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Our object is to develop spectral sequences which converge, under suitable
conditions, to the set (which has under these conditions a natural abelian
group structure) of fiber-wise homotopy classes of cross-sections of a
fibration. The proper context for this problem is the homotopy theory of
spaces over a fixed spéce B, i.e., X+ B, pointed spaces being generalized
to spaces over B with a cross-section. Many of the constructions-and
theorems of ordinary homotopy fheory generalize in this context; the
culmination of our study is a spectral sequence of the Adams type which
cénverges, under certain stability conditions, to the cross-sections
(modulo a given prime) of the pull-back of the fbllowiﬁg diagram
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found during a study of Mahowald's cdomputations ([Mah]) and the theory

and which has as its Ez-term ExtA(B)(H*(p),H*(K)). This E_-term was first

sketched below resulted from an attempt to situate this E_-term in a

2

complete spectral sequence.

§1 - Let B be a fixed topological space. Then a Ep- pace is a space X with

a projection Py ! X+ B; a Ei—sgace X is one with an injection i, : B + X;

X
and a B-space X is a Bi-space and.Bp-space with Pyly = 1. The corresponding

-~
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3 notions of mappings and homotopies are the obvious ones.

The cone, suspension, path-space and loop-space constructions can
be generaiized tb'B—space;;for example, loop space of X -JCX =
{we XIlPxﬁu(t)] =h, some be B; w(N) =w(l) = ix(b)}; suspension’of
X =¥x - quotient of the union of X x I and B modulo the
identifications (x,0) ~ (x,1) ~/ Px(x)

(iy®), 1) ~ (i, (0),t])

These are again B-spaces; these 4 functors are pair-wise adjoint, as

usqal.
Examples: (a) If B = *, a one-point space, then a Bp-space is a space, a
Bi-space (or B-space) is a pointed space.
(b) If C is a pointed space, then B x C is a B-space.

(¢) If X =38 xC, then its path-space(PX = B x PC, and
| XX = B x 0C, where P,2 denote the ordinary path-space
and loop-space functors.
(d) If f: X+ B xC is a R-map, then f = (px,g) and

gix = *,

Let £ : X+ Y be a manp into a B-space. Then the B-induced fihration

with classifying map f is

E(f) = {(x,w) € X x®Y[£(x) = w(1)} .

This is a Bp—space, and a B-space if f is a B-map.

Example-(d) If Y =B x Cand f = (p,,g) is a B-map, then €(f) and E(g)

are homeomorphic; here E(g) denotes the ordinary induced fibration with
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classifying map g. ‘

There is an "operation" ofXY on & (£), u XY E(R) + E(F). IF
[A,C]p dénotes the set of Bp—hoﬁotopy classes (" free homotopy classes'")
of Bp—maps A'+-C,'then [K;fY]p has a natural group structure for any

B -space K.
p p

The notions of }-spaces andH'-spaces, analogues of H-spaces and

' -spaces, exist and have much the same properties as their counterparts
in the ordinary theory.

Fundamental to establishing a stahle homotopy theory of_BespiE;;

- is the following generalized Freudenthal theorem.

Theorem:  If dim X < 2n - 1 and the fiber of PY is (n-1)-connected,

then
& >Bxdn

is a set-equivalence

Corollary: If F -+ X+ R is a fibration such that:

(1) cross-sections exist, (2) dim R < 2n-1, (3) F is (n-1)-connected.

Then the set of fiber-wise homotopy classes of cross-sections has a

"natural' abelian group structure.

§2 - The ordinary mapping sequences can also be generalized. If

f:X-+Y is a mapping into a B-space, its B-fiber F is the pull-back

F — X

Y

B —>Y

iy
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Thus, if £ is a fibration, then F = f‘l(iY(B)).

Theorem: If £: X+ Y is a B-map with B-fiber F, and f is a fibration,

then for any Bp—space K, we have an exact sequence,

[K,a@up > rx,:mp > [K,FL, > KX, » [, Y1,

Theorem: If g : Y+ Z is a B-map and is also a homotopy-multiplicative map

gg;ﬁ?spaces, then we have an exact sequence,

XY+ TR > TOEET) > [KY1 > K, 2] .

§3 - Using the results of §1 and 82, if we have a tower of induced fibrations
over B with cross-sections, we can set up in the standard way an exact
couple and so a spectral sequence converging (at any rate if the tower is

finite) to the group of classes of cross-sections or liftings. More precisely,

Theorem: Let K he a B_-space and A + A + -—— + A > B a tower of
— = N ——— on on-1 (o] ——————

induced fibrations with cross-sections. Suppose each AOi - Aoi-l is

B-induced (see example (d),§1) with classifying ng~Aoi—1 +;ﬁ}-1Ai. Assume,

A
finally, either (a) dim K < ZkAgpd all Aoi -+ Aoi—l have (ordinary) fibers

which are (k-1)-connected, or (b) all Aoi are&fispaces and maps between them are

;f;mags.

Then there exists a spectral sequence ''converging' to I (Kﬁﬁ?Aon]p
T

and such that Ei’t = [KQ{FAS]p s>0,t>0, r=1t-s5s.
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§4 - The spectral sequence of §3 can be applied to any decomposition of
a fibration whose cross-section classes are to be enumerated (provided, of
course, the assumptions of the theorem are satisfied). The Moore-Postnikov
decomposiiioﬁ in the stable range (up to the(?k-l)-stage where the fiber
is (k-1)-connected) is such a decomposition. Of particular interest is
another one, described below, which generalizes the Adams decomposition of
a space, [A].

Let v be a fixed prime, H* denote cohomology with coefficients Zv’
A the Steenrod algebra mod v, and A(X) the "Steenrod algebra" of X, ([Me]
and [Ma-P]). Let P0 : E0 -+ BO be a "universal fibration" with (k-1)-connected
fiber F such that: @)) P; : H*(BO) -+ H*(EO) is an epimorphism below
dimension 2k, (2) H*(F) consists of transgressive elements below dimension 2k.
Then we can construct a "relative Adams decomnosition ''of PO as follows:
Pick an A(BO)-set of generators for ker P; in dimensions below 2k, and use
these as k-invariants for constructing P1 : x1 -+ XO, g EO - Xl. Then it
can be shown, using results of [Me], that (1) and (2) are again satisfied by
g, We can therefore repeat the constructioﬁ to obtain X2 * Xl, En i Xz,
etc. ,..

This construction is the "correct" one and leads to a convergent spectral

sequence because of the following theorem:

Theorem: If we '"'restrict" such a relative Adams decomposition to a single

point of BO, we obtain an Adams decomposition of the fiber F.

Combining all the above, we obtain:

Theorem: Let p : E+ B be a fibration satisfying the following conditions:
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Conditions: (1) p is induced from P0 : En'+ Bnl with fiber F.

*
(2) p0 is an epimorphism in dimensions below 2k

(3) F is (k-1)-connected and H*(F) consists of universally

transgressive elements below dimension 2k.

(4) dim B < 2k 1|

Then there exists a ''relative Adams spectral sequence' converging

, and such that

T
32)1:- [BKE]p /elements of finite order prime to v

s,t _ S_vt * *
£’ = ExtA(BO) (H*(P,), H*(B)).

The differentials in this spectral sequence, generalizing the classical
case [Mau), may be identified as '"twisted" cohomology operations associated
with a certain chain-complex of A(BO)—modules, namely the A(BO)—resolution
of H*(po) realized by the relative Adams decomposition. Still more generally,
the differentials in the spectral sequence of §3 can be identified as
generalized operationsiassociated with a "split" sequence of B-spaces
(see [Sp] for the case B = *) from which the tower can be built (see [G]
for the case B = *); in other words, the differentials are higher Toda

brackets in the category of B-spaces.
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