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ON THE COHOMOLOGY OF BSF AND BSPL

by
Franklin P. Peterson

Let BSF and BSPL be the classifying spaces for oriented
spherical fibrings and oriented PL-bundles respectively. Let
p be an odd prime. The purpose of this talk is to state
some of what 1s known about H*(BSF;Z) and H*(BSPL;Zp) and
to use these results to compute the low dimensional torsion
in QEL , the oriented PL-cobordism ring.

Let T =2p -2, let q, € H'T(BSF) bel
1

the Wu class de-
fined by CDi(U) =q * U, where U denotes the Thom class.
The flrst theorem is due to Peterson and Toda.

THEOREM 1. There 1s a Hopf algebra, € , over (1_, the
Steenrod algebra, such that H*(BSF):f(Zp[q1J ® E(qu)) &c,

as Hopf algebras over (L.

Since the proof of thls theorem has appeared, we refer the

reader to [3].

The full structure of C , as a Hopf algebra over CL, is
known in dimensions < p2r - 2 by results of Stasheff [4].
Milgram and May will have further comments on € 1in later

talks.

The following corollary is also proved in [3].
COROLLARY 2. MSF 1is of the same homotopy type as a wedge of

Eilenberg~Maclane spectra.

1A11 cohomology groups are assumed to have Zp coefficients
unless otherwise stated.
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Let JPL : BSPL —> BSF be the natural map. It is not
difficult to show that JPL*(qu) =0 1f 1<p.

THEOREM 3. JPL(Rq + 1 = up(P's J el) , where u # O(p)
and e, 1s the first exotic class of Gitler and Stasheff

2 * :
[2]° . Also, JPL(qu) A0 1if 1> p+ 1.

The proof of theorem 3 requires a detailed knowledge of
the homotopy structure of BSF and some results about 81 3
the element of order p 1in the (pr - 2) - stem.

Sullivan [5] has shown that BSPL has the same mod p homo-
topy type as BSO x B Coker J, where B Coker J is a space
that 7,(B Coker J) = p-torsion of Coker (J : 7, (BSO)

—> 7 (BSF)) . Theorem 3 shows that this splitting of BSPL
is not as nice as it might be because the higher qi's have
a factor in the B Coker J piece. However, in low dimensicns

(e.g. < p2r) , H*(B Coker J)=C and it is not unreasonable

to conjecture that this i1s true in general.

Let 6 : (L—> H (MSPL) be defined by 6(a) = a(U) .
Let Q¢ (L be the Milnor elements. @(QO) =0 = Q(Ql) and
one might conjecture that Q(Qi) = 0 for all i . However,
as a corollary of theorem 3, we have the following result.
COROLLARY 4, G(Qz) £ 0,

Sullivan's splitting above respects the universal bundle
and hence MSPL is of the same mod p homotopy type as MSO A
M Coker J. Hence, H (MSPL) = H (MSO) & H (M Coker J). To

compute W*(MSPLﬁtsg_ (by Williamson [6]) , we wish to

2This theorem shows that the first lemma on p., 32 of [%] is
incorrect, so the calculations there are incorrect. The
answers given in [6 ] are correct however.
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compute H*(MSPL) as a module over (L and apply the Adams
spectral sequence. How H*(MSO) =2'0G., where 'G. = Q/QE,
and E = E(QO, Qs Q ...) s, the exterior algebra on the
elements Q1 . The results of [1] show that the CL-module
structure of "L ® N depends only on the E-module structure
of N and further that Ext 5 ('A® N, zp)zExtE(N,zp) ,
Hence, we must compute H' (M Coker J) as an E-module. Using
theorem 3 and the results of Stasheff, we compute

Exto(H (M Coker J), Z,) . One also notes that all differ-
entials in the Adams spectral Ssequence are zero in the range

t -s< p2r -1 . To simplify the statement, we let p = 3

in the following theorem.

THEOREM 5. In dimensions < 35, the 3-torsion of QPL is

* .

given by the following table:

Generators Dim. Order Detected by
11
Ma X M 11 + dim Mq 3 yrz * ey
23 3
M .
o X M 23 + dim M 3 y, @ ey
Mo ox M3 23 + dim M 3 Y. - e, - pe
a 2 a o 1 1
27 oo el
Ml o7 9 P e; - e > Be,
27 4
M2 27 3 Pe,
3% 34 3 e -<P3el

Here Ma are elements in QSO detected by yq s Wwhere ydU
*
¥*
are a basis of H (MSO) over '(L . The dimensions such Mq
appear in are 0, 8, 12, 16, 20, 20 1in the range under dis-

cussion.
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COROLLARY 6. In dimensions < 26, all elements of QEL are

detected by ordinary characteristic classes. There 1s‘an
M27 of order (L such that 3M§7 is not detected by an

1
ordinary characteristic class.

It is hoped that soon there wlill be a determination of
H* (B Coker J) in a form so that theorem 5 can be generalized

to all dimensions.

M. I. T.
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