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MOD 2 COHOMOLOGY OF D2” AND ITS EXTENSIONS BY 22

by

Hans Jergen Munkholm

1. IDEA

Suppose that G 1s a group of order 2" for which you want
— *
to find H*(G) = H (G;Zz) as an algebra over the Steenrod algebra
M. In principle this may be done as follows. Pick some invariant

— L e
22 € G and compute H (G) from the spectral sequence for the

extension 1 —> 22 —> G > G > 1 (assuming inductively
*
that you already know H (G)). This involves two problems

(A) Find E_ (i.e., compute the differentials),

(B) Extension problem (including cup-products and action of Sqi).

Of course one cannot in general solve these problems, It was
suggested to me by L. Kristensen that -- at any rate in favorable
cases -- both problems can be attacked successfully using cochain
operations in the sense of [K]. The following is a very preliminary
report on that idea. It presents five infinite families of 2-primary
groups for which the computations can be carried out without too much
trouble. The method is certainly not limited to these five families,
On the other hand, it would be unfair not to mention some serious

drawbacks.

(C) One must know G pretty well,

(D) The results come out in a highly non-functorial way.

(E) Some examples that I have computed (but not included here)
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indicate that the computational work may become tremendous,

even for "nice, small groups."

2. COCHAIN OPERATIONS
Let us briefly recall some notions and results from [K].
C*(—;A) 1s the cochain functor on the category of CSS complexes
ci(x;zzezze...@ze) 1s identified with cl(x) e...e cl(x), where
C*(—) = C*(X;ZQ). Z*(X) denotes the cocycles.
Q(n) is the set of natural transformations
9:0*(-;22622@...622) —_ C*(-) (n  summands 22) satisfying
8(0) = 0,
6(ct(x) @ ct(x) e...0 cl(x)) c oMK (x)
for some fixed integer k, called the degree of €. Notice that 8
is not required to be additive,
1ol
v:Ct(x) x ¢ (x) —> ¢*(x), satisfying
¥(0,5) = ¥(x,0) = 0
v (e (x) x cd(x)) g Ik y,

for some fixed integer k, called the degree of v,

1s the set of natural transformations

On Q(n), resp. Ql’l, there is a differential &, resp. V ,
defined by the formula

(Ae)(xl,...,xn) = 59(xl,...,xn) + 6(6x1,...,5xn),
resp. (v¥)(x,y) = s¥(x,y) + ¥(6x,y) + ¥(x,8y).
And with ZéQ(n) = ker A, ZQl’l = ker ¥ one has exact sequences
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o) by ,p0) s QeBe ...e A —> o,

1,1 _V

Q Y72t 25 Ol — 0.

For the definition of & see [K]. Here we shall just need the

following: If x ¢ Z*(X) and % denotes its class in H*(X)

then for any € in 2§ = ZQ(l) one has (ef)(R) = (8x)" .
Ffom the exact sequences one can get

Additivity defects: For any 6 ¢ Z€ +there is an element

a(6;-,-,...,~) 1in a(n) such that (with arbitrary cochains

x, in Ci(X))

J
bd(e;xl,...,xn) + d(B;le,...,axn) = ZQ(xJ) + B(?xj),

d(e;xl,...,xn) = 0 if all but at most ene xJ, is zero.

Relational defects: If a € Z@ and ea = 0 then there is an

element Gé in é) such that (with x an arbitrary cochain)

Gea(x) + 9a(5x) = a(x).

Cartan formula: Let a, af, ag ¢ 2 and assume that the diagonal

¥ in Ol has Y(ea) = = eai @ eag. Then there exists Ta € Ql’1
with

ﬁTa(x,y) + Ta(ﬁx,y) + Ta(x,ﬁy) =
a(xy) + Zai(x)-ag(y) + d(a;6xy,x-y,x-8y) + deg(x)d(a;x-6y,x-
(for arbitrary cochains x,y on X).
We also need the Steenrod-cup-i-products. To cochains x,y
there is the cochain xUi y of degree deg(x) + deg(y) - i. Ui )
is bilinear and satisfies
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6(xUi y) + 8x Ui y + X Lﬁ By = x L&_l y+y L&_l X,
bl Uo Yy = Xy, xU_i y=0 for i>0,

(xy) Uy z = x(y Uy 2) + (x U; z)y (Hirseh's formula),

The formula
i
sq- (x) = xtJn_ix + X Un-i+l 85X, where n = deg(x)

defines elements Sqi in 29 having E(Sqi) = Sqi, We introduce

the abbreviations

dj_ = d(sql;—,u-,,,.,-) € O(n)i

Ti = T i € Ql,l,
5q
eg:g::: = ea, where a = sqisqd... + qusqq... ,» and

i
Sq SqJ... + quSqq... 1s supposed to be zero in Ch .

5.  IRIVIAL LEMMAS
Let (Er’dr) be the spectral sequence for the extension
(s) 1—> 2z, 25§23 g — 1
and let ¢ € HZ(G) = H2(G;22) be the characteristic class of (s)

(see [ML]). One has

Ey = H (2,) ® H' () = 7,[t] ® H' (g).

Lemma 1. c¢ = d2t.
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Lemma 2. If b1 is the generator of Z2 and

1—> 2z, —J—> G _g_> H ———> 1 is another extension then

dt € im(q ) iff J(bq ) lifts (through p) to

" a central 1nvolut10n (in @),
dyt ¢ ke;(j ) iff J(by) 1ifts to an involution,
dot e kerij*) iff j(bl) lifts to an element of
order 4. ' ‘
Lemma 3. Suppose that Sq2Sqlc e (89’ 1c) ‘and that

(0:c) N (0:8q c) = 0. Then

E, = Z2[t4] ® H"(¢)/(c,5q%) + = t"*L & (0:c)/(01c)sqke +

+ 3t g (c:8qle)/(c).

2. (x,y,...) denotes the ideal generated by x,y...

3, (a:b) = [x;kb e (a)}, ‘

4., The assumption on (0:c) N (O:Sqlc) 1s made in order
to avoid Massey products as differentials; lemma 3> covers all the

cases needed here.

4.  COMPUTATIONS OR SOME TRIVIAL, USEFUL NONSENSE

Consider the extension (S) and a homomorphism q:G —> H
(often q will be the identity). Suppose that there is a cocycle %
on H with. q*$‘= ¢ (= dyt). One can then choose a cochain T
on ‘G with Aﬁf =y, and (i#'r)A =t, Let 8y € z8 , Bj € Z*CHL
6 eC (H). If | |

then we say that
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w = Zaj(f)53 + 6

is a g-decent cocycle on G.

Remark. ~ denotes p#q#. w is a cocycle on G. qg-decency means
that w 1is a cocycle because of relations that hold already in
C*(H). It would be more correct to say that the set ((aj,ﬁj)J,ﬁ)
is a g~decent representative of w, but it would.also be more
complicated.

A g-decent rearrangement of the above expression for w

consists in repeated applications of the following operations.

(4.1) Replace the term a(T)B by c(T)8 + 6(¥)B, provided
N =a+c (a,c ez2D,8 c0),
(4.2) Replace the term a(T)B by a(T)n + a(y)p, provided

B0 = B+ n (B,n e 2 (H), p e C (H)),

(4.3) Replace the term sqka(T)E by a(T)a(y)B, provided
deg(a) = k - 2 or by O, provided deg(a) < k - 2
(a € 20,8 ¢ 2 (H)).

A q-decent computation of sqiw consists in the following

(4.4) Write down the expression S quaJ(T) sqi-k(Ej) +
: H
+ 8¢S + 4, (a) (F)By,...,2 (7)B,,56) + AACHORNE
(4.5) Rearrange this expression by means of (4.1-3).
We shall write sq w ~Zc (), + P 1if the right hand side

is the result of some g-decent computation of Sqiw.

A g-semidecent rearrangement of < aj(T)Eﬁ consists in repeated
applications of the following operations
(4.6) Replace a(7)B by c(T)B, provided ea = ec
(a,c € 20 ,B € z* (4)),
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(4.7)  Replace a(7)B by a(T)W, provided £ =14
(Bon € 2 (H), a 20 ),
(4+.8) Replace qua(T)E' by a(T)a(y)B, provided deg(a) =k - 2.

: *
or by O, provided deg(a) <k -2 (a € 20 ,8 ¢ 2 (H)).

A g-semidecent computation of Sqiw consists in the
following '
(4.9) Write down the expression S sqkaJ(T) Sqi-k(Eﬁ),
(4.10) Rearrange this expression by’geans of (4.6-8).

We write Sqiw N ZcJ(T )ﬁj if the right heand side is the
result of some g-semidecent computation of sqiw.

It is obvious that any gq-decent rearrangement of a g-decent
cocycle w leads to a g-decent cocycle which is cohomologous
to w; in view of the defect-formulas one then gets
Lemma 4. Let w be a g-decent cocycle. Any q-decent computation
of Sqiw leads to a q-decent cocycle cohomologous to sqiw.

Addition of g-decent cocycles 1s of course defined. Also if
w 1is a g-decent cocycle and £ e Z (H) then wE = % aJ(T)§35-+ -3
is a g-decent cocycle., It is now easy to prove
Lemma 5. Let o and w = chkJ(T)ﬁﬁ + b, be g-decent cocycles.
If

Sqiw ¥ 3 ckJ(T)ﬁﬁgk
Jsk

then

Sqiw =Zw Ek mod SC*(E) + p#q#z*(H),

(and, hence
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2 *
Sq*8 = sB,E, mod p¥qrH (H)).

Lemma 5 of course is trivial; it is also useful; it allows us to
compute qus mod p*q*H*(H) without bothering about additivity
defects, Cartan-formula defects, non-commutativity of Z*(H) and
the like,

Remark. This section could easily be made more precise, e.g. by

introducing the graded Zz-module E(q) with En(q) =

Z(Zé)n-k—l & Zk(H)) @ c?(H) and introducing equivalence relations

Q

and & in E(q).

*
5. H_(D2™)
p2" = the dihedral group of order ol has generators 8 s bn’
n-1
. 2 2 -1 -1
and relations a. = bn =1, bnanbn =a. . Clearly D2 = 22
(generator bl) and D4 = Z, ® Z, . (generators G b2). The
formulas
2n-2 ~
inbl = 8 s Pn8p ¥ Bpoy pnbn = bn-l’ Pzaz = b1’
Babp = 1,

define a projection JP,:Dt —> Z, and a group extension
2 2

N N n ___. n-1 __,
(s,) 1 > Z, > D2 p>D2 > 1.
n n
If T, € zl(zz) is the standard cocycle we put
E# # o # 1,..n # # 1
®n = pf"n-l"p}pé'ro e 28 (02"), n, = piof .. ofofr, € 2 (z,),
4 A 1 n
X, = En, Yo =M, €H (D2).



Also 1let <(n)Er,(n)dr> be the spectral sequence for (S_) and

n
put
u g = (n)dgt e Ho (D2" 1),
Theoren. For all m > 2 one has
(a,,) B (02™) = z,0x Ly u 1/ (5 + x.v.),
(bm) Sqlum = uwy. .

Proof: Let c and An_1 be the statements

* -
(cm) Sqlum = u y_ mod pXH (p2™ l),

(A (am) and (cm) hold for 3 ¢ m £ n-1, (bm) holds for

n-l)
3<{mgn-2.

We shall prove (An) by induction on n. The induction starts by

verifying (AB) = (a3).A (03); this is done precisely as step 2

and step 3 in the following inductive step, so we leave it to the

reader (one has to know that u, = xg + X5¥55 but that is easlly

gotten from lemma 1). Hence take n > 3 and assume by induction

that (A _;) 1is true.

Step 1. From [W] it is easy to see that dim H2(D2n) = 3, Also in
(n), (n) )

( E.o o ldy the elements t @ x ., t @ Yp-1s b ® (xn_1+yn_1),

and u _4 cannot survive., Hence t°> must survive. But this

implies that

2 1 n 1 n-1
(n)dBt Sq7u,_, belongs to ( )dgt-H (p2"7)

l n-1
u,_H (D2 ).

From (c it is then easy to derive (bn-l)'

n-l)
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Step 2. We now know sqlun_l, and lemma 3 gives

_ 27 & 2
Ee = ZE[t 1@ Ze[xn-l’yn—l)/(xn—l + xn-lyn—l)'

Hence
* n 2 n
(aé) H (D27) = Zz[xn,yn,wn]/(xn + xnyn) for any w_ e H2(D2 )
_ L2
with 1gwn = t",
. 2
Lemma 2 implies ?h?t i¥u =1, so (ag) = (an).
n _ 1 _
Step 3. From d2t =u _qs and Sq W, = W, 1Yh1 there are

y e 222" 1), 6 e B2 1), 1 ¢ cl(pe"),

such that ? and

un-l

- 1
5T Y> (iﬁ"')A =1t, sq"y = yﬂn_l + B6.

Then

® = sqiT + ™, + ©

is a decent (i.e. identity-decent) cocycle on D27 whose class @

is a possible choice for the above W A semidecent computation

yields
1 . 1. =
sqw X sq T'n_+ Ten_,

so by lemma 5

(ct) sqt n=l)

*
® = By mod p*H (D2

A comparison of (an) and (ag) gives a relation of the form
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w=u + Xxn + My,

in view of which it is easy to get (cn) from (cé).

* #
6. H (q2")
Q2n = generalized quaternion group of order 2" has generators
n-1 n-2
- = . o _ 2 2 T o - -1 A
an’bn’ and relations an =1, bn = a, , bnanbn =a, ~. There

is the extension

1 P
1 — 22 n+l> Q2n+1 _Eii> D?n — 1,

(§£+l)

and the classes iﬁ,;ﬁ € Hl(Q2n+l), Eh € H2(Q2n+l).

Theorem. 3 W€ Hu(QQn) such that

* . - s 2 =3
H(Q2") = 2p[X 1,7 1w, /(8 + X g + 85,nYn-1Yn-1"

I

Sqlwn =0 for i =1,2,3. -

Proof: Let us leave the case n = 3 to the reader, just noticing

_ 2 2 .
that by lemma 1 one has d2t = X, + XY, + yo in the spectral

sequence for (§3).

We must find d.t in the s.s. for (§h) where now n > 3.

2
2 2
¥* =
Lemma 2 gives i* . d,t # O, and hence dot = u, 4 + ax, 1 + by__ i
where the coefficients a and b are still to be determined. To

u(Qen) = 1. Since
t4 must survive (by lemma 3) we must kill off all of Eo’LL

2
Now write down a basis for Eg’u and write down a basis for the

do so we borrow from [C-E] the fact that dim H

! -

boundaries that are available to do the killing. It then follows

that a =0, b =1, so that d.t = U1+ yg_l. Lemma 3 then gives us

2

]
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o > 3
Ea = Zplt7] @ Zylx, 4,5, 3 V(g + %50¥p-1097-1)s 8O

* n ’- — - — — —
H (Q2 ) = ZQ[Xn—l’yn-l’wnJ/(xn-l + xn-lyn-l’yz-l)

L, n - L
for any w_ e H (2") with i*Fw =t
2.1 2 1 2 2
Since 8q°Sq”(u,_; + yn_li = Sq (u _q + yn_l)(un_1 + yn_l)
there is v ¢ 22(D2" 1), 6 € cT(@2™1), T € ct(q2") with

A 2
Y=u,_y+¥,1 and

= (3 A 2 1
BT = v, (TfT) = t, sq®sq’y = sq' ¥y + 66,

Then

w = sq°sq’T + sq Ty + G

n

is a decent cocycle on Q2 with @ a possible choice for the

above Wy Semidecent computations immediately give

sqlw x> O,

sq%w & sq°sq 1Y + sai T,
sqw % sq°sq TV + 8qTTP.
—_— ¥* -
Since p* H (D2" l) = 0 in dimensions > 3, and since we have
n

lemma 5 we get the desired result, namely Sqiﬁ =0 for 1i=1,2,3.

7. EXTENSIONS OF D2 BY Z,

An extension 1 - 22 L S G P > D2n —> 1 1is classified

by its characteristic class c¢ e H2(D2n). The group G will be
denoted G(ec). It is easy to see that we get six different groups,

namely,
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G(0) = z, x D27,

2
G(un) = D2n+1,

2y _ n+1

2y _ 2.2
G(xn) = G(xn"'yn):

G(y2),

oy 2. 2
G(un+xn) = G(u +x +y ).

*
We shall compute H (G(c)) for the three last mentioned cases.

will continue to denote pullback through G(c) 2= p2" 2= g

(for any gq).

¥*
8. H (a(x5))
Lemma 3 does not apply, but it is eacsy to get

2 2
By = Z,[t°) @ Z,[x ,y ,u 1/ (x ,x y )

2i+1

2
+ 3t ® (xn+yn)/(xn+xnyn).

2

Hence, if v,z are classes on G(xﬁ) representing t and

. . * 2 .
t @ (xn+yn) in E_, then the ring H (G(xn)) is generated by

xn,§h,ﬁh,v and z.
Assume n > 3, We shall first use pn-decent cocycles; let

vy =2 e Z®(p2

n-l); n-l)

there is p € Cl(DQ with
1 2 . — . A
Bp = v + gn-lﬂn-l' Choose T € C (G(xn)) with &7 = 7, (1#T) —

Then

I<
i

~ _ _ -
sa’ T + €3 (Fhog)s 2= T+ 0) + Fhges
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are pn-decent cocycles on G(xﬁ), and their classes v, and z
are possible choices for the above v,z. Easy pn-semidecent

computations + lemma 5 give

1 -, = 2
Sa7z = (v+z)(x +y, ), Sq°z

V(X +y, )

* -
modulo p*p*H (2" l). Since p¥u , = 0 (by definition of un_l)

and p*pg(xﬁ_l) = 0, this gives coefficients a,b such that
>

(8.1) Sqlz (v+z)(§h+§£) + a§5,

"

3

2 — = \2
(8.2) Sq°z v(xn+yn) + by, .

To find a and b notice that the inclusion i, :7. = {1,b } < p2"

b2
has if T = T iﬁ En = 03 from the last one of these, it is easy
to see that i, factors through p like this 7, = {1,b 3 <> a(x
iy P
p2”

Then J# Eﬁ-l = 0, so j#T is a cocycle; let (j#'r)A = vt, Now
it follows that J*v = J¥z = vt°. Then apply J* to (8.1) and

(8.2) to get a=b =0, i.e.,
(8.3) sqlz = (v + 2)(X +7.), Sq°z = v(X. + §7.)2
: ! n In’ls =4 n n’ °
A pn-semidecent rearrangement of

—Sn-l = T(Eh-l + nn-l)g.n-l + Eh—lp gn-l

n-l)

— *
+ lemma 5 gives zx, € p*ng (D2 . Hence as above there is a
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(8.4) zx = O.

To find Sqlv notice that v = sqlT + 611(?5) is actually N

~ . 1 Ay ¥
PoPs-..P -decent. Lemma 5 then easily gives Sa'v p*p;...pgng (Zg),

but this group is 0, so
1
(8.5) Sq°v = O.
* o .
In H (G(xn)) we have now established the following relations

+ yn) (= v§§), zXx = 0.

=0, X.y_ = = v(x
X s Xa¥, 0, z V(X n

n ( n
From the appearance of E, 1t is not hard to see that there are no
relations independent of the above. Hence
3 2 2
Theorem. Let n > 3, v,z € H (G(xn)) such that

2

* D —_ - e -~ -~ -0 -
H (G(xn)) 22[xn yn,un,v,z]/(xn,xn,yn,z + vyn,zxn)

i

Sqlz (v + z)(ih + yg), Sqlv = 0.

Remark. For n = 3 there is no pn-decent cocycle representing z

(since in D4 there is no cochain , with &p = fg + E,n,).
However, 2z does have a decent cocycle-representative T(?S + Fé) + E

P
)
with p ¢ Cl(DB) and &p = E% + EB”B' A little bit of work then

shows that the theorem is still true for n = 3, except that

Sqlz = (v + z)(ié + §5) + 53§3.

9. H (6(y2))

- 2 2 2
Here E, = Z,[t"] ® z,0x ,y ,u /(] + x vy, y5), sc
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H (6(2)) = 2,[X,,7,,0_,vI/(x2 + 5, 72) for any v ¢ H° with
i*v = tz.

We take y = T-, (= p p#...pﬁpg i , and choose T ¢ Cl(G(yi))
with 87T = ;2 (i T)A =t., Then v = SqlT + 611( O) is a

p2p3...pn—decent cocycle representing one particular choice of the

above v. From lemma 5 and a p2p3...phfsem1decent computation one

, *
gets Sqlv € p*p*...p&H (22) = p*(ZQ[yn]); but p*yﬁ =0, so

Sq*v = 0. Hence

Theorem. 3 v ¢ H°(G(y5)) such that

* . — —
H (G(y2)) = 2,[X .7, ,0 ,vI/ (& + X 7, 7o),

Sqlv = 0,

10. H*(G(un + xﬁ))

Put ¢ =1u

2 (_
n *n (=

d2t), z=x +y, (and (=28 + nn). Then

(10.1) Sqlc = cy, + xg, Sq2Sqlc = Sqlc(c + z2).
Also (0:c) = 0 and (c:Sqlc) = (c,z), so lemma 3 gives

_ b 3 higo
By = Zy[t7]1® z,0x ,2)/(x 2,x]) + Tt

D zze[z]. Hence, if

w,v are classes on G(un + xﬁ) representing t4 and t2 ®z in
E., then ih, z, w, and vV generate H*(G(un + xﬁ)) as a ring.
It is not hard to see that there is a complete set of relations of

the form

(10.2) Xz =0, X) =0 (from the basis),

v2 is a combination of w, v, and powers of Eh and z,

vih is a polynomial in Eh
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*
We now choose vy ¢ Zz(DEn), T € Cl(G(un + xﬁ)), p,6 ¢ C (D2M)
such that

(10.3)  F=c, 57 =7, (F) = t, 86 = sqly-C + 2,

Bp = sq°sqly + saty(y + ¢2).

. n e o
There is the inclusion 1,:2, = {1,b ] € D2”, It has 178, = 0,

Fo G He D+l n

i, = 1bC = T,. Also it lif;s through pn+l.D2 - —> D27, so

ifu, = 03 1t follows that i,Y 1s a coboundary; replace vy by
# 7y

Y + PpPphop---Poipy (and adjust the choice of T, p, and 6 if
needed). We then have

e _ e o s _
(10.4) 198, = 0, ifn = 17¢ = 7

Then iﬁp and

o’ 7 =0.

iﬁd are cocycles, so adjusting them by adding a

power of ( we may assume that
(10.5) i.fp)’\ =0, (ifs)" = 0,

From (10.3) it i1s seen that

W = sqzsql'r + sql'r('q? + Ze) + 0,

sqTT+ 1C2 4+ §

v

are decent cocycles, whose classes serve as the above w,v. Semidecent

computations take the form

sqlw

e

sql'r~sq1"?+ sql'r-sql(Ty'+ CQ) ¥ 0.
sqgw X sq2sq11~(7+ CQ) + sql'r'(7+ 39)2 x of(y+ ze)-

5”0 T sqiTesqiy(Y + ®) + sq°sqit-sq (7 + ) 2 wsql (7 + T8):
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sqlz X sql'r-f2 + sql'r;'Cfa = 0,

sq2\_r = sq2sql'r~z' + 't'(_’}7 CQ + E”)
%ol + sqt(7+ )T+ 1(7 T2 + T
x of + v(7 + T2).

sq?g = sqlt;sqIV ¢+ sqesql'r-_C2 + sqlT-C4
~ ot? + sql'r[sql? T+ ‘Cu + (v + CQ)CQJ
% of®.

vE = sql'r-f%—n + T _CQEH & 0.

* —
In dimensions above 3 one has p*H (D2") = Ze[z], so lemma 5 gives

us coefficients 8y b. and a such that

l’

i

(10.6) Sqlw alE5, Sq2w = wet + a226, Sq3w = a327,

Sqlv = blin, Sq2v = Wz + VEQ + b255, Sq3v = v2 = WEQ + b326,
(10.7) VK, = az'.

[To find these coefficients first notice that ib factors

through p:G(u, + x2) —> 02" 1like this Zp —L— G(u, + x2)

N

D2

(this follows from iﬁy = 0). From (10.3-5) it is easy to see that
j¥z =t and J¥w = 0, j¥v = 0. Putting that much information into
(10.6) it follows that a;, =b; = 0. Also j'x, = O follows from

i
(r0.7).
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Altogether we have proved

)) such that
=3

Theorem. d W € HU'(G(un + xﬁ)), vV o€ HB(C—(un + X
- — 2 = =2y
Yo Xp s VE VAW (X Y )T ),

o I \V}

o

* 2 —_ -
H (G(u, + x2)) = 2,[%,,7,.w,v)/(X +

Sqlw = 0, Sqaw

n

n

w(x, + 7,02, 8w = o0,

1. 2. _ . (= - £
Sqgv =0, Sq°v = w(xn + yn) + vy, -
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