The Image of J as a Space Mod p

James D. Stasheff

The J-homomorphism of Whitehead [10] was originally defined for homotopy groups, but it has an important interpretation in terms of fibrations. The (classical) classification theorem for vector bundles reads:

Theorem. The equivalence classes of n-plane bundles over a CWcomplex X are in one-to-one correspondence with the set of homotopy classes [X, BO(n)].

Two vector bundles over X are called fibre homotopy equivalent if their sphere bundles are homotopy equivalent via fibre wise maps and homotopies. Let G(n) denote the topological monoid of homotopy equivalences $S^n \longrightarrow S^n$ and let F(n) denote the submonoid of base point preserving ones. Dold and Lashof showed: <u>Theorem.</u> Fibre homotopy equivalence classes of n-plane bundles over a CW-complex X are in one-to-one correspondence with the image of $[X, BO(n)] \longrightarrow [X, BG(n-1)]$.

As for [X,BG(n)], I have shown it classifies spherical fibrations $S^n \longrightarrow E \longrightarrow X$.

Suspension induces a map $G(n) \longrightarrow F(n+1)$. Taking $X = S^q$ and noting F(n+1) is two components of $\Omega^{n+1}S^{n+1}$ we can analyze the above map.

The lower composite is Whitehead's original J-homomorphism [10].

For q small with respect to n, the groups and homomorphism are independent of n. This is the stable J-homomorphism

J:
$$\pi_{q-1}(0) \longrightarrow \pi_{q-1}^{s}$$
, the stable (q-1)-stem.

Except for a factor of two in certain dimensions, the image of $\pi_{q-1}(0)$ is known. It is in fact a direct summand. There is some evidence to indicate that this image is realized by a subspace of BG = EF.

Conjecture: There exists a space BJ and maps BO \longrightarrow BJ \longrightarrow BF such that

- 1) the composite is the usual map
- 2) $\pi_i(BO) \longrightarrow \pi_i(BJ)$ is onto
- 3) $\pi_i(BJ) \longrightarrow \pi_i(BF)$ is mono.

Since $\pi_i(BF)$ is finite for each i, we can define spaces BF_p , p prime, such that BF_p has only p-primary homotopy and $BF \simeq \prod_p BF_p$. If BJ existed, it would have the same sort of decomposition, so we attach the conjecture in p-primary parts.

Conjecture mod p . There exists a space BJ_p and maps BO $\longrightarrow BJ_p \longrightarrow BF_p$ such that

> 1) $\pi_{i}(BO) \longrightarrow \pi_{i}(BJ_{p})$ is onto 2) $\pi_{i}(BJ_{p}) \longrightarrow \pi_{i}(BF_{p})$ is mono

3) $\pi_i(BO) \longrightarrow \pi_i(BF_p)$ is the p-primary component of the J-homomorphism.

Since this research was initiated, Clough has attacked the case p = 2 [3]. This paper is primarily concerned with p > 2, but an effort is made to indicate how much of the argument is the same for p = 2.

<u>Theorem 1.</u> For p > 2, there exists BJ_p and a map $BO \longrightarrow BJ_p$ such that $\pi_i(BO)$ maps onto $\pi_i(BJ_p)$ which is isomorphic with the p-primary part of $Im(\pi_i(BO) \longrightarrow \pi_i(BF))$.

These particular spaces $\ensuremath{\text{BJ}}_p$ were suggested to me by Frank Adams.

This theorem depends on our complete knowledge of the p-primary component of the image of the J-homomorphism. Our next concern is to discover the cohomology of this space, which turns out to have a particularly simple structure related to known characteristic classes of spherical fibrations.

For any orientable spherical fibration $S^{n-1} \longrightarrow E \xrightarrow{\pi} B$, we have a Thom isomorphism $\phi: H^{i}(B) \longrightarrow H^{i+n}(CE \cup B)$. With Z_p coefficients, p > 2, there are characteristic Wu classes $q_i \in H^{2i(p-1)}(B;Z_p)$, analogous to Stiefel-Whitney classes, defined by

$$q_i = \phi^{-1} \mathbf{p}^i \phi(1)$$

where P^{1} is the i-th Steenrod reduced power operation. In particular q_{i} is defined in terms of the universal example as a class in $H^{*}(BSF;Z_{p})$ or $H^{*}(BSO;Z_{p})$. Here the letter S is used to refer to the component of the identity of O or F. With Z_{p} coefficients, $H^{*}(BSF;Z_{p}) \approx H^{*}(BF;Z_{p})$, as remarked by Milnor [5],

278

2

Ő

since $BF \simeq BSF \times K(Z_2, 1)$. Finally we have need of the Bockstein (connecting) homomorphism $\beta: H^{i}(;Z_p) \longrightarrow H^{i+1}(;Z_p)$ derived from the coefficient sequence

$$0 \longrightarrow Z_p \longrightarrow Z_{p^2} \longrightarrow Z_p \longrightarrow 0$$

<u>Theorem 2.</u> For p > 2 and i > 0 there are non-trivial classes $r_i \in H^{2i(p-1)}(BJ_p; Z_p)$ with non-trivial Bocksteins βr_i such that r_i maps to q_i in BSO and

$$H^{*}(BJ_{p};Z_{p}) \approx Z_{p}[r_{i}] \otimes E(\beta r_{i})$$
.

. We also describe the k-invariants of BJ_p and relate them to a certain cyclic exact sequence of Toda [9, p.140].

§1. Localization: The p-primary parts of a space.

Given a space X with $\pi_i(X)$ finite for each i, there are spaces X_p for each prime p, such that $X = \prod_p X_p$ and $\pi_i(X_p)$ is isomorphic to the p-primary part of $\pi_i(X)$. These spaces can be defined functorially as follows:

For any homotopy associative, homotopy commutative H-space X, the set of homotopy classes [,X] is a representable functor, and it follows easily that [,X] \otimes Q_p is also where Q_p denotes the subgroup of the rationals consisting of those which expressed in lowest terms have decomminators prime to p. Let X_p represent [,X] \otimes Q_p. The stated properties follow easily if $\pi_i(X)$ is finite.

Another case of interest is BO_p. For p odd, there is a space W_p such that $BO_p \simeq \frac{p-1}{2} \Omega^{4} W_p$ [7, p.299] and $H^*(W_p; Z_p) \approx Z_p[q_i | t \ge 1]$.

§2. The Adams maps and BJ_p for all p.

The space BO represents $\widetilde{\text{KO}}$ -theory, at least on finite complexes. J. F. Adams has described operations ψ^k in KO-theory which are represented by maps ψ^k : BO \longrightarrow BO. We are interested in the map ψ^k -1 or rather would be interested in a desuspension mapping BBO \longrightarrow BBO, except that such does not exist. By Bott periodicity, we know BBO exists, namely it can be defined to be Ω^7 of a suitably connected covering of BO. Adams shows that under Bott periodicity we have

$$\operatorname{KO}(\operatorname{S}^{8} x) \xrightarrow{\psi^{k}} \operatorname{KO}(\operatorname{S}^{8} x) \xrightarrow{k} \operatorname{KO}(\operatorname{S}^{8} x)$$

$$\operatorname{KO}(x) \xrightarrow{k} \psi^{k} \xrightarrow{k} \operatorname{KO}(x) ,$$

which means that $k^{4}\psi^{k}$: BO \longrightarrow BO can be "delooped" eight times. Turning to $\psi^{k} \otimes l$: BO \longrightarrow BO $_{p}$, if k is prime to p, we see that it can be delooped eight times to a map induced by $\psi^{k} \otimes l/k^{4}$.

Now let f: $BBO_p \longrightarrow BBO_p$ be induced by $\Omega^7(\psi^k \otimes 1/k^4 - 1)$ and let BJ_p be the fibre of f for k a primitive root of unity mod p such that $k^{p-1} \neq 1(p^2)$. BJ_p is up to homotopy independent of the choice of such k.

Equivalently we can regard BJ as induced over BBO by p from the path space fibration over BBO :

Thus we have our map $\mbox{BO}\longrightarrow\mbox{BO}_p\longrightarrow\mbox{BJ}_p$.

From Adams [2] we learn:

$$\pi_{\text{li}}(BO) \xrightarrow{\psi^{k}-1} \pi_{\text{li}}(BO)$$

is multiplication by (k²ⁱ-1).

Į,

Now let p be an <u>odd</u> prime. If k is a primitive root of unity mod p and $k^{p-1} \neq l(p^2)$, we have $\pi_i(BJ_p) \approx Z_p s$ where p^{s-1} is the largest power of p dividing i/2(p-1). This is precisely the p-primary component of the image of J [6, 1]. This establishes Theorem 1.

For p=2, a space BJ_2 is defined by the same method, but the homotopy groups are <u>not</u> the 2-component of the image of J. However, this discrepancy is necessary, except in very low dimensions, as indicated by Clough.

§3. The Postnikov system of BJ.

Next we study the k-invariants of BJ_p . For any space X, let X[0,n) denote the (n-1)st stage of the Postnikov system of X; i.e. there is a map $X \longrightarrow X[0,n)$ which induces $\pi_i(X) \approx \pi_i(X[0,n))$ for i < n and $\pi_i(X[0,n)) = 0$ for $i \ge n$. We are interested in the k-invariants $k \in H^{n+1}(X[0,n),\pi_n(X))$ which determine the fibrations $X[0,n+1) \longrightarrow X[0,n)$. In particular for $X = BJ_p$, we have $k_i \in H^{2i(p-1)+1}(BJ_p[0,2i(p-1)),Z_p\mu(i))$ where $\mu(i)$ is one more than the power of p in i. Let r = 2(p-1).

Since $BJ_p[0,ir) = BJ_p[0,(i-1)r+1)$, we can define classes

$$\ell_{i+1} \in H^{(i+1)r+1}(Z_p \mu(i), ir; Z_p)$$

by restricting k_{i+1} to the fibre of $BJ_p[0,(i+1)r) \longrightarrow BJ_p[0,ir)$, and reducing mod p. The sequence $\{\ell_i\}$ realizes a certain exact sequence of Toda [9, p.140] in a sense we will make precise. The exact sequence in question is:

with $R_i(a) = a[(i+1) \mathcal{P}^1 \beta - i\beta \mathcal{P}^1]$. Toda uses R_i for $1 \le i \le p-2$; we will also refer to R_{p-1} with the same definition and for i > p, will regard R_i as the same as R_j where $i \equiv j(p)$.

282

A. A. Harris

J.

<u>Theorem 3.</u> For $i \neq O(p)$, we have $\ell_{i+1} = \lambda R_i(\boldsymbol{l}_{ir})$ for some $\lambda \neq 0 \in \mathbb{Z}_p$. For $i \equiv O(p)$, we have $\ell_{i+1} = \lambda(\beta \boldsymbol{p}^1 + \boldsymbol{p}^1 \beta^i) \boldsymbol{l}_{ir}$ where β^i is the higher order Bochstein which is non-zero on \boldsymbol{l}_{ir} .

Proof. The k-invariants are determined only up to automorphisms of the system so the coefficient λ is unimportant. If we consider $\mathrm{EU} \longrightarrow \mathrm{EU}_p$, then ℓ_{i+1} will map to a corresponding class

$$\ell_{i+1}^{U} \in H^{*}(Z, ir; \dot{Z}_{p})$$

1

ŧ.

which, according to Milnor [5] or Singer [7], is $\beta \gamma^{-1} \ell_{2r}$ up to such a constant λ . Thus ℓ_{i+1} must be of the form $R_j \ell_{ir}$ for some j, up to such a coefficient λ . (For i = 1, we eliminate a possible term $\ell \beta \ell$ by recognizing that BJ_p is a loop space.)

Consider first i = p-l. Since $\pi_{pr} \approx Z_{p^2}$, we must have $\beta \ell_p = 0$ which implies $\ell_p = \lambda \beta \mathbf{p}^{-1} \mathbf{t}_{(p-1)r} = \lambda R_{p-1} \mathbf{t}_{(p-1)r}$. Thus for k_p to exist, we must have $\beta \mathbf{p}^{-1} \ell_{p-1} = 0$. Since we are in the stable range of $H^*(Z_p, ir; Z_p)$ for i > l, Toda's exact sequence, together with the fact that $\beta \mathbf{p}^{-1} R_{p-1} \neq 0$, implies k_p could exist only if ℓ_{p-1} were a multiple of $R_{p-2}\mathbf{t}_{(p-2)r}$, and we know ℓ_{p-1} cannot be zero. By recursion we establish the theorem for all i < p.

To handle ℓ_{p+1} , notice that for $i \equiv O(p)$, in the stable range, $H^*(Z_p\mu(i),ir;Z_p)$ is isomorphic to $A/\beta \oplus A/\beta$ where one copy is $(A/\beta)\mathbf{\ell}_{ir}$ and the other is $(A/\beta)\frac{\beta}{p^{\mu(i)-1}}\mathbf{\ell}_{ir}$. Since ℓ_{p+1} is a non-zero class of which the transgression restricts to zero in $K(Z_p, (p-1)r)$, Toda's exact sequence implies ℓ_{p+1} is a non-zero multiple of $(\beta \mathcal{P}^{\perp} \pm \mathcal{P}^{\perp} \frac{\beta}{p^{\mu(1)-1}}) \boldsymbol{\ell}_{pr}$.

Repetition of this argument and the similar one for $i \neq O(p)$ establishes the Theorem.

Clough has analyzed the case p = 2.

§4. Computation of
$$H^*(BJ_p;Z_p)$$
 for $p > 2$.

From the definition of BJ_p , its cohomology is intimately related to that of BSO and BESO. For p > 2 however the same space may be obtained by replacing BSO by BU and BESO by BEU. Recall that $H^*(BU;Z) \approx Z[c_i|i \ge 1]$ where c_i is the i-th Chern class. By Bott periodicity $H^*(BEU;Z) \approx H^{(SU;Z)}$, which is $E(y_i|i \ge 1)$ where $y_i \in H^{2i+1}(SU;Z)$. We need a more detailed result.

Let s_i be the symmetric polynomial $ic_i + \cdots + c_l^i$ which is primitive. If we write c_i formally as the i-th elementary symmetric function $\sigma_i(t_1, \ldots, t_n)$ $n \ge i$ then $s_i = \Sigma t_i^i$.

Theorem 4. $H^*(BBU;Z) \approx E(d_i | i \ge 1)$ where d_i represents τ_{s_i} .

Proof. Consider the Eilenberg-Moore spectral sequence with $E_2 = Ext_{H*(BU)}(Z,Z)$ which converges to $E_0H^*(BEU)$. $H_*(BU;Z)$ is isomorphic to $Z[y_i]$ where y_i is dual to s_i . A "little" resolution of Z over $Z[y_i]$ is $Z[y_i] \otimes E(z_i)$ with $\partial z_i = y_i$. Thus $Ext_{H_*(BU)}(Z,Z)$ is additively isomorphic with the dual of $E(z_i)$. Since the E_2 term of the Eilenberg-Moore spectral sequence is a Hopf algebra, it must, as an algebra, be an exterior

284

1

algebra. The spectral sequence collapses since the chains of EU can be given by a complex with trivial differential. In homology the classes z_i survive to E^{∞} as representatives of σy_i , so in cohomology, E_{∞} is an exterior algebra on d_i . Since d_i is odd dimensional, E_{∞} is free commutative and there is no extension problem; the theorem follows.

Ľ

11

Now to compute $H^*(BJ_p;Z_p)$ we need to know the effect of ψ^k -1 on $H^*(BU)$. From Adams we learn $(\psi^k-1)^*s_i = (k^i-1)s_i$. Thus in the fibration $BU_p \longrightarrow BJ_p \longrightarrow BBU_p$ we have $\tau s_i = (k^i-1)d_i$.

We also need to know the behavior of the Wu classes. Let $q_i \in H^*(BU;Z_p)$ denote the pullback of the i-th Wu class into EU. Since the Wu classes can be expressed in terms of the Pontrjagin classes reduced mod p [4, p.120], the q_i in EU can similarly be expressed in terms of the Chern classes. We find $q_i = \lambda c_i(p-1)$ modulo decomposable elements with $\lambda \neq 0(p)$. Thus, $A = Z_p[q_i]$ is a sub Hopf algebra and we can write $H_*(EU;Z_p) \approx A^* \otimes Z_p[y_j | j \neq 0(p-1)]$ where * denotes the dual Hopf algebra. Since $k^i \equiv l(p)$ iff $i \equiv 0(p-1)$ we obtain $H_*(BJ_p;Z_p) \approx A^* \otimes E(d_i(p-1))$ [8, p.130] and $H^*(BJ_p;Z_p) \approx Z_p[q_i] \otimes E(d_{i(p-1)})$, where projection onto $Z_p[q_i]$ is induced by pulling back to EU.

Next we wish to show, by a change of basis, the generators $d_{i(p-1)}$ can be replaced by βr_i where r_i are classes which pull back to q_i in EU. For this purpose we look at the Eilenberg-Moore spectral sequence for the principal fibration $EU_p \rightarrow EU_p \rightarrow BJ_p$. We have $E_2 \approx Ext_{H*(BU;Z_p)}(H_*(BU;Z_p),Z_p)$

where $H_{\star}(BU;Z_{D})$ is a module over itself via $(\psi^{k}-1)_{\star}$. The spectral

)

sequence again collapses and E_{∞} being free graded commutative will be isomorphic to $H^{*}(BJ_{p};Z_{p})$.

In general if $A \otimes \overline{R}$ is a resolution of M over an algebra A and f: $A \longrightarrow A'$ is a homomorphism, then we can compute $\operatorname{Tor}_A(A',M)$ from $A' \otimes \overline{R}$ where if $\partial(1 \otimes r) = \Sigma a_1 \otimes r_1$ then $\partial'(1 \otimes r) = \Sigma f(a_1) \otimes r_1$. Since $H_*(BU) \otimes H_*(BEU)$ with $\partial d_1 * = y_1$ is a resolution of Z over $H_*(BU)$, we can compute $\operatorname{Ext}_{H_*(BU)}(H_*(BU),Z_p)$ as the Z_p -cohomology of $H_*(BU) \otimes H_*(BEU)$ with $\partial d_1 * = (k^1 - 1)y_1$. Since $k^1 = l(p)$ iff $i \equiv O(p-1)$, we get $A^* \otimes E(a_1(p-1)^*)$. Dually we have $Z_p[q_1] \otimes E(d_1)$ with $\delta s_1(q_1, \ldots, q_n) = (k^{1(p-1)} - 1)d_1$. This is trivial mod p, but we must look at it to determine the Bochsteins we need. We can write $\delta q_1 = \lambda d_1$ modulo decomposable terms. On the other hand $s_1(q_1, \ldots, q_n) = iq_1 + decomposable terms, so we have <math>i\lambda = (k^{1(p-1)} - 1)$. Now there is one more power of p in $k^{1(p-1)} - 1$ than in i [1, Lemma (2.12)] so p divides λ but p^2 does not. Thus d_1 can be replaced as a generator of $H^*(BJ_p; Z_p)$ by βr_1 where r_1 pulls back to q_1 .

An argument for p = 2 similar to that just given is possible for a complex analogue of BJ_2 , called BJC_2 . We find that $H^*(BJC_2;Z_2) \approx Z_2[c_1] \otimes E(d_1)$ where d_1 can be chosen to be βc_1 if i is odd and $\frac{\beta}{2}c_1$ if i is even. This difference occurs because $(k^{i}-1)$ is divisible by 2 but not 4 if i is odd, while $k^{2i}-1$ is divisible by one more power of 2 than 2i is, i.e. by 2 more powers of 2 than i is divisible by.

BIBLIOGRAPHY

1

C

1

- 1. Adams, J. F., On the groups J(X) II, Topology 3(1965), 137-173; - IV, Topology 5(1966), 21-71.
- Adams, J. F., Vector fields on spheres, Annals (2) 75(1962), 603-632.
- 3. Clough, R. R., The Z₂ cohomology of a candidate for ^B_{Im}(J), Ill, J. M., to appear.
- 4. Milnor, J., Lectures on Characteristic Classes, mimeographed, Princeton University, Princeton, N. J.
- 5. ----, On characteristic classes for spherical fibre spaces, Comm. Math. Helv. 43(1968), 51-77.
- 6. ----, On the Whitehead homomorphism J, Bull. Amer. Math. Soc. 64(1958), 79-82.
- 7. Singer, W. M., Connective fiberings over BU and U, Topology 7(1968), 271-303.
- Toda, H., On iterated suspensions, I, J. Math. Kyoto Univ. 5-1(1965), 87-142.
- 9. ----, p-primary components of homotopy groups, I, Memoirs Coll. Sci., U. Kyoto, A, Math. 31(1959), 129-142.
- 10. Whitehead, G. W., On the homotopy groups of spheres and rotation groups, Annals 43(1942), 634-640.