gj . i L(M) — Hn'l(Bj)

denotes the homomorphism induced by the inelusion map, then it

suffiéés: to prove that

*
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We will prove that g?wi = g?wk = 0 ; it will then follow from

lemma 5 of [10] that gj(Wi,Wj§Wk> = 0 as required.

The fact that g?(wi) =0 if i 4 j is an immediate con-
sequence of the functorial nature of Alexander Duality as explained
in § 2 and the assumption that the linking number of the spheres
S; and S, is zero. For, the Alexander dual of the homomorphism

* s c - : ‘

q; q
gj : H *(M) —> H i(Bj) is the homomorphism

U,u U,V _ n_B.
Hpi( VU, U3) Hpi(S BJ)

and we have natural direct sum decompositions

Hpi(Ulu U,V Uy) = Hpi(ul)@npi(uz) @Hpi‘(‘t@),a

n n =
-B;) = H U.. H 5°-U.).
Hpi(s BJ) pi( J)C) pi( J)_
Now w; is the Alexander dual of a generator of Hp'(Ui),
‘ i
u; c s - Us, and the degree of the homorphism
n—
U —> H S -U.
Hpi( i) pi( UJ)

is equal to the linking number of S; and Sj' Q.E.D.

For some purposes, it might be more convenient to replace the
exact sequence (3.1) above by the following sequence, which is a

portion of the cohomology sequence of the pair (S",M):

5
(3.4) 0 —> K" 1(M) —> (s?,M) —> H(s") —> 0 .

By the excision property, Hn(Sn,M)ann(ﬁ,Bk, and the latter group

is naturally isomorphic to the direct sum of the infinite cyclic groups
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Hn(ﬁi,Bi) for i =1,2,3. The short exact sequences (3.1) and
(3.2) are isomorphic; this follows from the commutativity of the

following diagram:

* _ H"Y(p) 5'

)‘g/l \
T~ e

H(s™,M

B (m (T, B)

In this diagram, 8' and gz are isomorphisms. Thus one can
specify <"i’"j'wk> by describing its image under $ rather than

under g*.

The integers W of theorem 3.1 which determine all the
triple products <wi,wj,wk> are intimately related to another
rather natural invariant which we will now describe. Let X, de-
note the complement of SZL’SB, X, the complement of S,V Sy, and
X3 the complement of S;v S, in s®. For i = 1,2,3 we can con-

sider the embeddings

As above, let (i,j,k) be any permutation of the integers (1,2,3).

With a slight abuse of notation, let us denote by

q . q
J k
w. € H (X})’ w € H O (

j X.)

 §

the cohomology class which is the Alexander Dual of the fundamental
homology classes on the spheres Sj and S respectively. Although
this choice of notation conflicts with that introduced earlier in

this section, no confusion will result, since cohomology classes
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which are denoted by the same symbol coincide under the homomor-

phism induced by the inclusion X C X;.
Since the linking number of Sj and S, 1is 0,

wjg/wk = Q &

The fact that the linking number of Si and Sj is O implies
that f:(wj) = 0; similarly 'fz(wk) = 0. Therefore the functional

cup products Rg (wj,wk) and L, (wj,wk) are both defined, and by
i i
lemma 3 of [10],

Rfi(wj,wk) = Lfi("j’"k) .
Note that the indeterminacy is 0. From (3.1) it follows that
Qj tq - 1= Py -
Therefore Rf (w, ,wk) is an element of the infinite cyclic group

(S ), and hence it is a certain integral multiple of a genera-

p
tor of H i(Si). We will prove that, up to sign, the multiple

which occurs is independent of the choice of the permutation (i,j,k),

and is equal to the integer which determines the triple product

<wi’"j'wk> in theorem 3.1 (for a more precise statement, see

equations (3.7) below).

Before giving the proof, we will point out one corollary of
this theorem. Since the functional cup product Rfi(wj’wk) is
invariant under homotopies of the embedding map fi’ it follows
that the triple product <w1,wj,wk> is also invariant under such

homotopies. Thus this triple product is not only an invariant of the




185

homotopy type of the complementary space; it is also an invariant

of certain homotopies of the embedding maps.

As a first step toward proving this result we will show that we
may consider instead of the functional cup product Re (wj,wk) a
i
certain other functional cup product which is easier to relate to

the triple product <wi,wj,wk>.

£*
H*(si) < 1 H*(Xi)
Fps l("a
u* (U ) < g* (ML)U )
[
H (Bi) < S H* (M)
Fig. 1

For this purpose, consider the commutative diagram shown in figure 1.
All homomorphisms in this diagram are induced by inclusion maps.

The homomorphisms labelled ‘?1 and q% are monomorphisms, for
which the image is a direct summand, while the homomorphisms

labelled ﬁ”B and <FL are isomorphisms.

From this diagram, it follows readily that if Rf (w. ,wk) is

p
a certain multiple of a generator of H i(S ), then Rg (w.,w ) is

J’
the same multiple of the corresponding generator of le(Bl)
(Note that we have identified wy with P, %, (w;) and w  with
?E ?l(wk)). Thus we are led to study the functional cup products

Rgi(wj’wk)’ where g. : B, —> M denote the inclusion map.

In order to keep track of the various signs involved in the
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proof of our assertion, it is necessary to be more careful about
choosing orientations from here on. This necessitates a bit of a
digression. Since Ui is a regular neighborhood of Si’ it
- follows that Si' is a deformation retract of ‘ﬁi‘ The choice of
orientation for the sphere Si is equivalent to choosing a genera-
tor for the infinite cyclic group Hpi(Si); let u., denote the
corresponding generator of Hpi(ﬁi)- By Alexander duality,
Hqi(Sn-Ui) is infinite cyclic; we will use the chosen orientations

93
to pick out a generator vy of H l(Sn-Ui) as follows. Let

Py s Py
B i(sMy. ) —> Hi(g,)
Vi : -Us ils

denote homomorphisms induced by inclusion maps. Since Bi is a

sub-manifold of S™ of codimension 1, it follows that ¥, and

f%g are monomorphisms, and their images generate the cohomology of
By in dimensionsp}ess than n-1 (see [9], lemmas 12 and 13). If
P; = q3, then H l(Bi) is the direct sum of the two images. If

v; 1is a generator of Hqi(Sn—Ui), then the cup product (ﬁPiui)v

: /
(ﬂ#}vi) is a generator of Hn'l(Bi); this follows from the Poincare

duality theorem. We will assume that v; is chosen so that

(?iui)u(yivi) = ﬂi, i= 1,2,3.

| q q: | ,
Let 7, : H *(s"U;) —>H (M), i =1,2,3, denote homomorphisms
induced by inclusion maps; then we denote by w3 the cohomology
class ﬂ?i(vi)‘ What we have done is to specify an explicit way of

choosing the cohomology classes w5 mentioned earlier. Note that
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the following diagram is commutative:

(S —U ) ———> H

P

g (W) = ¥;(vy), 1 =1,2,3.

It follows that

We can now continue with the proof. Since gI(wJ) = Q0 if

i 4 j, (see the proof of theorem 3.1), we can apply lemma 4 of
(10] to obtain the following results:

% *
B30 S = =g )l ()

(3.6) g:<wi,wj,wk> = ng(wi,wj)kl(g:wk) .

(Note that both of these formulas are correct with zero indeter-

minacy, although if Py = Qi Lg (wj’"k) has non-zero indeterminacy).
. i '

For the sake of completeness we recall that in the course of proving

theorem 3.1, we proved that

(3.7)  gi<wy,w

j ,wk> = 0,

J
We now apply these formulas for the case where (i,j,k) is a

cyclic permutation of (1,2,3). There exist integers m,,m,, and
my such that:

Rgl(WZ,WB) = Lgl(WZ’WB) - ml.?l(ul) ’
Rgz(Wngl) = ng(w3wl) - mz'%(uz)!

Rg;wl,wz) = LgB(wl,wz) = m3-?3(u3).
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Using these results, and the fact that (ﬁ”{ui)anqkivi) = pg, we

obtain the results depicted in the following table for the value of

%e*<wi’wj’wk>:
g IGi g%
<;;,w2;w3;~nr: (;ib{p1+})qrmlul 0 LIV
R Tte m, g RN Y (P2l )(,12“‘2"2 0
Wz, W) ,Wy> 0 | Mok - (-1) (p*l )q3m3/.‘3

Using the fact that the sum of the coefficients in any row is O

(already exploited in the proof of theorem 3.1), we find that

(p,+1l)q
(-1) 1 lml = m3 )
(p,r+1)
(3.8)  {(-1) 2 Zn,am
1
(_l)(p3+ )q3m =

my, .

This is the precise statement of the assertion in italics above. It
is a sort of cohomological analog of the main theorem of a paper of
Haefliger and Steer, [3]. On the one hand, the result of Haefliger
and Steer is much more general in that they do not impose the con-
dition Pp * Pyt Py = 2n - 3. On the other hand, Haefliger and

Steer require that p; <n - 2, while we only require that

p; Sn-2 for all i.

It should be pointed out that many of the considerations of
this section apply if we drop the hypothesis that the linking number

2
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of any two of the spheres is zero. For example, if we assume that
S, and 83 have a non-zero linking number /g, while the linking
numbers of 82 with either S1 or 83 are iero, we can still
define the triple products <wl,w2,w3> and '<w3,w2,wl>. In

addition, we can consider the functional cup products Lgl(wz,w3)
and RgB(wl,wz), and use lemmas & and 5 of [10] to extablish a
relation between these concepts. The main difference is that there
will be non-zero indeterminacy in this case, and the triple pro-
ducts and functional cup products take their values in certain
quotient groups which have elements of finite order. The details are
left to the reader. It should be noted that the assumptions we have
made in this paragraph imply that Py = dimension S2 = n - 2, and
Pp + Py =n- 1.

Another way to handle this same problem would be to use
integers mod £ for coefficients for all homology groups, where
A = linking number of S, and Sj. Similarly, if p; = pp = 0 - 2,
Py = 1, Ael = linking number of Sl and 83’ ,é; = linking number
of 82 and SB’ and 82 -and S3 have linking number O, then
most of the foregoing considerations could be carried through if we
used as coefficient r{ng for cohomology the integers mod d, where
d is the greatest common divisor of ,é& and J%. Finally, in the
case where p;, = p, = P3 = 1, n = 3, and all three linking numbers
are non-zero, it would be appropriate to use as coefficients the

integers mod d, where d is the greatest common divisor of the

three linking numbers.
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§ h.' Use of Duality and Intersection Theory to_Study

Explicit Examples. In order to study explicit examples of the

phenomena considered in the preceding section, it is sometimes con-
venient to shift from cohomology and cup products to homology and
intersection theory by means of the duality theorems for manifolds.
In the preceding section we were concerned with the cohomology
groups H' (M) of the n-dimensional manifold with boundary M. By
the duality theorems, '

r
HT (M) H_.(M,B),
and the cup product pairing
H' (M) @ HS (M) —> HT 'S (M)
is equivalent to the intersection theoretic pairing

Ho_(M,B) @H, _ (M,B) —> Hy_(.,q)(M,B).

By the excision property,

Hi(M,B)zHi(s“,'ﬁ),
and

n T\~/ n v

since each sphere Sy is a deformation retract of ﬁj. Thus
instead of computing triple products in H*(M), we can compute
their analog in the intersection theory of H*(Sn,SILJSZLJSB). The
duals of the cohomology classed Ww;,W,, and LR are homology classes
which are'represented by singular discs Dl' D2, and D3 re-

spectively (of dimensions p;+l, p,+l, and p3+1) such that the
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boundary of Di is the sphere Si. In order to appiy intersection
theory, it is necessary to choose these discs in general position

with respect to each other.

An interesting special case is the case n = 3, P =Py " py = 1,
the case of three circles in Euclidean 3-space (compactified by adding
the point at infinity). Following the standard practice in knot
theory, one can prescribe the position of the three circles in
Euclidean 3-space by means of a regular projection onto a plane
(see [1] , chap. I, section 3). Two examples are given in

figures 2 and 3. The first figure
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depicts the well-known "Borromean Rings", and the second figure is

- a rather obvious modification of the first. For convenience, one
can think of the circles as actually lying in the plane of diagram,
except near the double points, where the two branches lie slightly
above and sllghtly below the plane of the diagram. To obtain a
singular disc which one of the circles bounds, it is convenient to
take én infinite half-cylinder whose base is the circle in question
and whose generators are half lines perpendicular to the plane of
the diagram. . From the topological point of view, such a half

. cylinder is a cone whose vertex is the point at infinity.

Using this idea, the reader can make explicit computations
for the case of fig. 2 and fig. 3. It turns out that the integers !
my of theorem 3.1 and all + 1 for the Borromean rings, and + 2
for the linkage shown in fig. 3. In this connection, it should be
pointed out that the appropriate dual of the exact sequence (3.3)
is the following:

n . Hy o
0 —> Hy(s",s,V s,U S3) —> Hy(5,v 5,V 83) —> Hy(s") —> o0 .

Next, we will give an explicit example of such a computation

\j

for arbitrary dimensions P11P2sPy such that P, *pyt Py = 2n - 3
and 1 < P{ S n - 2.+ As in thg preceding §, let
| q; = n -p;y -1,
Then the integers 91,92,93 satisfy the conditions 9y 21, and
934 * 49 *q3 = n. | 7
Thus (ql,qz,qB) is an arbitrary sequence of non-negative integers,

and n denotes their sum. We will consider S" as the l-point
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compactification of Euclidean n-space Rn, and =

B = R3¢ R2RD .

Thus any point of R"™ is represented as a triple (x,y,z), where
q q q
X E R'l, yeR 2, and z € R 3. The spheres Sl’ SZ' and S3 will

be defined by the following equations:

s; : x =0, Iyf+ lal®/m=1,

2

s, :y=0, laf+ [x7u=1,
2

s, : =0, |x?+ Iyfu=1.

The reader should clarify the meaning of these equations by drawing
a diagram for the case q; = q; = q3 * 1, n = 3. In that case, we
again obtain the Borromean rings, hence we have here a true gener-

alization of the Borromean rings.

It is not difficult to see that any two of these spheres have
linking number O; in fact, one can even prove the stronger statement
that any two of them can be separated by a hypersphere in rR™.

Consider, for example, the hypersphere in R" whose equation is

lﬁgi + lZE + _lEEi_ =1 .
SN C NNCRS

It is readily proved that Sl is "outside" this hypersphere, and

82 is "inside" it.

In order to avoid difficulties with signs, we will compute the
dual of a triple product with mod 2 coefficients. Let

n
wy € HP1?1(S ,SlL)52L)SB,Zz) be the homology class represented by
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the mod 2 relative cycle

! = = 2 '2 ’
wy {(X,Y!z)lx 0, lyl*+ |z < 1} y Wy E HPZ'T,]'(Sn’SlU 32\)53)

the homology class of the relative cycle *

"'2' = {(x,y,2)|ly =0, |z|2+ lez/h < 1} and wy e Hp3+l(Sn’S U SZUSB)
the homology class of the cycle
w3' = {(x,7,2)]|z = 0, |x* + |yi¥s <1}
These cycles are in general position. Their intersections are
'wlz'wz' = {(x,y,2)| x =¥y =0, |z|< 1},
w22>w3' = {(x,y,2z) ]|y =2 =0, |x|< 1} .
Therefore v ;

wiowz' = (a),A w2'0w3' = ©(b) where a and b are the mod 2

relative chains defined by the equations

a = {(X)Y;z)llzlz."‘ xlz/h é___lv Xy

nv

0, x, =...-qu =0, y = 0f.

b = “pr15)“3(|2 + le/h <1, i g 0, Yo "“-“Yqz =0, 2= 0}0

It is now easy to compute the intersections

T ’
w; ob = {(x,y,z)| x =2 =0 0% Y1 S 1, ¥, =eeen yqz = 0} ,

! ™ = = = "
a°w3 = {(x,7,2)] v = 2 =0, O < X < 1l Xy eoee qu O}.

and the sum
wlz b + aowB'

a

is a relative l-cycle (mod 2) which represents a non-zero element of

. the group Hl(Sn,Slu S,V 85,2,), since it is a path joining two
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distinct components of the subspace s,V s,V S3; in fact, the end

points of this path lie on Sl and 83 This sum obviously

represents the dual of a certain triple product in S" - (S U S,u S ).

The fact that it is non-zero proves that the spheres Sl' 52, and 83

can not be pulled apart.,

§ 5. Application of a theorem of Hudson to the construction

of Examples. It is the purpose of this section to show how a
theorem of Hudson can be applied to construct non-trivial examples

of the phenomena discussed in the preceding two sections.

Assume, as before, that Py + Py + Py = 2n - 3, and
1 S Py S n - 2. In addition, we will now assume that the notation
is chosen so that P ; P, g P3) and we make the additional assump-
tion that P3<n-3 (it is readily seen that this additional
assumption only excludes the case Py =P = p3 = l1). Let 51 Sy,
and S3 be spheres of dimensiqns P1»P,, and Py respectively,
and assume that S1 and 82 are embedded piecewise-linearly in
s®. Given any continuous map f : S3 —> st . (SIU S;), it is
easy to check that the Embedding Theorem of J.F.P. Hudson [5]
implies that f is homotopic to a PL-embedding.

We will now apply this result to the case where Sl and 82
are embedded in S" in such a way that they can be separated by a-
hypersphere, and both Sl and S2 are unknotted. Then it is
well known that the complementary space SU - (Slu S,) has the
(n-2)-type of Sqlv qu Let a;, and @, represent the homotopy

classes of the composed maps
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i
q a9, q
b lsglvsg2 by gn (5,V5,)]
q, i q q
225 51lyg?2 by gn_ (5, 5,)]

S
S

where h is an (n-2)-homotopy equivalence and i, and i, are
inclusion maps. If we choose f to belong to the homotopy class
of m-[al.az], then it follows from Theorem IV of [10] that the

functional cup product

Rlw ,wz) p : (3.5) anc
" is *+ m times a generator of H 3(33). We can now apply equations/ (3.t
to determine the triple products <wi,wj,wk> in the complementary
space S - (SltlsztlSB), where S3 is embedded piecewise linearly

in s% - (Slu Sz) by a map of the homotopy class of f. Since we

- can choose the integer m arbitrarily, this shows that all possible

values for the triple product <wi,wj,wk> can be realized.

At this point it is ﬁerhaps appropriate to point out that the
unknotting theorem of Hudson shows the role played by the gondition
Py + py *+ Py = 2n - 3 on the dimension of the spheres 81,82,33
embedded in S™. In order to state the result precisely, it is con-
venient to introduce the Yollowing terminology: We shall say that
the pair of spheres, S, and S; 1is embedded trivially in s" if
there exists a piecewise 1inea} hypersphere Sn"l Cc S such that
S; and Sj are in different components of S" - sn~1, Similarly,
we shall say that the triple of spheres, Sl’ 32, SB’ is embedded
trivially in S% if there exists a disjoint pair of hyperspheres
?"l and Sg'l embedded piecewise linearly in S™ such that

Sl’ SZ’ and 83 are contained in different components of

S
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s" - (sl sg~1) .

PROPOSITION 5.1. Let Sl’ S,, and S3 be disjoint spheres

which are embedded piecewise linearly in S™. Assume that the

dimensions P1» P,, and P3 satisfy the following inequalities:

l1gp;En -2, i=1,2,3,
pl+P2+P3<2n"3°

Then if each pair of these spheres is embedded trivially, the triple

S1» S, 33 is also embedded trivially.

v

Roughly speaking, this theorem says that if Py * Py +.p3-<‘2n-3,

then we can not have the phenomenon illustrated by the Borromean rings.

Proof: Assume that the notation isAchosen so that

P 2 Py 2 P3; note that this implies P3 < n - 2, hence we can
apply the unknotting theorem [4] to the inclusion map

S3 —> 8" - (5,U 8,). Since the pair (81,S,) 1is embedded trivially,
the manifold S" - (Slu SZ) is homeomorphic to the connected sum of
thé manifolds S" - Sl and S" - 52. From this it follows easily
that s - (SlU 82) is of the same (n-2)-type as the wedge, or

one-point union, ’

(8" - s;)v(s" - s,) .

The inclusion map [S" - (S;vS,)] —> [s" - s;1, 1=1,2,
corresponds to the retraction of the wedge onto the subspace st - Si'
Since the pair (Si’SB) is trivial for i = 1l or 2, it follows that
the embedding 83'——4> st - S; 1is homotopic to a constant map. Us-
ing these remarks above, we now wish to conclude that the embedding

S3 —> s . (SlU 82) is also homotopic to a constant map. In
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order to reach this conclusion, it is necessary to make use of the

following three observations:

-

(a) The space S" - S, 1is (qi-l)-connected, where Q =n-p;, - 1.
(b)  For i1 <q; +gq, -1, the homotopy group ni[(S“-Sl)V(Sn-SZ)]
is naturally isomorphic to the direct sum, ni(Sn-Sl)C]rH]Sn-SZ).
(c) The hypothesis that Py * Py *+ Py < 2n - 3 implies that
p3<ql+q2-l.

We leave it to the reader to prove these observations in succession;

L4

from them, the desired conclusion follows.

Once we have proved that the embedding S3 —> s - (SlU S,)
is homotopically trivial, it follows from the unknotting theorem of
(4] that the given embedding of Sy -in st - (5,u S,) and a
"trivial®™ embedding of 83 in s" - (Slu Sz) are PL ambient

isotoﬁic. From this the desired result follows.
Q.E.D.

Remark: The same result holds for differentiable embeddings
instead of PL embeddings. In that case, it is necessary to use a

theorem of Haefliger [2] instead of the result of Hudson.

S 6. Some Remarks on the Case of Two disjoint spheres embedded

in s™.
In this section we will consider rather briefly the case of two »
disjoint spheres, Sl and SZ’ embedded piecewise linearly in Sn;

the dimension of Si will be denoted by Py as before, and we will
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assume that
(6.1) 2py *+ pp = 2n - 3,
and 1< p; £n-2 for i=1or2, If welet q; =n - p; - 1,
then it follows that
(602) ns= 2ql + q2 .

We willAalways assume that S, and S, have linking number O
(the only case in which it could be non-zero would be the case where

Pp =n-2 and p, =1). Let
o .

q.
and w; ¢ H 1(X) denote the cohomology class which is Alexander dual
to the fundamental homology class on the sphere S5;. Since the linking
number of Sl and S5, is 0, wy~w, = 0, and w~w; =0 auto-

matically. Therefore we can consider the following triple products
<wl,wl,w2>, <w1,w2,wl> and <w2,wl,wl>

all have values in the infinite cyclic group Hn"l(x); the
indeterminacy is O. The Jacobi identity (2.1) gives the following

relation:

q59 q q,4d
(6.3) (-1)1 2<w1,wl,w23> + (-1) l<w1,w2,w11> + (-1) 1 2<w2,wl,wl> =0
while the relation (2.2) gives the following two equations:
9
(6.4) [1+ﬂ-l) J<wy Wy, wy> = 0
) q
(6.5) Wy Wy, Wy + (-1) 1<w2,wl,wl> -0,

In case q; is even, then (6.4) implies that <w,,w,,w;> =0 and
then (6.3) or (6.5) implies <wl,wl,w2> = - <w,,w;,w;>. In case
q; is odd, then (6.5) implies that <wy,w;,w,> = <W,,W;,W;>,
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2>. | .

) q2
and then (6.3) implies that Wy Wy, Wy > = (-1) - 2<wl,yl,w
We can also consider the embedding f : 5, —> s" - Sy; by
the Alexander duality theorem, st - Sl has the homology of a -

sphere of dimension qy; let

91, .n
denote a generator. Since wi~w, = 0 and f*(wl) = 0, we can con-
sider the functional cup product -

P2
Rf(wl,wl) = Lf(wl,wl) e H(s,) .

o

Of course if Q; is odd, then these functional cup products are
automatically zero, because of equation(2.3. However, if q; is

even, they may be non-zero.

Exactly as in section 3, we can establish a relation between
these functional cup products and the triple products described above.
Since the method is so much like that in section 3, we will only

give a brief indication of the results, leaving the details to the

reader.

Let U; be an open regular neighborhood of S;, i = 1,2. We
assume these regular neiéhborhoods chosen sufficiently small so
that their closures are disjoint. Denote the boundary of Ui by
B, and let M = st - (Ulg)Uz). Then consideration of the following

diagram
' *
HY(S,) I<f/n*(s"_sl) .
H*(flz) < B (M uU,)

l .

H*(B,) 2 H* (M)
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shows that consideration of the functional cup products
Rf(wi'wl) and R (wl,wl) are essentially equivalent problems
(here we are denotlng by w, a cohomology class of H l(S -S )
or of qu(M) without discriminating between the two). As in
section 3, gz(wz) is a generator of qu(Bz) and gz(wl) = 0,
By applying lemmas 4 and 5 of [10], we obtain the following

equations:

* %
(6.6) BaWy Wy, W> = Rgz(wl,wl)\/gzw2

* l
(6.7) Eo<Wp ,W,,W;> = 0

* *—
(6.8) gy Wy, Wy W > = - (gzwz)\Jng(wi,wl) .

To interpret these results observe that
% - -
g, : "1 (M) —> gP 1(8,)

is an isomorphism of infinite cyclic groups. This leads to the

following result:

PROPOSITION 6.1. If the integer qQ =n-p; -1 is odd, then

<wl,wl,w2> = <ql,w2;wl> = <w2,wl,wi> = 0.

Note that this result is definitely stronger than those deduced

~

previously by use of the identities (2.1) and (2.2).

On the other hand, in case q, is even, equations (6.6)-(6.8)
do not give us any new information about the three triple products.
However equation (6.6) or (6.8) shows that the interesting triple
products, <w1,wl,w2> = - <w2,wl,wl> are completely determined by

the functional cup products Rgz("i’wl) - ng(wl,wl) and vice-versa.
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We leave it to thé reader to show that one can actually con-
struct examples where these functional cup products (and hence the
corresponding triple products) are non-zero. Compare also a short

paper by Zeeman [11].

In constructing such examples, the reader should recall that
the functional cup product is essentially the Hopf invariant of

. — n -
the map f : 82 > S Sl‘

A very interesting special case is the case where Py = Py

and q; = q, is even. We must then have ‘

Pp =Py = Lk - 1

n = 6k

Q) = qp = 2k
for some positive integer k. In this case not only can we consider
the triple products <w;,w,,w,> = - <Wy,Wy,W>; we can also con-
sider <w2,w2,w1> = - <Wp,Wy,W>. As far as the author knows, the
only relation which is known to hold between these two pairs of
triple products follows from a theofem of Kervaire ([6], lemma 5.1).
It is an open question to determine whether there are any other
relations between these triple products in the complementary space

of the two spheres.

S 7. The case of k disjoint spheres embedded in S%, k > 3.

Let Sy, S,,.¢+,5, be disjoint spheres embedded piecewise linearly

in S®. We let Py denote the dimension of Si and assume that

o
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1 < P; £ n - 2. As before, we denote the complementary space of

the union of the spheres by X and let Wy € Hqi(x) denote the
cohomology class which is Alexander dual to the fundamental homology
class on the sphere Si; here 9 * n - p;y -~ 1. 1In order to
generalize the ideas of the preceding section, we wish to impose
conditions on the dimensions P13sPpseee,py such that the k-tuple .
product, if defined,will be a subset of the group H“‘l(x) (which
is free abelian of rank k-1). This requires that

k
(;279;) - (k-2) =n -1 .

which is equivalent to the condition
k
(701) iglpi = (k-l)n "‘(2k"3) e .
It is interesting to note that this condition is satisfied for

P = Pp =o--=pk =1, n=3, i.e. for the case of k circles in SB.

In order to insure that the k-tuple- product <M1,w2,...,wk>
is defined, one would naturally want to assume that any (k-1) of the
spheres are embedded trivially in some sense. One way to attempt
to construct examples is to aésume that the spheres Sl’SZ""’Sk-l
are embedded in S" trivially.- Then the complementary space
st - (slu S,V ..U Sé;l) has the (n-2)-type of a wedge
qlV qu Veeo V qu'l; let a;,a,,.. +a, 1 denote the homotopy

: 17 92 -1
classes of the embedding of the "dual" spheres S *,S “,...,S

S

in the complementary space; let f denote a mapping of Sk into
the complementary space which belongs to the homotopy class of the

iterated Whitehead product
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One then hopes that the map f is homotopic to an embedding, and
that this embedding will have the desired properties. 1In certain .
special cases, this can actually be carried out.  However, the

general case looks rather complicated.

It is natural—-to ask whether or not the analogue of proposition
5.1 holds for k spheres embedded in S". Presumably, this
analogue would read as follows: assume dimension Si = py for
i=1,2,0..,k, 1<p; <n-2, and that ‘

k
Zl p; < (k-1)n - (2k-3);

i&
then if any (k-1) of the spheres is embedded trivially, all k of
them are embedded trivially. The unknotting theorem of Hudson is

not adequate to prove this statement. In fact, it does not work

even in the simple case k = 4, n = 10, P} =Py "P3 =P, = 6.
Apparently, if the analog of theorem 5.1 is true, some other method

of proof will have to be used.

One could also consider embeddings such that a k-tuple pro-
duct with certain variables repeated is defined and non-zero, as in
§ 6. For example, one might consider embeddings of three spheres
Sl’SZ’ and S3 in S™ such that <wl,w1,w2,w3> or <wl,w2,wl,w3>
is defined and is a non-zero subset of Hn'l(Sn-(SIU 82L’SB)). We

leave these various possibilities to the reader to investigate.

YALE UNIVERSITY



10.

11.

205
Bibliography

R.H. Crowell and R.H. Fox, Introduction to Knot Theory, Boston,
Ginn and Co., 1963.

A. Haefllger Plongements leferentlables des varletes dans
varletes, Comm, Math. Helv. 36(1961), 47-82.

A. Haefliger and B. Steer, Symmetry of Linking Coefficients,

J.F.P. Hudson, Piecewise Linear Embeddings and Isotopies, Bull.
Amer. Math. Soc., 72(1966) 536-37.

y Piecewise Linear Embeddingg, Ann. of Math., 85

(1967), 1-31.

M. Kervaire, An Interpretation of G. Whitehead's Generalization
of H, Hopf's Invariant, Ann. Math. 69(1959), 345-365.

D. Kraines, Massey Higher Products, Trans. Amer. Math. Soc. 124
(1966), 431-4L9.

W.S. Massey, Some Higher Order Cohomology Operations, in
Symposium Internacional de Topologia Algebraica, 1958,
pp. 145-154.,

» On_the Cohomology Ring of a Sphere Bundle, Jour.
Math. and Mech. 7(1958), 265-290.

H. Uehara and W.S. Masséy, The Jacobi Identity for Whitehead
Products, in Algebralc Geometry and Topology, a Symposium in
honor of S. Lefschetz, 1957, pp. 361-377.

E.C. Zeeman, Linking Spheres, Hamburg Abh., 24(1960), 149-153.




