DIFFERENTIAL TOPOLOGY
by C.T.C., Wall

Introduction

These notes are based on a seminar held in Cambridge 1960-61,
In writing up, 1t has seemed desirable to elaborate the foundations
considerably beyond the pointv from which the lectures started, and
the notes have expanded accordingly; this is only the first set.

It is divided into three parts: O, on analytical foundations, I, on
geometrical foundations, and II, on theorems of transversality and
general position. (No index is included since numeration and pagina-
tion are by chapters). We hope to have given a thorough treatment of
the basic theorems of use in investigating smooth manifolds; the only
others‘to my knowledge are a paper by J. Cerf (Bull., Soc. Math,

France 89, pp.227-380 (1961)) and a forthcoming book by S. Lang (on
unbounded manifolds only). It is intended that subsequent parts of
these notes shall be as fqllows: imbeddings and imnmersions, cobordlsm
theory, the h~cobordism theorem, and surgery; however, this is
somewhat optimistic.

It is perhaps appropriate to comment here on a few points which
were only noticed when the notes were typed out. Part 0, 4.2 (the
Implicit Function Theorem) is not needed; a proof can be given as in
I.2.2. Proofs of O, L.1 and O, L,L4 can be found in any good book
on analysis. The proof of I, 4,5 is cooked: I éhould have extended
the method of proof of I, L.2. The proofs in I, 5 of uniqgueness of
tubular nbds can be used to give a local piecing together, and hence
prove existence also: this avoids the difficulties in I, 6.2, and is
the method adopted by Cerf and Lang. I have used a more direct
geometrical construction by preference; the other method is, however,
stronger, and removes the restriction to compact submanifolds, thus
answering, for example, the problem of I, 7.1. By an oversight, the
existence part of the proof of I, 6.4 was omitted ~ it is very simple,

the reader will easily supply it for himself.



I am indebted to all the Carbridge topology research students
of last year for participating in the seminar; in particular to
P, Baxandall for taking notes on the first 6 seminars, and to Steve

Gersten for doing the rest, and for considerable assistance 1in

writing up.

NOTATIONS, ete,

We assume known a certain amount of anslysis, and a few terms
and results from analytical topology - for example, '"nbd" means
neighbourhood, "fs" denotes a metric, and a paracompact space is
defined by the property that any open covering admlits a locally
finite refinement. The word '"smooth" is alwaye used to mean
"infinitely differentiable", i.e. C°° ,

We use ﬂ% to denote the real numbers, ﬂva for the vector
space of M -~tuples, with its ususl metric and topological structure,
n{Tt ,IR?}+ for the subsets with the first, or first two terms
nonnegative, For X & &VT l&' is the root square sum of the terms,
and W (X."V\)= {YZ [Y-xl< } . (x L@(ﬂ?) is the group of non-
singular linear transformations of HQT“ , with subgroups CQ,L.i; OR)
(with positive determinant), the orthogonal group C%L (preserving
the metric }x’ ), and SC%L , their intersection, ‘ The interval _I
is the subset 0 X &1 of ]R , and bw ,Snﬂ are the subsets
14t Ikl =1 o R™,

We denote set membership by &€ , and set inclusion by C .
The restriction of a map JL to a subset X of the domain is Jllx.
Composition of mape 1is (usually) denoted by a circle, as;}o ;; , and
is written in the illogical order. The image of a map JZ islhmf.
1f X,Y are sets, X x¥ ig the set of pairs {(X,'\(}O: x EX ,'yc‘lY},
and A(—’O ig the diagonal subset of X x X , with pairs [(x,x):x.f,)(},

Finally, the conclusion of a proof is signalled by: .ﬁé
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Chapter 1 Definitions

&%)
A smooth m-manifold ™\ 'is a paracompact Hausdorff space with

N~ . : 3
a family -+ = 7, of continuous real-valued functions defined on

M and satisfying the following conditions:
i) ;¥ is local. If {:Pﬂ—efg is such that each point of /™

has a nbd in which ~§ agrees with a function of :f s thenjlé HQ

ii) :;f is differentiably closed. If {, , ... ,{ ¢ 1,

; - .

and F is a smooth function on X, then 7] . ..., [, V¢ 1
£ v,

there are i functions ‘f', R 5 such that{q~e(§s&QX “'}N=GQ9

)

.

111){™M, F)is locally Euclidean. For each point i

gives a homeomorphiswm of a nbd { of * onto an open subset V

[ i ) S o i e FRE L
of WX . Every functlon\{ i 1 coincides on (& with .§” -},n)’

where I~ is a smooth function on V .

We call functions i ¢ { smooth functions on ™ , and the
SR,

mapping defined in iii) (or, by abuse of language, the set !l ) a

co-ordinate neighbourhood, or C.N. of ' . It follows from ii)

that sums, products, and constant multiples of smooth functions
are also smooth.

The first tool we need, to work with the above Qefinition, is
a bump function. Define first a function #5 on ﬁS' by

Glayn en 1Y w x= D if o€ % ¢

=0 otherwise.
Then }D is smooth, nonnegative, and differs frém zero when Q<< 1,
r
Rods §7y )y £ 8wy L
! o ! N 1 ’

A o Q
. ”F(x) is smooth, so is Eﬂb(xﬁ. Also,

The bump function ‘Sr«(ﬁ}is now given by

|i~)£;{/x.) = 0 if b g
¢ R 7 )
o< LP CW><3 if O = < f wod
iS50 (Xy: ¥ if 0 >0
These.are the essential properties of the bump function; any other

function with them would serve the same purpose. We now have

Prop 1.1. Let (P id=' be a C.N. of /"7 1, and let [~ be a smooth

function on V . Then there is a functioni:i } y agreeing

with I %’ in a nbd of , and zero outside { .



Proof

1.2

Without loss of generality, let ;P(F’): 0. Since ¥V is a nbd
of O , we can find M > O withU(D3r)cv. Define Y (x)= §.(z- 'S
then i:("‘l‘l for ix| & ,_ﬁ?(x‘)rg for ?.~;,,[¢~,and@ is
a smooth function on!k’ , hence also on YV , since 133 is smooth,
and |x( is smooth except at (3 . Then Fg? is also smooth on V,
and!-x)é(l) Olf{)"/ 2Fr . We define a function 'f on M by:
T °)=¢'§=‘F(‘>) if P2
= 0 otherwise.

Then, by condition ii), % 3 J‘, and 4} agrees with Fo Q/ in

Q'i:’; Ixr<r} %

This proposition enables us to observe that the above
definition of smooth manifold coincides with the definition
in terms of an open covering {lh% } of M , each 114 provided with

a homeomorphism (&( onto an open subset offg}”}, such that in the
intersection'Hx_f;iﬁiwe have 2 smooth change of co-ordinates.
Indeed, the only real difference between this definition and D‘?

is that Y1 requires q;: to be defined by functions which extend to

smooth functions on the whole of ™ .  But since the proof of

Prop 1 is equally valid for the other definition, we see that any

locally smooth functions, provided we allow their range to he

slightly restricted, extend s oothly to all of ™ ,

We now give some simple examples of smooth manifolds.

0. The empty set is a smooth m-manifold (the definition is
vacuously satisfied).

1. f;'ﬁ with smooth functions taken in the ordinary sense, is a
smooth m-manifold., Condition i) is trivial, ii) follows
from the rule for differentiating a function of a function,
and for iii), since the co-ordinate functions are smooth,
we take the identity map.

2. The discrete union of an arbitrary set of smooth m-manifolds
is another. Define a function to be smooth if the induced
function on each summand is so; the conditions are then all
trivial.

A
\'l

3. Tet "' be a smooth m-manifold, :J an open subset of !

. N

Write f*, for the restrictions to J of functions of [ ;

i}a for the localisation ofi§ , i.e., the set of functions
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locally agreeing with a function of “g‘. . Then it is clear,
since [) is open in M , that (0 4o )satlsfles conditions
i), iii);(Off-a\ satisfies them and also condition ii). So
in this way, the structure of smooth m-manifold on ™

Ny

naturally induces such a structure on i . We call ©

an open submanifold of M .

4. Tet™M™, ‘" be smooth manifolds. Then the topological
product N T2 m™ x V7 has a natural structure of smooth

manifold. For let 4'4" , T:Z

denote projections on the factors,
Then for }‘» ’L‘}M s 4, 7, '}f-v y we define :F.;, IT’ ’ g,o T i to
belong to 7,‘,; any smooth functions of a finite set of these;
and any function locally agreeing with one of these functions.
This definition ensures that conditions i) and ii) are
satisfied. But so is iii), for it now follows that if

(P' .‘U‘ > KT, 4)2_ U;‘. —9&%"’ are C.N.s in M and V ,

'then(Pl)s@:’l{, !“Z_ < & M*+Y can be taken as a C.N. in Mx V .

Let M”, V¥ be smooth manifolds. A mapping ®: M-v
is called smooth if for each f 2 ij. j} ° q){j(/v\

Note that in view of condition iii) this is equivalent to
the requirement that each transformation of co-ordinates induced
by (f/ between C.N.s in M and in V' be smooth in the usual
sense. However, the above definition is much more convenient.

Prop 1.2 If Cp' !\4! -3 f"!d_. and k) ;V\ — M 3 are smooth, then so is

Voo My

.l \.,

For if 1¢ g}'j"."(“;iﬁi 3 '}’z , and so fo(‘;);'u Lo F 3

Prop 1.3 If " is an open submanifold of ™M , 4 0O~ M is smooth.

; i =" Y 2 SN T
For if } 4 ‘\{M , .{ sl E o < Q
These two propositions merely assert the consistency of our
definitions. To conclude this chapter, we define the equivalence
relation which classifies manifolds.

4 (1-1) correspondence Q MM /" between two smooth

N
manifolds is a diffeomorphism if both (T and { are smooth.

M™ and V" are called diffeonorphic.




Thus a diffeomorphism defines a (1-1) correspol
the two manifolds, under which swmooth functions corresi
Differential geometry and topology each consist of the stu y
(from different points of view) of those properties of smooth

nanifolds which are invariant under diffeomorphisms,



Chapter 2. Analytic Topology

We collect in this chapter, for purposes of reference, wmost of
the results from analytic topology of which we will later make use.
The reader desiring continuity should read up to Prop 2.5 and then
go on to Chapter 3, referring back later when necessary. We

first elucidate the condition of paracompactness in D1.

Theorem 2.1 We can find a set of C.N.s (;i"/,di"!,{ﬁ< > U (0,3) for MM such
that i) The sets (‘0;1("&'(0, 0) cover ™M . ii) Each PeM nas
a nbd in M which meets only a finite number of sets (}. i-e.,
the "ux are locally finite. Moreover, the covering by the ub(

may be chosen to refine any given covering of ™ .

Proof Pirst take any set of C.N.s Y0 sR™ for ™M, such that
the Oﬁ cover ™M and refine the given covering. Since M 1is
paracompact, there is a locally finite refinement {bﬂﬂ}of 59p},
8till covering M, If we now prove the result for P{g , the
union of all such C.N.s for the various V%p satisfies the same
conditions. But'?y? defines a diffeomorphism of %ﬁs on an open
submanifold of ﬁ?nl. S0 we can suppose that M is an open sub-
manifold of R’ .

For each positive integer i,, take all the open sets 1} Cx’3¢3}%)
which are contained in ™M (actually, since we use Prop 1 to say
that a C.N. in %{3 above is also one in M above, say: whose
closures are contained in M ), and such that ij! has integral
co-ordinates. Suppose Y £. /™ ; then some]J(Y,é )Ci M . Choose
1> 4j?>ﬁ5 . Then some X with X integral is within a distance
Jidi of y, and W(x 3/af O Uy vam ) < (00, 8) € M.
Thus the corresponding sets 14 (.)c.‘/'z /'L) cover M,  Delete
any of these which is contained in another. Then the remaining
ones still cover Vi . We say also, that the corresponding

L{(XAJJTE/1> are locally finite. Now Y has a neighboufhood

of the formn (\l"/L), chose & such that (Y Zé)C U (X, ‘/:‘:’-/L\

Then if j)SITv:- /% ,and Uz, 3‘/:"/'j\) meets U (Y, &) it is

contained in 1A(y,2 5), and so in L&(xg“ﬂi/{> , 80 it was one

of the nbds which we discarded. Thus Q&(;Y,3:> only meets sets
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iA (ZJ"’JI'H/J\ with Jé?-/rn/a , and hence only a finite number of

such sets. E}
Corollary 2.1.1. Let 1’- be a continuous positive function on M .
Then we can find a smooth function « with (f- >

4o <y )¢ §(F)

for all P < M.

Proof Wlth the notation of the Theorem, choose Q > 1less than
the inflmum of Jr. on the compact set {f 1(1,((") 2)) . set
< (F)= E (z-1x1) s Ps. umtp.,, () = x
= otherwise;

as in the proof of Prop 1.1 ,51(’!”) is smooth. The functions @Q‘
have the properties: i) For each I°g /1, there is an a¢ , with

P . (P)-: 1. ii) Bach I~ in /*\ has a nbd on which all but a
finite nunmber .of functions i,( vanish. These, in fact, translate
properties i), ii) of the Theorem. By ii), the function

2 ;f‘ x if“) = 3 (F’) can be defined, and is everywhere smooth;

we set (F) = @q (‘P\)/Z (P) . Again using ii), we can

define
§PI= 5T ()
since Z ”gﬂ( {\[‘7) =1, this is a weighted mean of numbers '8..( all
less than { (P:) , hence also is, and it is positive, as all 51*( >0
and so is sone ’\I’.)\, (P) . 3
Complement 2.1.2. We can find a countable set of pairs of disjoint
co-ordinate discs (L{ « jsuch that the ux"'\/x cover all of ‘

M x 1\ except the diagonal (points (9%¢ x).

Proof As above, we easily reduce this to a problem in Euclideah
space, and there the disjoint pairs of | ( ‘“/1) (where %X has
integer co-ordinates) will clearly do what we want. ’ g

D5 A set of nonnegative smooth functions ":‘[!_x‘ on M is called
a partition of unity if the sets ‘J.)( = {f:’- \f U’) > D} forn a

locally finite covering of M , and Y L /">‘1

; .

The functions - above had this proper‘by, and, in addltion,

I
that the closures of the ﬁugwere conpact.

Our next investigation of smooth manifolds concerns

connectedness.



D6 A smooth map ~:R 3 Mis called a path in ™M . Two points
,D‘ @ in M are called connected in™M if there is a path in M

whose imsge contains f° 2nd Q .

Lenma 2.2 Connectedness in M is an equivalence relation.

Proof By definition, the relation is symmetric. It is reflexive,
since a constant map is a path. To prove transitivity, let °<.f3-
be paths with images containing (pQ) (Q f\?), and suppose without
loss of generality °<(‘1>=lo,°<(0)=Q, FE(O): Q » and F<3 {1) =R .

Let CP-‘U—) V be a C.N. of () such that V is convex. Since

-

It e = < (1) e UL
Similarly for ,6 : let's suppose that & will do for both. ‘

o 18 continuous, for soae £ >O and ¢

Now define by ¥ (1) = < (t) t<~&
= (=N (£) + A5 (1) —fstet
= £ (%) t>¢

where the linear combination is taken in V, and A 1is a smoothing
function which is ¢ near t =-~5 and | near t=-¢ , e.g.
MY = Be (e - L)
then ¥ is clearly smooth, and its image contains P and R . T
Lemma 2.3 Each equivalence class is open in ™ .
Proof If (T’):L] =V 1is a C.N. of P such that V is convex,
every point of U can be joined to P using the path corresponding
to the straight line in V (suitably parametrised). &E
Corollary 2.3.1. Each equivalence class is closed in M, for it is the
conplement of the union of the other equivalence classes. %
Lenuma 2.4 A subset of M is open and closed if and only if it is a
union of equivalence classes.
Proof Sufficiency follows by Lennma 2.3 and Corollary. For
necessity, observe that since R} is connected, any path which

neets an open and closed subset is contained in it, so such a

subset is saturated for the equivalence relation. E
D7 The equivalence classes are called the components of M.

/M  is connected if it only has one component.
Lenna 2.4 shows that this is taking components in their

usual sense, Counparing with D6, we note that for smooth manifolds,
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connection and conneclion by smooth paths aro oquivalent. A
component of ™M y being open, is an open submanifold; and M
is the discrete union of all its components. Thus to study ™M
up to diffeomorphism, it suffices to take the components
’separately; we shall frequently dd this.,
Prop 2.5 A connected smooth manifold Mmhas a countable base of open
sets.
Proof Since Rmhas a countable base, it is sufficient to show
that the set of nbds occurring in Theorenm 2.1 is countable.
Since M is connected, there is a path joining any two points,
so between any two nbds (Dx (i /1(9 1)) there is a finite chain of
such nbds, each overlapping the next. Now the sets 'U\,( are
locally finite: each point has a nbd meeting only a finite number;
so each conmpact set meets only a finite number. Thus each
(P;qfl_zi (0, 1)) and so each cp:(u (O,?B meets only a finite number
of others. By induction, the number of sets U (Q 1) joined to a
given one by a chain of length at most K is finite; hence their
total number is at most countably infinite.
Corollary 2.5.1. A swmooth manifold Mmis second countable if and only
if the set of its components is finite or enumerable. %
Lenna 2.6 ILet Y ©be a netric space, X a closed subset. For any
open nbd Y of X in Y , there is a positive continuous
function f§ on X such that x i X , (x.y)(qu = y £
Proof Define f(x):j(x,\’—U): clearly lj. (x) -:F.(‘X.')l$ X(’C,)L') y SO
j is continuous: it is nonzero and satisfies the condition. §
Corollary 2.6.1. ir X is a conpact subset of the metric space Y
' .any open nba 1k of X in VY contains an £~ nbd for some £>0,
Proof  Take £ = inf \f , Where J: is given by the Leaoma. g
Corollary 2.6.2. 'If X 1is a metric space, u a neighbourhood of the
J diagonal 4(") in X ¢ X there is a positive continuous function
on X such that S(x 7) JE (x)-) (x ¢ ){, u.
Proof Take y XxX and , @ product metric in the Lemms, and set
}.(*)’:F x, )c). Since X(x,y);f' ((x,x){(x. y)) the result follows.
%



Corollary 2.6.3. 1f X 1is compact metric,lX 2 neighbourhood of ZX(X)
in X x X , then for some £ > O , S(K,j)<£ = (I,“ﬂé Uu.

Proof Take § = inf\f_l, where :;\’n is given by Cor 2.6.2,. %

Lemna 2.7 If X 1is a conpact subset of the metric space Y , and Y
an open nbd of Ax X in VY« Y/ , then for some £ >QO, if V is
the §-nbd of X in VY , U ~contains VxV.

Proof Take £ = “& (g(){x X Yx Y - ’[,.{_) , which exists since Y¥x Y
is normal, Xx X coupact. Then if 8(\;7, X)< io_‘j('v'z‘X)<£ we have
Lg((’lllx\jZ\ _Xxx}(?_&__—_-(g-()(x‘x,y,( Y~ ‘L{) , so U, xUz does not lie
in ¥x VY - . $

Corollary 2.7.1. Let X be a conpact subspace of the metric space Y ’
:F: Y Z 1locally homeomorphic, and-j‘-} X (1 ~ ]) . Then X has a
nbd "/L in Y such that ”LL is a homeonorphisua.

moot zen D= g )y oty JGISAN <Y <Y
hypothesis, D is disjoint from X x X (since JCI X is (1=1)). Now
the closure D is contained in the closed subset defined by
}(;,)=]f(‘ql ,__) , 80 is contained in I U A(V) But by hypothesis,

:"_ is a local houeoworphism, so each point (gy) has a neighbour-
hood disjoint frou D . Thus 1) is disjoint from A(V), S0
D is closed. Now apply Lemma 2.7, taking 'L(_:\/KY-.D . We

find V , so that V <V does not meet D . Hence .;.!V S (1—’“‘
8o is a honeonorphisn. ’ $

Lemma 2.8. Let V be locally compact, /\'I Hausdorff. Then a proper

JC :VanN is a homeomorphism onto

onto its image (1 —?) map

its image.
Proof Let ™ :é': <V>. Since -{- is proper onto M it extends

to a continuous map of the onemﬁﬁint compactifications

f.‘\/u oo D MU oo .

} is a 1-7 map of a compact set, so a homeomorphism. Hence

\;.\ is a homeomorphism. 56;
Complement 2.8.1. If }Z \/_—9 N is proper, then M is closed in N .

For Jt then define ‘:{:I\/U €9 --)N U ™o s & homeomorphism into, with

compact image. Since M t’=5 18 closed in NU%, sois M in N .
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Theorem 2.9. (Baire's Theoreuw) Let P4 be a complete metric space.

Proof

The intersection of a countable family of dense open subsets of
/Y\ 1is dense.
A \

Let the given subsets be {juLL%, and let \/ be any nonempty open
set. Then V,., U, is nonempty and open, and so contains a spherical
nbd 'u (x, ,E,). Next,1,{201-{(x,iz\is nonempty and open, so contains
a li(X_ ,E ). We can thus construct a decreasing sequence of

. A 2 _
nbds M(X;_,EO and clearly Zi > O . Then {X ;”1) is a Cauchy
sequence, so has a limit point X, which lies in each QA,CX- ,";>

Z_ .
i ,
(since the later X‘f' do) and so in each u,,,‘;and in V. T

Complement 2.9.1. If W is open in M , the theorem holds for W .

Proof

We construct the nbds as above. The limit point X exists

in f4 (which is complete), and hence by the argument above

also in VJ . iB
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Chapter 3 Tangent Vectors

.
Throughout this chapter, M will be a2 smooth manifold.

A tangent vector at P&Vl is a derivation on * o R

More precisely, it is a mapping7\IEE-%IR which satisfies
DI %t R L EY Mo firad) s o M) M (F)
I ff e T 25,40 = NN, (P+EPNED
We shall discuss the structure of the set of all tangent vectors
to M . Note that sums and real multiples of tangent wectors
at F) are also tangent vectors at R , thus these form a vector
space.

fj is the vector space formed

The tangent space ﬁ4f to M at
by all tangent vectors to M at [ .

Let ¢ U 3V be a C.N. of [ , and suppose without loss of
generality @(P) = 0. Let Y”n.,)(m be co-ordinates in R™ .  Then
for each )E E.'? , We havle/’-J:C‘ D -t alsmoo’ch function on V , so
there are partial derivatives dif-: %é%lo We assert that c(i is
a tangent vector at P, condition i)iis clear, and ii) follows
by the rule for differenfiating a product. We shall prove that

these form a basis for qu;, first, however, we need a lemma.

Lemma 3 1 Let )} be a smooth function on an open convex subset \/ of

Proof

n .
ﬂ? ! containing O , and 1et_§(C0:(). Then there exist further
nu
1% ) = .
smooth functions fl (7 S “r\) on V such that§(¥.>~z1 xlft(x)‘
Moreover, if ‘f is a smooth function of additional parameters CJ ’

we. may suppose that the - also are

| fi o0 o
JORICRIONEIE

\ < Mx 33 RETI:
= " 3 bj_ (#2)dt

— Ry

Hence we can take$ (x) S -i lX)Jt The last part also
follows. ﬂg

Theorem 3.2. The tangent vectors d“~~)Jn, form a basis for qu .

Proof

We first remark that a tangent vector is essentially local

in nature: if % =;} in a nbd A4 of , and )\ is a tangent
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3.2
vector at p , then A G\ =7\(}\ . For by Prop 1.1, we can find
a function @ on M , equal to 1 in a nbd of , and zero

outside W . Then @1[: i% , and so}—;r(j‘-}vo-@) . Thus
MO =M= 2 -1 = 2 G- - 8 G F)-5 (PN - )
= Q.

Hence it is sufficient to consider only functions defined and
smooth in 1A , where CPZM.%V is a C.N. of P with V convex;
it will be simpler to speak directly of functions on V .

For any smooth function :F, on V , by Lemma 3.1, we can put

$O = o)+ Ix; pa (%),
For any tangent vector N at fo , then,
MP=AGE) -5 N (x, F3)
= LN Ex () 2 % Sx i GIN ).
But b (7) = /\(1-0 = 1->\<1)+?\. (1\ 1= Z,\(’\j'and so = O . Thus
N = InGAfilo).
In particular d} (}) =2 dj, (113}1 (°>:Z él}:!w(O) :JCOL (O) So
Mp)=EN(D ()
and as this is true for all { , A = ZX()L,-)J:L . Hence the d;
span /V]P . Since di (Jj\ = é’”}.} , they are linearly independent.
Hence they form a basis. ﬁ

We shall usually, by abuse of notation, write 3,{) . for CJ-,:
Now let CP:M m_) V v be a smooth mapping, and let CP(P)S); Q .

The differential of (P at , o (l},;/\"\f - \/Q_ is defined

T deldf) = x(op)  for Xe Mp fE Fo

Since ;) (P are smooth, so is 5_0 (P, so the right hand side 1s

defined.  Then QLCF(X>is a derivation since X is. Clearly,

dq) is a linear mapping of M. to \/Q . ‘
Iffg'}’m, LM™ 5 R is a smooth mapping, so that if f.(P)z «,

we have dj;/‘%—) ERCL. However, we wmay identify each meith @

itself in a natural manner: if J3C is the parameter on ﬁ y

identify the vector R %Xwith the number X =R . By change of

parameter \j:\ %, Wwe have the same identification. [Similarly,

. r
we identify tangent spaces to ﬂ?n with R itself } Thus for

:fif}m) pi, l\/\, we have CJJC-'MP — MR . Ssince d5_ is linear,
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3.3

it is an element of the dual vector space, Mf‘* to M’a . Now,

if 3¢, - X, are local co-ordinates at P , we have
olx; (D/pr = 3""5_”- = &)

so the &xj form the basis of F4; dual to the basis %{iiqf PAf.

This concludes the discussion of tangent vectors at a single
point. We now wish to asseuble together all tangent vectors: for
this we need the idea of a fibre bundle. We refer the reader to
Steenrod's book "Fibre Bundles" for a fuller description; we shall
recapitulate some definitions here for the sake of continuity of
argument.

A map T —= M  is the projection of an ii-vector bundle

if Ml can be covered by open sets Ikg such that

-1
i) There are homeomorphisms §._: U x R 57 (ﬂx) such that
P (m,‘x): m.
ii) For each pair(Lﬁ,g) there is a continuous map
&G P ' : y
J/’Vg : Lt.)<r11475 f—é (;‘i_n‘<‘gj
such that for m. & 1(@( a A A, X £ {}Q "’

Pe (m) %) = @ (m, g p (). X)

A map}tf1-§7_ is called a cross-section if TTo)L== 1. The

bundle is smooth i{ the maps;BqQ are smooﬁh B?L_h_(ﬁe> is an open
submanifold of ﬁ&““i]. In this case T admits a natural structure

as smooth (”V*h>-manifold, such that the maps ql& are diffeomorphisms
on open submanifolds. For if we use these to define C.N.s, then

we have differentiable transformations of co-ordinates on the
intersections.

For a general fibre bundle,(SILnGﬁ)is replaced by a general

topological group Cx (we shall only make use of Lie groups) and
n —
ﬂ{ by a general topological space F (the fibre) on which CE

operates. The structure of the bundle is determined by the maps

ja(ﬁ :  two bundles with the same 3""/’3 but different fibres are

called associated. If thle?u(/‘3 all have images in a subgroup

-

Ce ot G /
< of (. , we say that the group of the bundle reduces to Cﬁ .

Write T(rﬂ= Ui”“"p Pe MI : the set of all tangent
vectors to M .  Define TT(M)—‘; M by W (M f) =L .
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Tet H°<: li°< - VL< be a set of local co-ordinate- systems, with
. ) m
the M,( covering M|, and for P{_ ux-‘/f‘ R, degine CPO< ()0) V)
as the tangent vector at #O determined by 2 \);L /57(1 . Then
m -1
q)% : LLX X JR S (ugis a (1—1) mapping for each o¢ On
1&((\115, denoting the iwo systems of co-ordinates by X x 8 ;
]
we have, by the usual transformation rule
3L 6 BxF, D
X = J ol
1 QU(d S)L},
so we define 9 _ - - b
9=6 U n UpCL (R) Y
ag
— (3
;i=<ﬁ (GQ\ = ——_7§Jf>GL'
_ Ox'y
Thengoﬂe is a smooth mapping, and satisfies the condition above.
To conclude that we have a vector bundle, it remains only to
'topologise“ﬂ_(M). But since the maps 30(/3 are smooth, we may as
above take the ql< (or rather their inverses) as C.N.s, and thus
define on‘7r(f4)'the structure of smooth manifold, which in partic-
ular givés it a topology, with the qL( homeomorphisms.

T (M)is the tangent bundle to M . Write I, (My for the

zero cross-section, i.e. the set of zero tangent vectors. In

general, a smooth cross-gsection of—W’6ﬂ>is called a vector field

on T4 . Any bundle associated to ﬁ’pw) via a2 linear representa-

tion of {x Lrl<ﬁ€>is called a tensor bundle (and points of it are
tensors, whose type is determined by the representation). The
bundle given by the adjoint representation is the bundle of

. . m . FD . .
differentigl 1-forms on M ; 1ts fibre over is the dual

*..
Space MP to MP. The bundle whose fibre over p is the set
of all positive definite quadratic forms on P4P is called the
Riemann bundle, and any cross-section of it a Riemannian structure

on WQ,.

For further discussion of such bundles, we refer the reader

to Nomizu's book 'Lie Groups and Differential Geometry'. The
above contains more than we shall need. We now prove the

fundamental

m
Theorem 3.3 Every smooth manifold M has a Riemannian structure.

Proof

Let qL<; ltK,—>1A<t)§> be the C.N.s constructed in Theorem 2.1
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and 1et"4fo< be the partition of unity constructed in the Corollary.

Now { (o 3) has the standard Euclidean Riemannian structure: Z:-JJC
We write Cb’l V~ ) T(p e od(P\\ As usual, since theQLb<are
locally finite, the sum is defined. Since a linear combination
of positive definite quadratic forms is again positive definite,
Ciéq.is everywhere positive definite. Thus 1t defines a
Riemgnnian structure on TTfM. ﬂg
Now suppose a Riemannian structure chosen on p4r“. This

induces an inner product on each D4f), which we use to introduce

notﬁons of length of a tangent vector, etc. We can modify the

naps %1<;1Abéxfk Hkﬁ'ﬁ'~1(ux>so as to preserve the inner product

on the fibres; simply apply the Gram-Schmidt orthogonalisation

process. In fact, considex'q2( as a map qwf?(“—f>ﬂim depending

on certain parameters. We modify (F> by putting

(et = Mg 9 (ep)

where the M1 J with ], a age chosen to make the qf(lA)orthogonal,

and P! p0so as to make the @ (e )unl't vectors. Then the ’\1J are

also smooth functions of the parameters.

Thus if a Riemannian structure is chosen on PA,“, we can
always consider orthonormal bases in the fibres, so the group then
reduces to the orthogonal group C)(”\). The converse: that a
reduction to()on> corresponds to a Riemannian structure, follows
by reversing the argument. We observe that the choice of an inner
product on PAF allows us to identify ﬁ4ﬁ with.P1;F . For a
Riemannian manifold, we shall usually do this.

D12 MM is callead orientable if the group of the tangent bundle
is reducible hoCi.L:ﬁR\; oriented if the group is so reduced.
éince the co-ordinate transformations were given by the matrices

'(Dxc'%xg> the condition is that all the Jacobian determinants
are positive. The bundle associated to the tangent bundle with

fibre GLrn(IR)/C—LTn (R):ZL is a double covering of M , called

the orientation covering. Its projection on M , together with

C.N.s of f4 , can be taken as C.N.s, so the orientation covering

is a smooth manifold. By the definition, all the Jacobians



occurring here are positive, so this manifold is orientable.
If 1\4 is nonorientable, we can find a closed chain of C.N.s,
each overlapping the next, such that the number of negative
Jacobians is odd.

if 1\7 has a Riemannian structure, the same considerations

of orientation apply, replacing G-LI‘“(R)' G[+ (IR)by Om; '«.S‘Om -
: m
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Chapter 4 Analysis

In this chapter, we list a number of standard results from
analysis which we shall need later. Since a number of the proofs
‘are long, we shall omit them, and give references for the less
accessible results.

Inverse Function Theorem.

Let __}],... 1[“ be smooth functions defined in a nbd of Q £ /&

and suppose l}i_‘:‘: Qat O . Then in some nbd \L O}OJPT""

define a dlffeomorphlsm of /M on ah open subset of fR .

Corollary 4.1.1. Let M be a smooth manifold; 3[1 , ]fm smooth

Proof

functions on h4, Péiw. The\fi may be taken as co-ordinate
functions for a C.N. of F) if and only if the %f{ form a basis
for M*‘o .
Let CF-‘M - !Rn be a C.N. of P . Then the }io QJ are
smooth functions on a nbd of (P)g lRﬂ; by the theorem, they
define a dlffeomorphlcm of some such nbd if and only if the
Jacobian l jf# O at (V(Fﬁ But the elements of this
natrix are Just 'bhe coefficients in the d}l of basis elements
d'xJ of M $
Implicit Funetion Theorem.
Let } -- »},V be smooth functions defined in a nbd of
) é F2P4S and suppose the determinant formed by their partial
derivatives with respecf to X ,-‘~.Jib is nonzero at 0O . Then
there are v swmooth functions ?| Loy 9” defined in a nbd of -
Q¢ R such that within some nbd of Of [RY“-PS ) 8 point satisfies
fL(P) 0 (1~\b V> if and only if it satisfies K. ; ( ﬁ+1'“' S
(181 € !
Whitney's Extension Theorem
Let } be a smooth function defined on the open set 9(.1 >0
of R , and suppose that f and all its partial derivatives
extend to continuous functions on ’R.,. . Then there is a smooth
function ? on \?\n which agrees with j: in its range of definition.

Whitney's proof, which establishes results of much greater

generality, can be found e.g. in his paper: Analytic extensions
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of differentiable functions defined on closed sets,; in the Trans.
Amer. Math. Soc. 36 (1934) pp. 63-89.
We next consider Picard's existence theorem for differential
equations. It is convenient to use the following terms. Let W
be an open subset of [R ln', K a compact subset of L .
Existence Theorem for Ordinary Differential Equations 4.4

Given a system of equations cii( - q;(x>
di

e
where CP is a smooth function on I +to R , then for some £ >0
there exists a unique smooth function X = g (XO, fl;) on K x E
to u (where E  is the set:}i—,‘ < & } satisfying the equation,
and such that Xo = (C/‘,(XO O) .

We shall use this to develop the connection between vector
fields on a smooth manifold Mm and 1-parameter groups of diffeo-
morphisms of ,\fl .
D13 A family {CPt e UQ} of mappings of M into itself is

called a 1 -parameter group of diffeomorphisms of M if

i) The mapping @ MxR= M x /R defined by @(M'{—):(@t(m);’t)

is a diffeomorphism

11) For all 5, t e IR QP =P,y

We observe that the first condition implies that each CPac is

in fact a diffeomorphism. Now suppose gcpi} does satisfy these

conditions. Then we define a vector field X on [\4 as follows.
For &ZEM ?ﬁM,we set
o (@D -F® g e (P
Xpl) = by £ - G (@]

It is clear that )(bo is a tangent vector to M at P . The fact

that XP varies smoothly with {3 , so that X is a vector field,
now follows from i).
Our present aim is to obtain a partial converse to this
result.
" Theorem 4.5 Let Mmbe a smooth manifold, x a vector field on M , /u.

an open set in I\q with compact closure K . Then we can find

¢ >0, and for each i Withl’rl(& ,amapCPtofM in M ,



such that

i) The map ¢ WxE>Mx R (defined as above) is a diffeomorphism
onto an open submanifold.

i1) 1 |8/, I’c‘ , andlS-l—t‘are less than £ P ana (P-t(P)are
in ’M. , Then

Ps Py (P) = Pspt (P
iii) For each P¢ L() \.Fé ’\\ijJ X (f} Jt :f_(cpt(/)))l -0
The map CP is uniquely determined by these conditions.
Proof Cover K by a finite number of compact sets kcx , €ach

contained in the interior of \/,,( , Where H% V) ’{/Lx is a C.N.

x =
We shall now interpret our conditions in 4A . First, however,

note that if { ¢ v, j%f((p.t@))[t:s = JCELJ( ((PS-»L-(P))l -0
A O, =Xp o) (1)

[N 1,
write )\ Z f %xl , and consider the system

A

dt
We shall apply 4.4, taking ,U.o( for W , andH(KOA for K

Now in u}(

Since X is smooth, the .J_‘ are smooth, and the result does apply:
we find £ ., , and a smooth function X = j(xo A’.) for Y & k ltl({_e‘“
uniquely determined by the equatlon. We write Cpt<)( ) = j(x t) —
or rather define CD in M by this relation in 1/{ If
£ = m1n£°( R CPt is now defined on the required range: the fact
that the functions defined by different C.N.s agrée on the inter-
section follows by the uniqueness, and the fact that the equations
solved are simply derived from each other by change of variables.

We note that the functions (,054_ ¢ (F) > (} (XD,S+ t)
satisfy the same equation, with initial value (XOJS). By
the uniqueness, § (Xo S+ L‘)-‘- ?(‘} (XQ - 5>,L'> e, CP5+ b()("): (Pt (PS <X°>
in the common range of definition. Thus q)—t is an inverse of ‘Pt R
so each CPC is a diffeomorphism (over a smaller set than K ,
initially - but we could have enlarged K in the first place),
and since C? is smooth, it too is a diffeomorphism. ﬂ;

Corollary 4.5.1 If Mm is compact, each vector field generates a

Y~parameter group of diffeomorphisms of M



Sy

Proof We can now take K= W =M in the theorem, and find
(P" MxE > M X’R . But the definition of q) can be extended
over the whole of ’R using the functional equation C'DS Cpt= CP5+ P
since this is satisfied in |L| < & .

In general, a vector field on PA is called complete if it
generates a 1—parameter group of diffeomorphisms of P4 .

Corollary 4.5.2. 1f X is complete, and ‘y agrees with X outside
a compact subset of fﬂ , then ‘Y is also complete.

Proof Outside a neighbourhood of such a subset, CP can be defined
for lt/{<£ s by hypothesis, since it can for X . But such a
neighbourhood is compact, so inside it CP can also be defined for
]t{( & , by the Theoremn. The conclusion follows as for the first
Corollary.

We observe that in ﬂ{ the constant vector field §<$x»is
complete: indeed, we then have CPt<x> = t + X More
generally; in the »nroduct ﬁ4ﬂ¥<ﬂ2 , vhe field which we may call
315& which maps to zero on fhe first factor and to the standard

field on the second is also complete; here we have
@ (% 5)= (x,5+¢).

These results are our first justification of the use of the
term tangent in tangent vectors, since we now see that such vectors

correspond to displacement along the manifold.
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1.1
PART I

Chapter 1 Geodesics

In this chapter, we shall suppose that NV“ has a fixed
Riemannian structure : Q—, expressed in local co-ordinates by
(Jéz*=§,g dachmﬁ' , where 9y 1is a positive definite quadratic
form. Let p-.fR‘%M be a path (smooth map). We define the

length and energy of P between two of its points by
LY = o “%, o
E(p) = (b=a) §¢ (V%)
where ("2@1 =74 (&xzt\(i‘@/j, the derivatives being

taken along the path. We define a distance functioﬁ on M by
J(p) Q) = U\f— ((l’)\ /o QIOaILCJoLm_k& )O to Q

Thus j(P,Q> is defined if and only if p,Q are in the same
component of M ; 1in fact we suppose h4 connected for the
remainder of this chapter. We note that at a point, by changing
co-ordinates, we can diagonalise d/ﬁzz-Zi?‘a{_(ij i , and 1t
is then clear that at this point, and so in a nbd, its ratio to
the Euclidean metric is bounded above and below by positive
numbers. Hence the metric induces the given topology on M ;

we call it the Riemannian metric.

1
A geodesic is a smooth path [ : U =M (U open in R
giving an extremal value to the energy between any two of its
points.

By Schwarz' inequality

{L(PY*= {S}Ldﬁ/dt de} ¢ Sk&t Sri <d/54t>zdt
= (- Vo (¥4,)%4e=E (),

o
with equality if and only if /ﬁgt is constant, so that the curve
is parametrised proportionately to arc length. If it is not,
we clearly do not have an extremal value, as a first order change

in parametrisation, making it more even, will give a first order
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decrease in E . Since any curve can be parametrised by arc length,

the geodesic gives an extremal value also to the length of the path.

Prop.1.1. In local co-ordinates, geodesics are defined by the equations
(3 —
dx£+ {_l’,( de dxh = 0O
ot~ J JdE de
Proof Euler's equation for the variational problem is

33 - Y (Y doc -
/;)xé dt< /BE}’\\ ) where :}é = x;/&t\

fo. D3k doj dxk = d (z g}L _%J)
dx.y de dt

2?3 qL Bx dt dt
=2 d:x. -+ _ﬂgJ dx _g_ +
If glj is the inverse to ?‘j ; mul'tlply by 3 L and reduce;

Sle 43R(3 - e - 30t -
The coefficient of the last 'term is usually abbreviated to ‘]ﬁ $
Theorem 1.2 Let ‘PV“)“ be a C.N. in M , K a compact subset. Then
there exists € >O such that for P& K ,ve Mo, analW[¢ € ,
there is a unique geodesic P(ﬂ with o (O> = p, fi—tp(t) It*—-o:" V.
this is defined for]t|< 2. , stays in (Z , and depends smoothly

on p, W, T .
Proof We shall apply the Existence theorem for Differential
Equations (4.4 of Part 0). Consider the system
g_ﬁi = yt
e
%’;":L‘; = Tk <x> Y

where X €M ,1”/} £ 3 corresponds to the ’M of that theoren,
andXCKl\/I$’2_ to its K . Then for some £ 2O , We
find a unique solution X =J£(X°,}/o , t‘) , depending smoothly on
all its arguments, and lying in ’LL . Lifting to V by (P—‘ ,
this gives a geodesic in M . To deduce the theorem, we need
only change parameter by t/ e £ : +this has the effect of
multiplying the 1n1tlal¢t P<°C> by the inverse factor, and so
altering the condition lO < 2. to UJ ( s .

Remark that the condition V7 = P('QI means that
Lt =0
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for :}\-C&f) ’V‘(f} = Qdﬁ_- 3“[3(1;3), h=o * Ve sball refer to V as

the direction of )o at P .
D16 Let PEM , v ¢ Mp , and suppose that the geodesic with
direction V™ at P can be defined for lt\ 4 1 . Then €x/3 <P, T))

is the point at Ct=1 on the geodesic. exIO. is called the exponen’cial

map. We also write
E"P (P) V) = <p) ex p (P,VD.
Note that the local existence and uniqueness of geodesics of
Theorem 1.2 does not imply global existence, but does imply
uniqueness in the whole range of existence (by applying the result
to a sequence of points along the geodesic) given the initial point
and direction.
Corollary 1.2.1. exp: V= M; E’(/D Vo M xM  are smooth maps defined
on a nbd V of_lro(MB in | (M) .
For by Theorem 1.2, each point of TI_J <M> has a nbd on which
they are defi'ned.
Prop 1.3 The Jacobian determinant of ExP is nonzero onTE (M> .
Proof For P¢ M, let ZP‘.M-?RM be a C.N., and choose X,, - ', X
as co-ordinates in M ,dx,,»- ‘) de as co-ordinates in the
fibres Mp; write the latter as ’VZ‘, .V;“ , and write co-ordinates
in MxM as Xy ..o X, Zq .., Z . Then we have EXP(X'V)=(X, Z))
so it remains to compute the partial derivatives of the -Z.i at O .

Now Z. is the point at 4 = 1on the solution of the equation
dz
dbt
point 'to on the solution with initial condition Z:x, Y:.\)%u= V.

= Y with initial condition Z = X, Y:\)o i.e. at the

Hence Z = x+t°\/ 4+ osmaller terms (when £ is small, V fixed), and
R ]
50 to find g—vz-i , set (V,):=t 6,;1- ; then

razt =1- ao . — .«
J WJ‘ % L{Lo__\)o\ -5 éﬂ. J

This proves the recult: for later reference note also

gzj"—‘ é’\_j (clear) i

Corollary 1.3.1 —,E(M>has a nbd YV’ in (P’l> on which E’x/o is defined,

and is a local diffeomorphism.

i
Corollary 1.3.2 If M is compact, T[:)(M) has a nbd VY 1in TT(M) on which

Exp is defined, and is a diffeomorphism.
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Proof 1.3.1 follows from the Proposition and the Tnverse Function
Theorem (4.1 of Part O0). 1.3.2. follows from 1.3.1, using
Corollary 2.7.1 of Part O. $

However, the result of the last corollary can also be obtained,
in a stronger form, without the assumption of compactness.

Theorem 1.4 There is a nbd W of A(I\/\> in MxMsuch that if (l,‘jsi_ W,
there is a unique geodesic from 2 to \} 1of length 3’(7‘:‘13
Hence Exp defines a diffeomorphism of Exp-(k/ onto W .

Proof For PE.PA, by Corollary 1.3.1, let I be a nbd of f)
such that Exff— defines a diffeomorphism of @LX1A on a nbd ofnn;<ﬂ4>}
and let q):u *->[Rmbe 8 C.N. of P. Then it U ) is a sufficiently
small nbd of F), each pair of points in ﬂ&1 is joined by a unique
geodesic lying in W , and each geodesic going outside 11 is longer.
We say it is obvious that this geodesic gives a minimum length for
curves in 1& joining the two points, by comparison with the
Euclidean problem (in the technical language of Calculus of Variations,
since the metric is positive definite, the problem is regular, and
we have constructed a semi~field of extremals, passing though a
point and covering a nbd). Hence it gives the global minimum,
which we defined as the distance ﬁ(i,?) . Thus Exp-4 is a
diffeomorphism on\A,X1A,: we take VJ as the union of such nbds. $$

We recall that a metric space is complete if each fundamental
sequence of points converges to a limit point, or equivalently, if
each bounded closed subset is compact. With this concept, we can
give the global forms of the above theorems.

Theorem 1.5 P4 is complete if and only if geodesics may be indefinitely
produced, i.e. if exp and Exp are definable on—n—<Ng. Any two
points in a complete manifold may be joined by geodesics: the
length of at least one such is the distance between them.

Proof Suppose first M complete, and f>(f> a geodesic which
exits only for {:( k . Then its points form a fundamental
sequence: since M is complete, these have a limit point F?

But by Theorem 1.2, F)has a compact nbd Pﬂ such that any geodesic

within ﬁi may be produced a distance £ . This give a contradiction.
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Now suppose exp globally definable, bnt that there are pairs of
points (P) Q} not joined by a geodesic of lengthf(P)Q). Let ¥ be
the greatest lower bound of the distances of such points Q from
(by Theorem 1.4, ™D>0), let K,:{UF_ M{o " IV\ < "r’}, and let
K= €x 0 (kl) . Then k‘, is compact, hence so is K , by definition
of T , K contains all points at distance less than "™ from P .
Choose 2€ < ™ ag the number £ in Corollary 1.4.1, and choose Q
such that <P Q)t?“('\“—*-{, but P and Q, are not joined by a geodesic
of length S(P Q) Now let Pl be a smooth path from P to Q of
length at most ¥~ +~/{ , and let R be the point on it at distance
f-— € from € . The R'x lie in the compact set I< ; 1let B be a

cluster point. Then
:f(P R) i Sup S(P Ry 3 v-€, 5 <R GL) lim Swff( 1 )—7"~—’¥"’+€
so by the triangle inequality we have (Io R)t & J(R Q)=‘ ~ "y e .

By the definitions of ¥, E, H F can be joined to R by a geodesic
of length FF~§; R o Q by one of lengthr;—rq_é . If these met
at an angle at Q s by cutting a corner, we could find a shorter path;
a contradiction. Hencevthey have the same direction at Q , 80 by the
uniqueness theorem form part of the same geodesic. Thus p is joined
to Q by a geodesic of 1engthj<P Q_B a contradiction.

Finally, suppose e€XxD M'o *M . Then a bounded set lies within
a finite distance from p , B0 i8 contained In the image of a closed
and bounded, hence compact, subset of M’o . But the image of this set
is also compact, so the result follows. ﬂ

Theorem 1,6, Any connected manifold has a Riemannian metric in which it
is complete
Proof. We make a slight refinement of the proof of Theorem 3,3 in

Part 0, asserting the existence of Riemannian structures. Let
QX:MD( S 'M (O)?)}be the C.N.& constructed in Theorem 2.1, Part O,
and define @q{ & '#i by

5. (F) = Bp (24~ 1<) i Petly, QP=x

= 0 if P¢ Ma(

Then write d/ﬁz__2§°< (de ) (};(. As in the earlier proof, we
see that this ie a metric. In @ -1 ('UL(O H’)} , it dominates the
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Euclidean metric, so the set of points at distance éé’ from ?;1(a<0»13>
is a cloeed subset of CPD(—1 (1/-(-. (QZ}) s, 80 is compact. As 1n Theorem
1,5, it followe that all geodesics from a point of (PDZ 7(“.(0,15}, and
hence from any point of M ; may be produced a distance at least j.

Thus they can all be produced indefinitely. $
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Chapter 2 Submanifolds and Tubular Nbds
™,
D47 A subset M""of a smooth manifold N" is a submanifold (of

dimension . , codimension M —-M) if for each point P{ M , there is
a Cc.N. @1 U-R "t P in N euen tmat Wn M= @ (R™).

Note that by Part 0, Corollary L.1.4. this is equivalent to the
requirement that in a nbd of each point of M , |\/\ is defined by the
vanishing of '“‘m>functions with linearly independent differentlals.
¥Yor in the case above, IV\ is defined by the vanishing of the last
(’l& -N>coordinate functions; while by that corollary, any set of
functions with linearly independent differentials can be taken as
functions of a C.N. If /\4 is a closed subset of N , We call it a

cloged submanifold.

m
With this definition, M has a natural structure of smooth

fVY\*mahifold, given by the restrictions to M of the functions of ¥N;
the existence of C.N.s for M follows immediately from the definition.

We call this the induced structurel on M .

D 18 A map | ° V- /\/ between two smooth manifolds will be called

an imbedding if | <V>is a submanitolda ™M of N , and Jﬁ induces a
diffeomorphiesm of \/ on M , where M has the induced structure.

vv— W .

Lemma 2.1 If a smooth map : ——)N is an imbedding then for each
QEV , irf :F(Q>=P,CU;'-VQ.—>NFhas rank N,

Proof We know \J}- is an imbedding, Choose a C,N, at lo ag above,

and let DC,'-.)?C% be the co-ordinate functions on N . By definition
of the induced str'uc‘t:ur'e,,7-3‘('0;-,"-»xV °§ define a C.N. of Q in V

say f\# 17 I{ °:§- . But therll C!JC(%G:} D=§§x_iand so d(F has rank V*
at Q . \ ‘

%
D.19 A mep f:VV‘%Nnbetween two smooth manifolds is called an
immersion if \% is smooth, and for all Q £ V , writing }(Q}:Pi
then Q'\{JVQ—% l\,'g has rank V.
Thus Lemma 2.1 states that an imbedding is always an immersilon.
The converse is of course false (the 'figure of 8' curve in the plane
shows that), but we can prove a partial converse, which is the first

step in constructing imbeddings - one of our main objects.
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Lemma 2,2 An immersion is an inmbedding if and only if it is a homeomorphiem

into.

\'a n
Proof Let ;V — N be an immersion which is a homeomorphism onto

its image M .  Let Q;,\/ Qy P, and choose a C.N. CP Ul Rnofp
in N such that Q,f_ (JJC) f}}*(&& 3 form a basis for \/Q - this is

posesible since is an immersion. Wr1te’}jq‘1' 5_ ¢ then since
\

dlb‘" . yv_ form a basis for VQ by Part O, Corollary L.1.4 ’\j' \(;,Ve

may be taken as co-ordinates in a nbd of Q

Since the other }i are

smooth functions, by the definition of smooth manifold we can write

7&:?i(yr>“‘»“jv) VL €N
in a nbd of Q in \/ . Since f_ is a homeomorphism into, we have
x; =j_ i(li RREE x\, ) in a nbd of o in M . Thus ™ is locally
defined by the vanishing of the #L-V smooth functions

26, T j 1 (}% vt 1r§

which clearly have linearly independent differentials, 8o ,\'\ is a
submanifold, and it is now clear that f* defines a diffeomorphism of

V. on M., | $

Corollary 2.2.1 An immersion of a compact manifold is an imbedding if and
only if it is (1’—'7).

For a (’\-T> continuous map of a compact space is a homeomorphism.
+
Corollary.2.2.2 An immersion 1s an imbedding if and only if 1t is (1—1>
and a proper map onto its imgge.
For an imbedding is clearly (1—1) and proper onto its image, and
if :g- 15(1 'D and proper onto its image, then by Part O, Lemma 2.8
it is a homeomorphism into, and by the Lemma, it is then an imbedding.f&
Corollary 2.2.3 An immergion is an imbedding ac a closed submanifold if
and only if it is (1-1>and proper.
We now return to our consideration of a submanifold Mmof a
manitold N™. 1r PEM the inclusion 1 ' M —> N induces
(‘J‘ Mf' - Nlo of rank ‘M, hence the adjoint map Q’.;&: Nf¥~'> M

also has rank ™ , and 1t° kernel has rank (’V\ M)

X
’o

D 20 The kernel of J,L-, ——>M is called the normal space to M

in N at P . The union of the normal spaces is the normal bundle

I\ (N/M> of M in N
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We must check that tli,i normal bundle is indeed a vector bundle
over M | Let CP.'M% R ve acv. of P in N witnWUa quﬂ(mm);
then inMnM we may takeo}xm+1)"‘d9c n 88 8 bagie for the normal
space. These give the local product maps CF‘-‘-( required of a fibre
bundle; as with the tangent bundle, the mapsg_ul8 come from Jacobians

on nhange of co-ordinates.

Vle usually suppose a8 Riemannian structure chosen on N , which

* N .
P and disappears,

also induces one on PA The distinction between N
and in this case we can regard R%l(hyﬁq> as a sub-bundle of the res-
trictionllﬂv>lh1 ofT-(N> to M . We refer the reader again to
Steenrod for definitions concerning bundles: the Whitney sum of two
vector hundles over P4 may be roughly described by taking the direct
sum of the fibres over each point.

Prop. 2.3 _n_(N>lM is the Whitney sum of /NJ (N/M> andT(M>.

Proof Since all the above bundles are defined, and the latter two are
sub~bundles of the first, it is sufficlent to verify that at each point
the fibre of the firet ie the direct sum of the latter two. Since we
have a positive definite inner product, it will be sufficient to verify
that the fibre \/P of ’M (N/MB over P is the orthogonal complement
of the fibre M of T(MB in the fibre Nr; ofT(N) , or, that it is the

annihilator of bAF in P45¥. But since dt ie adjoint to dl.’ the
kernel of di; ig certainly the annihilator of the image of di . ﬁ£
e now apply the resulte of Chapter 1,

Prop. 2.4 The Jacobian of exp: INI (WMJ?N onT (M> is nonzero.

Proof Let P{M , and letCP ‘U >IR be a C.N., of P in N such
that WA M = (P (IR ). Then 13, , - I'n, are co-ordinates in ﬂQ
We can take as local co-ordinates in Fﬂ(ﬁyko xﬁ)"“)jtww (co~ordinates
in PJ\) and\/’ ,+1 ¥ (co-ordinates in the fibre) wheremﬂ = s

w+ 1 " T

Now refer back to Prop 1.2, where we showed that if exf) (’JL '\)\ Z

then 5%, BVJ 61:1 so that with respect to our co-ordinates, the

Jacobian matrix 1is the unit matrix, so its determinant is nonzero.
Corollary 2..4.1 O(f’ IN'(N/MB “‘%) N is a local diffeomorphism at—ﬂ- )
Proof This follows from the Inverse Function Theorem (Part O, L.1)

Corollary 2.4.2 TIf Mis compact, Wo(M)has o nbd 1nlM(N/M) on which exp
is a diffeomorphism to a mbd of M in N ,

Proof Use the above corollary and Part O, Corollary 2.7.1. $

In fact, we can both ctrengthen the lact corollary, and remove
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the assumption of compactnese, so will now do so.

Theorem 2,5 M nas a nba M in N such that each point P of W 1is

joined to M by a unique geodesic of length 3('0/ M> ; this meets M
-1
orthogonally. Thue c.xlo defines a diffecomorphism of M on a nbd

ot Ty (M) 1n INI(N/M).

Proof Let Q{,M , and let Mlcluebe nbds of Q as in the proof of

D2

Theorem 41.4: any two points in ’M1 are joined by a unique geodesic of
minimal length, and this lies in /\AO . We may clearly also suppose

that any path Jjoining a point of ’L(I to a point outside '\/( is longer

o
than the diameter of A, (simply take W, emaller). Then for & U,
the closest point to lo in M lies in uoﬂM(such a point exists by
local compactness of [M , if we assume, say, Uo compact -~ the mini-

mising point cannot lie outside 'MD). 1t W _ stends in the relation

2.

tou, that Ml does to ’MO s then for iof, "L‘LL, the closest point to
P “in M lies in I\A'n M, g0 ig joined to i by a unique shortest
geodesic, lying in M 0" This, then, is the sghortest curve joining P
to a point of" ™M ; we say it meets M orthogonally. For if not, by
a small modification near where it meets [ .y we could make it shorter
(take a path orthogonal to M , and smooth off the corner). If we take
/M. ag the union of the sete MQ_ , the first part of the theorem is
proved. Taking EX’O—— to be defined by the shortest geodesic, thie, with
Corollary 2.h.1, proves the second part. ﬁ

With this preparation, we are ready for the main results of this
chapter, which give a preliminary description of the way in which a
submanifold lies in a manifold by decscribing the structure of a nbd
of the submanifold. With the extra precision which will be given in
Chapter L, this constitutes one of our main tools for getting at the
structure of manifolds,

[\/% is s8till a manifold, with a2 Riemannian structure, M ™ is
a submanifold, with normal bundle N’(N/M> - this has group O,h_,m-
Let us write B for the acsociated diec bundle: precisely, &
concists of vectors of 'Ml (N/M> of at most unit length.

A tubular nbd of M in N ie en imbedding \f \ B —> N

(ag submanifold with boundary, see D 24 for exact definition):

extending the diffeomorphism ofTIZ(M} on M induced by projection,
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As with C.N.,es, the actual nbd’\{l <B> ie the mecre geometrical
concept, but the mapring '#/ is more convenient to work with. The
above definition appears to involve the Riemannian structure; however,
if we extend it by letting 6 be any (’Yt’h\>-disc bundle over M , We

ghall sec ir. Chapter ! that this gives nc extra generality; in fact we

prove there a theorem of uniqueness for tubular nbds, Here, we only
obtain existence.

Theorem 2,6 There exiets a tubular nbd of M in N .
Proof Let \/\/ be a nbd ofT’; (M§ in IN,(N/M> mapped diffeomorphically

by exp: ito existence is guaranteed by Theorem 2.l. Using Part Q,

Lemma 2.C, let :(;- be & positive continuope function on M such that
vectors in <N/Nhf’ of length less thanat(> , are contained in W .
By Part 0, Corollary 2.1.1, we can find a positive smooth function
9, on M such that O 3’<P)<JC(P> for a11 PEM . we
now define a diffeomorphicm ’\P . Tor each L€ M Vf('\}/l“\»p)
HBA) = exp (P (V).

Multiplication by ( in the flbre is poseible since (F) O , and

e nave [] <] 5 |9(P) | €q (PY<F(P)=> (P g@v)ew$
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Chapter 3 Boundaries

We now extend the notion of manifolde by considering manifolds
with boundary. In the sequel these will play as much part as mani-
folde; we have merely deferred the definition till thies point to help
concentrate ideas.

n
N is a emooth manifold with boundary (or bounded manifold) if

it satiefies all the defining conditione of a smooth manifold, with the
"n

exception that we allow C.N.,s to map onto open sets in 'R+ (as well

as R™).

The images of points onxlro are called boundary points of I\] H

it is clear that this property ie preserved on change of C.N, Their
union %s the boundary of N , Which we always denote by BN . We
write N = N - QN , the 'interior' of N . By defining this as
an open submanifold, it may be considered as a manifold.

There are various corresponding extensions of the notion of
submanifold, '

A subeet 1\4 of a manifold with boundary N is a submanifold
if it satisfies the same conditione as when N is not bounded, exbept
that the C.N. (P may map '\/t te {R%or er , and if F"ABN:MﬁBN-

Thue in a mbd of a point of M , the pair(N, MB is locally
like (R“, IR'“\)OI‘<{R’V;: , fR ’\:\) Geometrically, we can say that M
meetxszBN transversely (for precise definition of this, eee Part I11),

M has an induced etructure of manifold with boundary, Jjust as
above, and we observe that BM=M"\BN . In a particular case,
oM ig empty, and IV\ diejoint fromBN; but then M is a sub-
manifold of )sf .

If N'h' is a manifold (without boundary), we define Mmto be
a submanifold with boundary of N'“; 1me satisfies the defining

conditions for a submanifolid, weakened to allow '\,LAM = @ 1(&:\_\)
as an alternative poesibility to UK n M= @JORM)

In this case, in a nbd of a point of ™ , the pair (Nl M>
is locally like (ﬁem, Rw)orO’Rﬂ) IR/::) Again, M nas the induced

structure of manifold with boundary.
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To the new kinds of submanifold ocorrespond new kinds of imbedding.
No changes need to be made in D 18; to distinguish cases we speak of
imbedding \/ as a submanifold, or, as a submanifold with boundary.

We have still not defined sufficiently many types of manifold,
and must next diecuss corners, For example, the unit interval I is
a manifold with boundary, but the product:fx:r ies a square, so has
corners, and is a new kind of object,

m
D 25 N is a smooth manifold with corner 1f it satisfies the

defining conditions of a emooth manifold, except that C,N.s may map
- R™R™ ana R™
into open gets 1n any of , M, and Ft

Pointe corresponding to X*:O (in the second case) or to
XX, =0 (in the third) form the boundary SN ; topologically (as
opposed to differentiably), N iz a manifold with boundary, andFB N
the boundary. Points correeponding to X, =XZ==.- O (in the third
case) form the corner, /\N , which is a emooth manifold of dimension
-2 . ‘

Now if M”Mzare manifolds with boundary, products of C.N.®
of ]\/‘,) M?_ give C.N.s in M,X /\‘?9 which (up to a permutation of co-
ordinates) are appropriate for a manifold N with corner. We observe
that (M XM ) =DM X M, U M3 M ana A (M x M)=IM XN .

2 | 2 | 2. ! 2

In this, ag most other important cases; AN separates BN into two
parts; of course this is always true locally.

We only introduce one more kind of submanifold, as we are not
really interested in corners, except in so far as they occur naturally.

ka7
D 26 M is a submanifold with boundary of the manifold with

tn —
boundary N if MﬁDN =Mz\éNand at each point of M a C.N., may
! R™ R™)
be found mapping the pair on an open set in one of ( , ,
A m " e n m,
OR > {R.F\); (’-R+) [R‘)-))(R ) rE\++
Such an ™ has an induced structure of manifold with corner,
[a]
and NM separates OM into two parts, one 0MaN and the closure of
the other dMnAdN=Mn ON ., We now give generalisations of the
notion of tubular nbd.
Let M be a manifold with boundary, | “B= Mthe projection

of a disc bundle, Z the boundary sphere-bundle of B , and
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C=0 (B M> . It is then clear that B has the structure of a
smooth manifold with corner, and AR =2 AC scparates O into two
parts, with closures 2 and C . (1f ™M has no boundary, C ie
empty, and (5 a manifold with boundary: this was already assumed
in'D 21).

Now suppose PJqLa manifold with boundary,f4’hma gubmanifold,
and B an(n‘m)-disc bundle over ™ ,

D 27 A tubular mbd of M in N 1is an imbedding “{J ‘B> N as
submanifold with boundary, extending the diffeomorphism of the zero
cross-section on Y1 induced by projection.

It is easy to see that \P(C-> = DNnN\{/(@) in this case.
Of course,; such imbeddings may not exist for every disc-bundle ES ’
or indeed for any at all: we will show, however, that for some ES
they do.

D 28 A tubular nbd of DN in N is an imbedding *\P -'EN)( TN
as submanifold with boundary, extending the projection of BIV x O
on O N.

We define this separately, since we do not call 3/\/ a
submanifold of rJ . .This completes our list of definitions; we
now survey how the results of the two preceding chaptere extend to
boundaries. Let PJ be a smooth manifold with boundary. Then FJ
has a Riemannian metric - the proof is the same as before. The
discussion of geodesics at non-boundary pointe is also the same as
before. At boundary pointe F) , We must distinguish between
inward- and outward-pointing tangent vectors; in terme of a C,N., of

? , these are vectors Z)\i B/QXL with )\’ >0 resp. -/\' £ 0.
If.)j==C) , we call the vector tangent to the boundary; indeed,

if 1 :ESA‘—% N is the inclusion map, such vectore form the image
of Cit , 80 do come from tangent vectors of‘?}f# . It is now clear,
from the differential equations, that local geodesics can be con-
structed for all inward-pointing tangent vectors and for no outward-
pointing ones. It ie not determinate in general what happenes to
those téngent to the boundary; a5 examples, the reader may consider

t o2
I) and the closure cﬁ‘ﬁi-‘b , each with the usual metric, The
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results of Chapter 1, up to and including Prop 1.3 now follow, in
suitably modified forms (the remainder are mostly false in general).

Prop.3.1 There exiests a tubular nbd of AN in N .

Proof We can identify'c\yl\/x I with the set of inward-pointing normal
vectors to BN , of length at most 1 (including those of zero length),
for as there 1s only one normal direction at a point of ‘QN , & normal
vector there is determined by its length. The proof of Theorems 2.4
and 2.5 now carries over to this case. éa;

Thls Proposition enables us in most cases, when discusesing
manifolds with boundary, to avoid special difficulties arising at the
boundary. Our first illustration of this is with geodesics.

D 29 A Riemannian metric on /N 1is adapted to the boundary if JN

ie totally geodesic, i.e., if construction in N of geodesics for
vectors tangent toBN is locally possible, and if such geodes8ics are
completely contained in D/\/ .

Lemma 3.2 Let 'M ,mbe closed, with a Riemannian metric, Then the product
metric for N =M X [R_:_ is adapted to the boundary.

Proof Let X4,-- , < ,. be local co-ordinates in M , and I
co~ordinate in /R l . Then for the metric ;t,_J we have 3‘)% 50]
Hence one of the defining equations for geodesics is simply %t’- C.
Thus if initially XX = d'x'yc-_-_o , we have X, = O all along the
geodesic, which thus stays in Bl\] - as indeed one would expect. $

Prop 3.3 Every manifold with boundary has a Riemannian metfic adapted
to the boundary.

Proof By Prop 3.1, if N is the manifold,gf\/ has a tubular nbd
'\P'-BNXI.%N . Lety beametriconN ,S'the
product of some metric on ON with the standard metric of I . We

0
define a metric j’

by ! outside the image of

.\}/
= (o) Befat-D ey (BD)

The latter agrees with f in a nbd of + =1 , so is smooth everywhere;
it is a Riemannian structure, as a positive linear combination of
positive definite forms is another, and it agrees with (f’ near

+ =0, so by Lemma 3.2, it is adapted to O N . $



I.3.5

Using a metric adapted to the boundary, we could go on to find
analogues of all the results in Chapter 1 except Theorem 1.5, We are
more interested in generalising the results of Chapter 2, First note
that a submanifold M of N meets‘aN orthogonally if the normal
vectors to ™M andBN at each point of)Mare perpendicular.

Lemma 3.4 Let N be a manifold with boundary, M a submanifold. Then

N has a Riemannian metric in which M meets QN orthogonally.

Proof We construct a metric just as in Part O, Theorem 3.3; the only
point to watch is that ™M nmeete BN orthogonally in each of the
partial metrics to be fitted together. But since ™M is a submanifold,
at a point of M , there is a co-~ordinate map of an open set of(N)M)
to (IP\:, ‘R T), and the Euclidean metric will do. Now when we fit
these together, ™ continues to meet BN orthogonally. ﬁ;

Corollary 3.4.1 /\, has a metric adapted to the boundary in which ™
meets ) N orthogonally.

Proof We take the metric of Lemma 3.4, and construct a corresponding
tubular nbd of QN in N . Since for PE, DM, a vector at P
normal toDN is tangent to M , 1t 18 a 'generator' of such a tube.
Hence using this tubulér nbd in Prop. 3.3, M continues orthogonal
to }N in the metric there constructed. ﬂ;

Theorem 3,5 1If N is a manifold with boundary, M a submanifold, then
there existe a tubular nbd of M\ in N ,

Proof The arguments of Prop 2.4 and Theorems 2,5 and 2.6 can now
be carried through in this case: +to avoid overloading this chapter,
we shall leave the details to the reader, Sﬁ;

We shall need one further theorem involving tubular nbde and
boundaries. We retain the hypotheses of Theorem 3,5,

Theorem 3,6 There is a tubular nbd 'Y/l INxT - N of Q N in N
such that }|dMx T 1s a tubular nbd of OM in M ,

Proof Let ¢ B —>N be a tubular nbd of ™M 1in N (with notations
ag above). Give M a Riemannian structure, and B the product
structure, As E ie locally a product, we can do this locally,
and as the group of the bundle B is the orthogonal group, which
preservege the standard Riemannian structure in the fibre, these local

structures agree on their intersections, and define a global structure,
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Now ae in Prop 3.3, we modify the Riemannian structure on N
so as to agree with the above structure on & in a mbd of ™M (using
the bump function to smooth off. Then construct a tubular nbd"%’ for
B hl as in Prop. 3.1. We assert NP hae the required property;
indeed, since in a nbd of M  the metric is the product constructed
above, geodesics tangent to M are contained in ™ , 88 in
Lemma 3,2. ﬁ;

Our tubular nbds give a global form to one's vague idea that a
submanifold is imbedded nicely in a manifold, in that they describe
the topology of a whole nbd of the submanifold. We wish to obtain
also uniqueness theorems for tubular nbds; for this we need some

rather different methods.
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Chapter 4 Diffeotopy Extension Thedrem

MM (1"1,
Let s N be smooth manifolds, poseibly with boundary.

A wesk diffeotopy of M in N 1is an imbedding (possibly as

submanifold with boundary)

L Mx R =N xR
which is level-presgerving, i.e., we can write

A,V = Gy (70, 0) me M, te K.
It followe that each A4 is also an imbedding. . is called
normaliged if ﬁ‘?: = ‘ﬁ_,o when %éo , and »2\_% = f,1 when T ,
and is then also called a weak diffeotopy between f\,o and ﬁ1 .

\V

A diffeotopy ofN ie a diffeomorphism 7%, of l\}x P which is

level-preserving, thus in particular it 1s a weak diffeotopy of N in
N . It is called normalised if ’kt=1 when %$o and &{f '&1
when %; 1 .

The diffeotopy k of N‘ covere the weak diffeotopy ‘f\, of M

in N ¢

ygt@%(«rm:{t(m ror MM te R
A weak diffeotopy covered by a diffeotopy of N is called a gptrong
diffeotopy.

It is desirable to prove that weak diffeotopies are strong,
for the following reason. It frequently happene that we are able to
construct a weak diffeotopy - for example, if 4 is small compared
to M (see next part), between two imbeddings. If the diffeotopy
is strong, there is a diffeomorphism (&,1 ) of N carrying one
imbedding into the other, so that up to diffeomorphism the imbeddings
are the same. The diffeotopy exteneion theorem asserts that under
certain conditions, thie is possible; it may thus be looked on as
a uniqueness theorem, As to these conditions, we refer the reader
to Milnor's notee on Differentiable Structures for spectacular
counterexamples which occur when they are removed.

A weak diffeotopy often occurs in the following form: we are
given a level preserving imbedding '}p\: MxI—> N x T . We
cannot immediately extend thie to a normalised weak diffeotopy in the
above sense, but if we define H i Mx R~ Nx [Rby

H ("M,Q;)=(Hgt (’m.))’t) anere  Hi =/K'.5P('t) .
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H is clearly level-preserving, normslised, and an imbedding.

Lemma 1.1 Weak diffeotopy is an equivalence relation.

Proof The definition (’M /w ( ’t> %) gives a weak diffeotopy
between ﬁ,o and itself. If ’ﬁ, gives one between ‘Ko and ﬂ , then
ﬁul , Where ’ﬁ_, ('m' 7{ (m 4- %) gives a weak diffeotopy between
’f\‘l and K’o . Finally, let ’ﬁ, ’ fL be normalised weak diffeotopies
between Ao and fn, and between ’K, and {9_ . Then set

f»{:"(ﬁm) =45, (m) e €7,

3} 2( ™) ir 123

this is a smooth imbedding, since KI and ﬁl are so, and we have
ﬁ./;’:‘fﬂl for 3$’f < 6 , 80 that the two parts of the definition fit
smoothly. ¢

One of our main objectives will be to determine the set of
equivalence claeses; 1n some simple cases this is accomplished in
Part III.

D 3 Thé gupport of a diffeomorphism ‘K of a smooth manifold }\1

is the closure of the set of points P with ’E\. P>=*= p

The support of a weak diffeotopy 12, of M in N is the
closure of the set of points Pe M such that Kt <P> is not
independent of '{: .

Theorem 4.2 Let M, N be smooth manifolds, perhaps with boundary, and
1et b MxIR >N AR be a weak aiffeotopy of M in N .  Suppose
that the support K or ’A is compact, and contained in f‘.} + Then
there 18 a dlffeotopy ‘}%_ of N , whose support is compact and
contained in N , which covers "R, in particular, ‘ﬁu is strong.

We shall refer to this as tl°1e Diffeotopy Extension Theorem.

Proof S8ince K is contained in N , We can ignore the boundary
of N , and suppose simply that N is a smooth manifold, for if
the result is proved in this case, the diffeotopy ‘F{ of N which
we obtain, having compact support, equals the identity on a nbd of
BNX R , and can therefore be extended to the boundary as the
identity.

We shall prove the result by applying Part O, Theorem 4.5
on 1-parameter groups of diffeomorphisms, In fact, let ’{é be a
diffeotopy of NXR , With compact support. Then % defines a
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vector field on N X R ’ for if X is the ‘

vector field which projects to O on N and to / on ﬂ?\

define an associated vector fleld X% to as dh X ; since ﬁe,

is a diffeomorphism, this is a one-valued vector field on NX ’R

Since 'ﬁ{ is level-preserving, its projection on the second factor

is still Bét . Also, as & has compact support, Xh=X except

at some points of a compact set. °
Conversely, suppose given a vector fleld X( X Xwith these

properties, that its projection on /R is /Qt , and that it agrees

with Xo outside a compact set; we assert that ‘ﬁ’ can be recovered,

In fact, referring to Part O, Theorem 4.5, note that Xo is complete

(as remarked after that theorem), hence also x , by Corollary L.5.2.

Thue there is a 1-parameter group@ ) of diffeomorphisms of N % /R

We set CPt("‘L 0» (ﬁ. (’n '0 g (’Y\. 1:) that the second com-

ponent is t follows f.'rom our assumption on )( . We now say

that ‘tzta }%/ 3 this in fact follows from the local uniqueness in

Part O, Theorem L.4t, for fﬁ."g,’ each satisfy

x5 (&(M't)> = )(,i (‘f)’\’. (M}t\)

where the 2C; are local co-ordinates in N , and the Xi_ the com-
ponents of X in these co-ordinates,

We conclude that to construct the diffeotopy, it is sufficlent
to construct the vector field X . By the proof that K =K', we
see that the necessary and sufficient condition that ﬂ covers A
is that on K.(Mxﬁb, X=dfx<%t—) . Thus the problem ls reduced
to the conetruction of a vector field X on Nx ﬂi satisfying

i) X:Xo outside a compact set.

ii) The projection of X on R ie everywhere -'S/;t .

111) on 'K,(Nx R}, X= dﬁ(%/t).

It is possible to carry out this construction more or less
explicitly, using tubular nbde, but to include the case of boundaries,
we use rather more general method, already used above 1n proving
existence of Riemannian structures. First, for convenience, let

us give N a Riemannian metric and NX’R the product metric,
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Now condition ii) determines the component of X in the direction
of R (in a fashion compatible with i), iii); we must find the
component in the direction of N . We assert that if we can do
this in a nbd of each point of k(Mx [R), x can be constructed.
For such nbds, together with the complement of’K(M‘x IR>, form an
open covering of NX IR . By Theorem 2,1 of Part O, we can find
C.N.s CPC,< . MO(AM (O,%) refining this covering, and by the proof
of its Corollary 2.1.1, a corresponding partition of unity [?x} .
If, then, a function X°< can be constructed in each set u@( to
satisfy conditions i) - iii); we can define gimply X: Z(Xe('j&(

which will satisfy all the conditions.
Now f\.(M X R) 1s a submanifold or N X /R , hence in a
nbd of any point of it we can find a C.N. U= R witn
hﬁl\ﬂ'ﬁh=(f*(ﬁw+9; say for simplicity that the image of " is
Mo, 1) . Thend <P(<Wn<%t3> =ZQ1}§M inM(OJ) in qu.“H ;
we define x by taking the same formula in [R“+1 (i.e. by taking
the Q,-x independent of the last - co-ordinates)., 1In the case
of boundaries, the &_;L are only defined on the set in ﬂ{q_:_‘-1 .
But by Whitney's Extension Theorem (4.3 of Part 0), they can be
extended to smooth functions on 1\(0, 1) in fRM-H, and then extended
to RHH as above, This completes the proof of the result. $
Corollary L.2.1 If N ie a smooth manifold, M a compact submanifold
(perhaps with boundary), then any weak diffeotopy of the inclusion
1 Mc N g strong.
Corollary L.2.2 If N is a smooth manifold with boundary, any wea;&
diffeotopy of a compact submanifold (perhaps with boundary) of {\’
is covered by a diffeotopy of N . o
Proof By the Theorem, it is covered by a giffeotopy of N with
compact support. Thus QN has a nbd in N left fixed by the
diffeotopy, which can thus be extended to N , defining it to be
fixed on O N . $
Prop 4.3 Any diffeotopy ofsN is covered by a diffeotopy of N .
Proof We shall suppose the diffeotopy 2\,{ of ;N normalised so
thatﬁtzli for%SJ_g and Lt=f\-1 for%?%". Let
VN xT~> N be a tubular nbd of 9N in N (such exist by
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Prop 3.1). Then we define a covering diffectopy % of N by

-th_:Al outside !M’\P, R ﬂ/(losv ’\’4(%’%5(6 SB

where y\’. (P} =P for S Y = 2\_ (F) for t25

=S
Thus for s @ F(_ agreeq ‘with ﬁ, , and for S % 2'_, /Qtsg)}: P, 80
that 'g?, is everywhere smooth, and doeg cover ‘ps. ﬂ

Theorem 4,5 Let N be a manifold with boundary, M a submanifold (perhapse

with boundary). Any weak diffeotopy of ™M in N with compact support
is covered by a diffeotopy of N with compact support.

Proof First suppose /Y1 & submanifold. TLet fx:m xIR->Nx R ve

Prop

the weak diffeotopy. By Theorem 3.6, let '\'J ’.DNX/RXI~>NX IR be
a tubular nbd of the boundary of NX[K whose restriction to lm;\.
gives a tubular nbd of the boundary of that. Now by Theorem 4.2, the
weak diffeotopy of DM can be covered by one of D N . By Prop L.3,
this is covered by a diffeotopy of N 3 moreover, by the construction
of this diffeotopy, it covers the diffeotopy of M not only at BM ’
but in a nbd, and has compact support.

This still fails to cover the difgeotopy ofM , but only on
a set of compact support, contained in N , and the methods of
Theorem 4.2 now apply to complete the proof,

It M is a submanifold with boundary, there is a similar
proof, using instead Corollary 6.2.1. $

We shall need one or two further kinds of diffeotopy extension,
when we come to consider corners, but feel that by now proofs may be
left to the reader. We mention one immediate application of our
results,

m ™

L.6 Let N be a manifold (perhaps with boundary), M e compact
submanifold with boundary. There there is a submanifold ?Am of Nq\

containing M

Proof First suppose that N has no boundary. Let CP.‘ BMXI — M

be a tubular nbd ofé ™M in ™M . We define a wesk diffeotopy of ™M

by &t(f’%—-f’ Pélw\CP
£ a(Paw) = @ (F 4EwW)

where 5: is chosen with 5»(%, 1/\)='U. for U 2 1=€& \F(O,U\:u,
:F({:)O) >0 , ror 0<%, and Bféu>o everywhere; so that
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the diffeotopy 'pushes' the boundary a little way into !*! . e.z. we

F(tow) = u+ Bp (- w)

/
provided t fa , where in this range BP (1—_) < 1.

can take

Now f‘t is weak, so strong ( M being compact), and covered by H
] __1 o
say, thl(M)C- M, 80 we can take W = Hh, (M)
If N is bounded, we argue similarly, using that part of the

boundary of M not contained in M. ﬂ;

This result has the effect that to describe a nbd of M in N ’

_t 9

we can use tubular nbds of M ; tubes round M do not glve nbds,
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D 33 An imbedding (:[J— ‘E—> N a8 open submanifold, extending the
projection of Eo on ™M , is a wesk tubtular mbd of ™M 1in N .

Lemma £.1 Any tubular nbd 6? 1B = N can be extended to a weak tubular
nbd Li)_t ES N

Remember that we are assuming that M is compact.

Proof We define a weak diZfeotopy of q) as follows. Recall that
over each nbd in ™ . B isa product of M with a vector space:?
in the sequel, we permit ourselves *o form sums and products by scalars
in these vector spaces, using the standard notation. Then our weak
diffeotopy is ‘Pt (’W\,V\ = (P( A, ’::V) for Ji <t &1 (where
m £ M,'\IE, DM—'M, the fibre). Since M , and so also [§ , is
compact, the weak diffeotopy ie strong: say it is covered by the
diffeotopy ﬁt of N . But "" can be extended to a weak tubular nbd,

e.2. by (P : lvl)

‘f’-(m"v\ = ¢ (”"\; lv) VE
where \( is smooth, \é(/t) :’li + for 04t &4 Y '(t) >0 , and
Y (‘t\ 4 1 . Such a ‘2( may easily be constructed by using bump

functions, e.g.

y(©) =453, “f +(" ) Bp (-0 e
We can now define (F /QJ. @— $

Lemma 5.2 Let q E=>N (F E'->N  be weak tubular nmbds of M in N

/ —_— ’
such that )MCP < ’ . Then for some bundle map A "'E—E |,
there is a weak diffeotopy of q) on(,ff X which is fixed on 8
Proof Let | = TP- o ‘P E = E , then | is an imbedding. Consider

the mapplngs J/t- Jwt@):t (}, (JCC-) for 0 t{1, e & E ; where the
multiplications byt'1 t are again scalar multiplications in the
fibre, Clearly(h d, ; we shall show that the definition of (}‘t can

be extended to L= ¢ , and that J’o can be taken as X ({) J’t will

then give the required weak diffeotopy of CP V' on(P X it is
cléarly‘fixed on S

Take local co-ordinates X -<’)C BN \ 1n M | and let Y)Z
‘be Euclidean co-ordinates in the fibres of £ E’ Then setting

J,<X Y\ —-("( (x Y> ﬂ(‘ \/)> we have
Jey) = (x (), ¥ (. E.
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Chapter § Tubular Neighbourhood Theorem

We shall now use our results on diffeotopy extension to complets
the discussion in Chapters 2 and 3 of tubular nbds by showing that
these are, essentially, unigue. This enables us to pass from know-

rn
ledge of the structure of a compact submanifold fvl of a manifold N
to knowledge of a n.d of m
the only extra piece of information needed is the structure of the
normal bundle’N{( ,\}). Thus our considerations help with the general
problem of building up global results from merely local ones.

We recall the definition. Ifr B is an (ﬂ—m)—disc bundle

over M , with group O(”L“M), and central cross-section 80

s then
a tubular nbd of M in N 1is an imbedding Q- g - N , as submanifold
with boundary, extending the projection of B(_, on M .

D 32 Two tubular nbds (P : B—> N and CP’-'@' — N are equivalent
if there is a bundle map '7(1 @—) g’ over the identity map of M
and a strong diffeotopy of CP on CPIOX which is fixed on 60

Our objeﬂct is to show that any two tubular nbds are equivalent,

Since we shall uee the results of Chapter 4, we shall have to assume
that N\ is compact. Cne would expect that this assumption was

unnecessary; however, it cannot be simply omitted,

Example of tub nbd of {R’ in fP\_?;_ ,not equivalent to standard:

—

! is the set ]'\JJ<3
\\ e (y-2)>3

and the projection of R is defined by straight lines through

(O,'S) . Clearly this gives a tubular nbd, equally clearly non-

standard.,

For applicatione in later parts, we shall usually aesume all manifolds

compact anyway.

et P28 >N be a tubular mba for M 1 N . we
— . (K/r\,—-’m
consider the bundle L. associated to 6 but with fibre , and
correspondingly extend the group to G(L(h '7"9. B is a submanifolad
with boundary of E . For the tubular nbds of Chapter 2, E is simply

N
the normal bundle Ni<{1).



I.5.3
But) carries the zero cross-section of E onto that of EI , BO
=< (x,0) =X, @(?&o}:o.
Now by Part O, Lemma 3.1, applied to [;5 (regarded ae a function of )’
with X as a parameter), there are smooth functions ﬂi’ with
p(xY)= Z g,u/s't(x,%
Then '1:—1ﬁ()()%7>=2"j - p- (X)‘t)’), B8O we can Write} in the form
L P t
OO = ( (X)) 5 ylﬁi(x»ty)
where the left hand side is a smooth function also at ‘1:‘—“- o . This
shows that we have a smooth mep J: Ex LT - E’ x I defined by
the )'t 5 to have a weak diffeotopy, we must check that the Jacobian
is everywhere nonzero. This is clear for’t:}:O, since } is a
diffeomorphic imbedding, and multiplication by T or t -1 gives a
diffeomorplgism. Now 9/5
J’o(x:y> =(x Z “;i(si(.x,OD = (X, Z'\J,—L —3—«}«1'\/:0
induces a linear map of each fibre, with matrix <B/8J/&‘ji> = (32% >
which is also the matrix of partial derivatives of o’ on b . Since
J, is an imbedding, tkis is nonzero. So J.O is a fibre map, with
each fibre mapped isomorthically, so is a homeomorphism; since the
Jacobians are nonzero, it is a diffeomorphism (Lemma 2.2), and we
can take'—i :J,o . We have also verified by the same token that T
is a weak diffeotopy. fL

Corollary 5.2.1 The result holde also without the assumption ‘7W¢C,% '@'/
ForIqu,\Im q')" is a nbd of /¥| , which thus has a tubular nbd,
hence also & weak one f[j g , with I'm EP_” C—I'm FP N I,M(P /. Then
there are bundle maps modulo which (b ie weakly diffeotopic both to

Eﬁ and to @l , Whence the result follows. jg

Lemma 5.3 Let (F:E_> N,(-p"f’ — N be weak tubular nbde of ™ in N
where the bundles E) E/ have group O(’)’\'W\). Then the conclusion of
Lemma 5,2 holds, with'i an O(’h —%«)-bundle map.

Proof It suffices to show that anywb P E — El which is a bundle
map when the group is extended to G(,m_m_(ﬁ{>is weakly diffeotopic to
an O(’h-?\«)-bundle map. As above, in co-ordinates, '\// is given by

“f/(x,7> =-<X,Z-) where
Zi 22.&&) <X‘> Y} . Now since the group is the orthogonal group,
we can Bpeék of the length of a vector in the fibre (cf Part 0,Chap.3).
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By the Gram-Schmidt orthogonalisation process, take the vectors b

with components 0\l s and write "L Z _Q‘U ej , where the € are

‘orthonormal, and each l—;l>o . It e has components e’LJ , coneider

neow the weak diffeotopy

(X V} (X Z 3 , where
(z ) = Z k(n\LJ +(1~‘c)5 ) C kvk

That this is a weak diffeotopy followe as no matrix 17\ +(1 17)5,4)

is singular (for the matrix is triangular, with nonzero dlagonal

terms); k}

base to another, so is sn O('n-?v\ bundle map. $
Corollary 5.3.1 Let {5 A=>N, CP R >N be tubular nbds of M in N

Then there is a bundle map h: B —> 6 , with (PoX weakly diffeo-

topic to @ .

is the given nag '\I/ , and {e_ﬁo takes one orthonormal

Proof By Lemma 5.1, CP,CP ’ extend to weak tubular nbds (F ,CPI; by
Lemma 5'3? there is a bundle mapi'- E “75’ with the corresponding
property. Theni maps 8 into g’ , and so we can take?& as
its restriction. : ' Ea;

Corollary 5.3.2 Under these conditions, 6 and @’ are equivalent bundles.
For 7«. is a bundle isomorphism. $

Theorem 5.4 (Tubular Nbd Theorem) vaa smooth manifold,M"; compact
submanifold, Then eny two tubular nbds of M in N are equivalent,

Proof This follows from Corollary 5.3.1 since, by Theorem 4,2, the
weak diffeotopy we have constructed is in fact strong. éE

As a first corollary, we obtain a useful little result.

Theorem 5.5 (Disc Theorem) Let N be a connected manifold (perhaps with

boundary),\f,’ ,-}zib’r\% Nh:'lmbeddings ae submanifold with boundary. Then
5—, and&L are strongly diffeotopic unless N is o;'ientable and

J,, 2 have opposite orientationmns, O

Proof Let P J— (O> (1' =1 7—> Since is connected, by D 7 there

(o]

ie a smooth path connecting P' and P’Z. in N , lee, a weak diffeotopy

of P, to pq_ , considered as submanifolds of zero dimension. By
the diffeotopy extension theorem, there is a strong diffeotopy. Hence
we may supposep'z P,L = P . Nowat }L are tubular nbds of p , 80

n
by Theorem 5.4, there is an orthogonal transformation of D
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such that }, andj\”ﬁx ars strongly diffeotopic.

Now if')(,f, SO(’h,), then clearly ;,P’L is weakly, so also strongly
diffeotopic to}.Lojx, , 80 tke result follows, If not, and Fd is
orientable, we have the case excluded by the theorem, If PJ is non-
orientable, there is an orisntation reversing smooth path (¢f the
discussion after D 12), «nd if we take F) on a strong diffeotopy
round such a path, the sign of the determinant of 7k will change, i£

We shall use numerous extensions of Theorem 5,4 in the sequel;
let us indicate one or twoc briefly here, The definition of
equivalence remains the samsz.

Prop 5.6 Any two tubular nbds of’gN in N are equivalent, if BN is
compact. |
Proof Follow the above closely. The anelogues of 5.1 and of 5.2
follow as before. In 5.3, note only that our group is not
G’L,'(R) or O(W) , but simply G—L‘:(ﬂ{), or SO (13 - the trivial
group. This makes for a slight simplification in the argument. fﬂ;
Prop 5.7 The result of Theorem 5,4 holds also if P’ has a boundary.
We note that in proving uniqueness of tubular nbds, in contrast
to the case where we had to prove existence in Chapter 3, no extra

difficulties arise in the case where we have boundaries,
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Chapter 6 Comers and Straightening

In this chapter we shall pay a little more attention to mani-
folds with a cornber, and give a process ¢f straightening this, so as
to have simply a manifold with boundary. This will be very useful
later on, where any corners which occur may be ignoréd by the results
of this cﬁapter. |

We first need existence and uniqueness theorems for a lot of
new kinds of tubular nbd. Let M be a manifold with corner /\ M .

A Riemannian structure on ™M is def‘ined as before, with the extra

condition that the two parts ofDM at a point of/lM meet orthogonally
(i.e. the vectors normal tc them are perpendicular). A tubular nbd
of QM is defined as before, However,sMX I does not have the
structure of a smooth manifold (of any kind) on/‘ ™M X I , BO We
must interpret "imbedding" to mean 3 homeomorphism into, which is a
diffeomorphism except onA M XI , and with all partial derivatives
continuous at /} MX_.T from each side.

Lemma 6.1 There existe a tubular nbd of o™ in ™M , ir oM 1s compact.

Proof First define thard-pointing vectors on @™ ; except on /ATH
these are, as usual, vectors Z)\,L D/37(,; wifhp>\‘>0 , in terms of a
c.N. onAM, we require%lx\’o, >\2_‘> O . We observe that at
each point, the space of inward-pointing vectors is convex. Now
conetruct on SMa smooth fielid of inward-pointing vectors: we
first do this everywhere 1ocaily, and piece together with a partition
of unity (ef Part O, proof of Theorem 3.3). The exponential map
applied to this field now gives a local diffeomorphism, and from
this we deduce a tubular nbd as usual, using Part O, Cor 2.7.1
and Lemma 2.6. $
(We could do without compactness, but the result is not of sufficilent
importance to make it worth the trouble). Our next object is to
obtain a tubular nbd of‘/lMin M s this is of no little difficulty,
and our first suggested proofs were fallacious. We hope the
following is not. The tubular nbd is as usual an imbedding of a fibre
bundle. The cholice of the fibre is of no great importance, provided
we do get a nbd; we obtain a set of the from lxl é \} é 1 in RL,

with group Z operating by reflection in the Y-axis. This 18
2 g
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somewhat more convenient than co-ordinateelX%)Xj.
Theorem 6.2 If/] M 1is compact, there exis‘s a tubular nbd ofAArq in ™M,
Proof We first suppose & Riemannian Btructure given on f% , and take
the fector field on/?P« consigting of that normal vector inclined at
224 to each part ofzérq. As in Lemma 6.1, we apply the exponential
map to such vectors (provided they are inward-pointing), emd for
sufficiently small ones obtain a diffcomorphic imbedding of/1P4>(;f'

Next we conetruct geodesicze aormal to this subset, until they
meet the boundary23'\1. Observe that by the usual arguments, every
point of a sufficiently small nhd of/4fq lies on just one such geodegic,
We use this to define a map of such a nbd into ”{zﬂ A point FD in
the image of/‘M XT , at Aistance AZ from N ™M (where & is the
"gufficiently small" distancsa is mapped to(Q3,>K). A point in a
normal geodesic of P ; at distance/U.C from it, is mapped to
(i/uwjg> . Here, the choice of sign is indeterminate, but can be made
coherentlyﬂlocally.

By the usual crgumentes, our mappings are smooth (they come from
the exponential map.) The prodact map t0/4/v\X ﬁiz is thus also
smooth, and has Jacoblan T on M , 80 is a local homeomorphism, and
if £ is small enough, a diffeomorphisem, Here I have been imprecise:
ag the map to ﬁiz was only defined up to a reflection, my map really
goes on to anfR?lbundle over/qf4 , in general non~trivial,

The image in ﬂil ies defined by equatione of the type

Ay £x &g )y, o€y {1
where fm(0\>=?(0)=‘— 1 (since the angle is right) and £ ,} are positive
in the range under consideration, and depend also on the point of,A .
To simplify this, we define a new co-?rdinate w by "

23 = {3+ A v+ Lgly) - RIS
provided £ 1s small enough (for the last time!) this defines as
an increasing function of X , restricted only by -~ ’} {w & ‘g .

Reflection in the ’:—){ -axis interchanges ? and ﬂ\, and changes
the sign of 2C, Thus it also changes the sign of W™ , and our
bundle hae a well-determined fibre and group. Finally, the new

co-ordinate is also smooth; indeed, this is quite clear from the
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definition above. ,

We have left out most of the details in this proof to make the
ideas clearer. The only other proof to my knowledge is in Cerf's
thesis.

In the corollaries we shall suprose, for simplicity, that we
can write oM = é'/"] Uélfv_], AM =3,Mn31M :39”‘1:)32?‘1 ; 80
that // M separates 3 M 1into parts with closureBaIM, a,,_M . This
is the case for all the corners that we actually need, A tubular
nbd of Q,M is defined in the usual way; the image containe a nbd
of/’M .

Corollary 6.2.1 There exists a tubular nbd ofa,imin M .,

*roof As in the proof of Prop 3.3, we can use the tubular nbd of
ANM in ™M to construct a mesric adapted to each of a' M,QQ_M in
a nbd of/]-M . The construction of the tubular nbd now proceeds
ag usual., . $

Corollary 6.2.2 There existe a metric adapted togM .

Proof We use. the tubular nbds of the above Corollary and the method
of Prop 3.3. Note that *he product metrice given by these tubular
nbde near the corner agree with the metric we have already (which was
constructed using a tubular nbd of /\M ); thus nearAM the metric is
unaltered by this procsss. $

We observe that tubular nbd theorems for the tubular nbds
constructed in 6.2 and 6.2.1 follow without difficulty by the methods
" ‘of Chepter 5; - in contrast to the existence problem, we need no new
ideas here, We now turn to the main topic of the chapter. Let /\'\
be a manifold with compact corner.

Theorem 6,3 There exist manifolds with boundary N such that there is
a homeomorphism f.i M —> N which is a.diffeomorphism except on /]M
Moreover, there ie a construction of such an N which gives a result
unigue up to diffeomorphism, '

Proof Qur construction is as follows, N will be M itself, with a
different differential structure, :defined by a new set of C.N.s, At
points of M‘AM, the differential structure and C.N,s are unchanged.
Let @ R —> ™ be a tubular nbd for /™M, where 3 1s a bundle
whose fibre ie the set x| Y &1 .  Then a C.N. for AM,
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with co-ordinates 3(-3. "'»x,m determines one for 5 , and so M ’
with additional co-ordinates DC, ’} . We define N by the same mapping,
followed by taking the new co-ordinate instead of *3,, Z-‘-‘j?"-x?' . The
C.N. is then defined locally by Z> O, which is of the right form for a
manifold with boundary. "}: \[qulis a smooth function of Z. except
on /\M » 80 the differential structure is unchanged elsewhere, Finally,
ag these C.,N.8 all come from a single tubular nbd of /] ™M , the
differential structure so defined is clearly consistent,

The uniqueness up to diffeomorphism of such N follows at once

from the tubular nbd theorem for AM in ™M | ﬁ;
D 34 f\, is said to be derived from M by straightening the corner.

We reserve this term for the constructed N , not for any N which has
an K,‘- M — N, a homeomorphism, diffeomorphic except on/1M . Such
N are in fact unique, but a proof of this would lie much deeper,
since this allows arbitrary singularities of ’ﬂ. on AM « .We mention
that the popular definition of straightening uses the same process, but
replaces (%, }}by (33‘; )"12—XL>instead of(x,ylf JCL>. The reason for
our choice will soon be apparent,
Theorem 6.4 Let CP 1o M x I - M be a nice tubular nbd for BM inM .
Tet = * O M —‘I(O\ 1) be a map, smooth except on /M, and suppose
OL‘ oM —> fg’\ defined by J’ (PS = © (P, < (P) ) such that the
image of'} ie a smooth submanifold B N . Buch o¢ exist, and if N
is the interior of‘é N , 1.e. the closure of that residual component
of ) N in ™M which does not contain oM ,N is derived from M by
straightening the corner,
Remark We need (P to be well-behaved near AM. 1t will suffice if
(P is derived from a metric defined using a tubular nbd of/]M.
Proof We shall first construct a homeomorphism A
of N onto ™ , and then prove that it carries
c.N.s for N onto those for M with the
corner straightened.
Let us refer to the paths ‘P (PV\I> as orbits. '{—7‘_ will keep
points outside ’,.MCP fixed; thoese inside are moved along the orbits

in such a way that a nbd of C‘?(Px 1> is fixed, while CP(A(a((ﬂ)is mapped
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to (V(PX OB. Thir may be effected as usual, using bump functions;
the map can be made smooth away from /]P4.

Near AM we take co—ordinatesb(,"d ,13,"' ) )C,W> as for a tubular
nbd. By assumption or CP , the orbits are obtained by letting’%
vary. Letx = (OC) O, 13 P X’Y\&) be the corresponding point on the
boundary. Then for )( ciose to AM ang Z small, we write

L(ox, «ON+2) = @(X vcriz)
and use the bump function to pass silcothly from this to the other values
of gu . Observe that the co~ordinate 2C is well-determined up to
sign referring to the tubular nbd of/]M . Finally, if y = xz+z,
2= 913-1}' is indeed the co-ordinate introduced to straighten the
corner,

Thie theorem is very useful in reconciling the definition of

straightening with +he applications. For example, we have now

Lo N o S

Corollary 6.4.1 b is derived from b Xb by straightening the corner,
. ad S | S

Proof We can take the tubular nbd ofé(b XD >, where D XZ) is

Prop

'+ S
imbedded in the stanéard way in[R , to be defined by orbits which

are straight lines through o . Then the lmage of J can be taken
as a sphere with centre at the origin., SH;
8o far we have discussed straightening corners. We may also
consider the converse procese, the introduction of corners. For given
a manifold with boundary N . and a submanifold )__ of SN of
co-dimension 1 , We can construct a2 tubular nbd of L_ in N , and
redefine the differentiatle structure to introduce a corner along L. .
The resulting M is unique up to diffeomorphism, and if we stralghten
the corner, we return to N . The proofs of these results are
parallel to thoee above, but are much easier.
6.5 If L is a submanifold of o N of co-dimension 1, we can
introduce a corner on L in an essentially unique way. If we

straighten it, we recover L. $
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Ché};tef { Cutting and Glueing

Cutting and glueing are simple¢ geometrical constructions which,
given some smooth manifolds (probably with boundaries and cornere)
and additional data where necessary, give rise to new manifolds. On
account of their perspicvrity, thece methods were mﬁch uged in the
days of topology of surfaces, and they remain a very powerful tool,

We first discuss the simplest case of glueing., Let f“1i(1='!,7-—)
be manifolde with boundary, S M'Lz Qi. , and suppose glven a diffeo-
morphism K:Q| ——> Q o (the necessary additionalldata). We now
form a smoofh manifold, Take M, v Mz (disjoint), and identify
poin_te corre.sponding under & . ’fhia gives é topological space
,\/ , and identification map w, M, UM7__ - N . Now take tubular
nbde q)’i. . O\,;_X I — Mi, . These define a map fP : Q,Xb1*-) N by

¢(38) =7 9,(9.) 1r £20

=@, kG)E) 1r t Lo ;
these agree on % =C since G(_1 and Ql were identified using ’K, .
It ie clear that (P is (1——1); in fact, a homeomorphism into. Now
define a function :}l on W to be smooth provided o 1is a smooth
function on M' v ML and &o (P a smooth function on le b1 . The
axiome defining a emooth manifold are now clearly satisfied: C.Ns in
M' ,Q'.x b', and in Mzgive rise to C.N.s in N , and where these
overlap, they agree. o o _

We have really not made full use of the assunip‘l;iongM;L =Q‘L )
apd none of the above argument is affected if BM{_ is the disjoint
union of a certain set of components, and Q;‘ the union of a subset
of these components. | In this case, the remaining boundary components

form the boundary of N .

D 36 _ N ie obtained’by glueing M, to Mz by &(or, alongQ').

Prop 7.1 The manifold defined by glueing M’to MLby ﬁ\_ is determined
up to diffeomorphism, provided Q [ is compact.

Proof The only arbitrary element in the definition was the.choice of

the tubular nbds Qi’ By the tubular nbd theorem, these are
unique up to diffeomorphisms of M,‘: , Bo the result follows, jL
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I.7.2
It is unclear whether compactness of Q[ is eesential here.

Certainly, glueing by inequivalent tubular nbds can give the same
2

+
a contractible 2-manifold, and any such is known to be diffeomorphic

2
to [R” 1teelr.
If N is obtained by glueing M to itself, via 1I>N-—>D M,

we say it is defined by doubling M.

manifold as for example glueing two copies of/R , We always obtain

This particular case is useful in some contexts.

The inverse operation to glueing is 2utting. Again, we diecues
the simplest case first. Let Nwhave Q,Inqas submanifold, and
suppoee that N‘Q has just two components, with closures m, and M'i.
so that oM = Q=39 M, . It is immeaiate that each M, 1s a sub-
manifold with boundary of N , and haes the induced structure of a
smooth manifold, The M;Lare uniquely determined by (N, Q) and N
may have a boundary. No compactness is needed.

7.2 Ir N is defined by glueing M. to MZ along G?_' , and we cut
N aloné'n‘f(Q>, we recover M, and MZ_ . Conversely, ifNﬂz‘and its
submanifold Q‘“"'are conriected, Q separates N with parts M| and Mi
and we glue M, to MZ along Q , then if Q ie compact, we

recover f\/ .

The first part is immediate from the definition of glueing.

For the conversue, if the above conditions are satisfied, we obtain
M| ana Ml . DNow if CPiQKb‘—-} N is a tubular nbd of @ in N’
(P definee by restriction tubular nbds of Q in M' )M?. . If
these are used in the glueing process, we clearly recover N . The
second part of the reéult now follows from Proposition 7.1. $

Thus cutting and glueing are inverse operations. We now
discuss cutting in a more general context. We continue to suppose
that N is a smooth manifold (without boundary), @ a submanifold
of unit codimension. However, we no longer suppose that Q
separates N » or even that it separates a nbd of Q ; thus in
general, when we cut N along Q_ , it will not fall into two pieces.

There are two quick ways of defining cutting. One ie to ;et

(S be a complete metric on N , and define M as the metric
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completion of N*Q_ A somewhat preferable procedure is to define M
by deleting from N the interior of a tubular nbd of Q ; thie
has the advantage that M has a natural induced structure as sub-
manifold with boundary. However 11, like the first proposal, makes
use of additional structure -~ the tubular abd - which ie not essential,
and obscures the problem of uniqueness of the result; eo we shall
proceed differently.

observe that, 1f 1:@ SN 1is the inclusion, ana P& @
then dl(@l—) is a subspace of N/o of unit codimension, and so
separates this real vector space into two components. We define a
manifold M " as follows. Its points are those of N - Q, together
with two for each point P of Q , one associated with each com-
plementary component of d—’if(ijin )\/ﬁ cr, as we shall say, side on
inl\/. There is thue a natural projectionti: M — N . we
take for C.N.s8 in M those induced by ‘Y from C.,N.s in N~Q;
in addition, for each C,N, ;f-'- M. — R% with \-f-—1 ([Rﬂ‘—’)mun Q
two C,N.2 in M s Induced by % from the restrictions of :f- to
the inverse images of fR'r_:and JR‘,: (in the latter case, we must change
the sign of the first co-ordinate to obtain a C.N, of standard type).
Here, of course, the pointe of /\I corresponding to a certein sideof @
in N are mapped ‘by the C.N, for the corresponding side of“Rn—1 in R.':
'Bincé C‘f'is noneringulur, 1t preserves the distinction between sides.

D38 M is obtained by cutting N along Q.

We note that 9™ 1is a dowble covering of @ . 1In fact, it is easy
to determine which covering..

Prop 7.3 Let Q%— be a submanifold of I\/“', P: BR—>N 4 tubular
nbd which extends to a weak tubular nbd, M’the closure of N‘_" LM ‘?,
~and /\4 obtained by cutting N along Q . Then ™M is diffeo~-
morphic to M’ , and henceaM toBB , the normal covering of Q
in N . '

Proo?f Cut 13 along Q (the zero cross-section). Then we obtain
simplyb@x I; this i8 clear, since the whole is a bundle over Q
with group Zz . Hence (P induces a tubular nbd of the boundary
of M , the complement of which is M’ . It ie now clear that M’
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is diffeomorphic to M ; indeed, using the weak extension of CP ’
we can define a diffesotopy of the identity map of M, to a diffeo-
morphiem onto f\/l (cf proof cf Lemma 5.1). The result follows. $

The corresponding extension of Prop 7.2 for the present
definition of cutting now follows, However, cutting is more general
than simply the inveree of glueing as is clear, for example, when
the normal covering of Q in N is non-trivial,

We shall need further gereralisations of cutting and glueing
which involve corners. If N 1s a manifold with boundary, Q a
submanifold, we may define the manifold M obtained by cutting
along Q precisely as above: the only new feature is that ’V' has a
corner at pointe corresponding SQ, this divides aMinto two
parts, corresponding respectively toBN and to Q.

Likewise, let M'L ("": 1,7—} be manifolds with corners, and let
Qi_ be pgrt of the boundary of M'i, witthi -‘—'/\M;_ . Let
‘f\': G\.v‘thbe a diffeomorphism, Since the Qi have tubular nbds
by Corollar.y 6.2.,1, we can define a manifold N by glueing M' to Mz
by ﬂ\, precisely as before; again the tubular nbd theorem shows fhat
it Q‘I is compact, the result is unique. The generalisations of
Prop 7.2 and Prop 7.3 to the present case now present no difflculty.

Finally we remark that it is sometimes desirable to glue
together two parts of the bourndary of the same manlfold, If the
parte are disjoint, we can use disjoint tubular nbds to effect this,
If not, since it is usually the case that we are intereated only in
obtaining a reesult up to diffeomorphism, we can usually imltate the
following trick. Let: oM —> () be a double covering and
suppose we wish to glue together points of 9 M lying above the same
point of Q . Now the mapping cylinder 6 of Y is a disc~-bundle
over Q , and so a smooth manifold with boundary, and the same
result can be effected by glueing M to B by the ldentity map of
the boundary; that it is the same follows by Prop 7.3.

As an important application of cutting, we mention the
following. ™

Let M"n: MLbe connected smooth manifolds, \}\'l L D,M;-) M ?’
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imbeddings. Delete the interiors of the lmages of the Jl- , and
glue the results along the boundarys_i(gmJ)by&;:t The result 1is
called the connected svm, written M’)){\ Mz.' (It is obvious that it

is connected).

Theorem 7.4 M’ X(M is determired up to diffeomorphism by the summands,
S

unleess these are both orientable, when there are two determinations,

Proof | By the Disc Theorem 5,5, the imbeddings:p{ are unique up to
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strong diffeotopy, and a possibie change of orientation. By Prop
7.1, the result of the glueing, givenac( and:I:L , 18 unique up to
diffeomorphism, Hence the result follows, except for considerations
of orientation. Note that if 5.' ,§2_ are replaced by\Jr‘lor,J,lo r, vyhere
F is a reflection, the comxectgd sum is unaltered. Now if neither
M‘!'. 1s. oriventable, the result is trivial: 1if only M?_ is orientable,
using the above possibility of simultaneous reversal, uniqueness
again follows, If both are orientasble, the result now has two
poesible cases. $

To make the result precise in the orientable case, we suppose
the M'i both oriented, and that one of the :F;L preserves, the other
reversee orientation. The result is then again unique, and has a
canonlical orientation inducing the given ones of the Ml .

The connected sum is also defined for manifolds with boundaries
and corners; we t£inply suppose that the:ﬁi map into the interior.
However, in this case we aleso have a different sum operation, Let
us suppose that M:M, Mrare connected manifolds with connected
boundaries. Letqlt,i ' Dm-1-—)31\4? be an imbedding. Introduce a
corner along},i (S m-2 . We may now glue thef 1 (D M~1>
together by (F?.J:'- .

The result is called the sum M'+ Mz_ of Ml and ML'

7.5 M'-I-ML:[B determined up to diffeomorphism by M' and Me.

unlessQM, andBM?_are both orientable, when there are two sums,

Proof This followe by the disc theorem exactly as for Theorem 7.4 $

We conclude by summing up the simple properties of these operations.
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Prop 7.6 MMX SW\:/—: Mm' Mm‘f—bmé Mlm,
‘B(M|+,\A7_) =3M‘%BM1\ .
Proof To form M’m}}{( SMWe simply delete one disc from Ile\, and
replace it by another, equally good one, |
The second result may be seen as follows, bmis obtained from
D'm-’x I by estrailghcening the corner. Derive N from M by intro-
ducing a corner along:)((sm'-z a8 above; then glueing on DW—L _I'
does not affect N other than by a diffeomorphism (as J:(qu) has
a tubular nbd by Cor 6,2.1, and we have the usual deformation
argument). The result follows by straightening the cormers.
The last part is merely an observation of what happens to the

bouridary, for the sum operation; the proof is immediate, $
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PART IT

Chapter O Nul Sets

We now need a few standard facts about nul sets (i.e. sets of
Lebesgue measure zero) which will be very useful in the sequel.

D I A subset A of R™ 1e pul if for each £ > O, it can be
enclosed in av countable union of balle cf total volume < &.

It is trivial that a‘countable union of nul sets is nul,
Also that a nul set has uo interior: its complement is everywhere
dense, | |

Lemma 0.1 Suppose A open in \'Rn, }\,-. - n{wsm'ooth, and A< nul,
Then J.[A) ie nul.

Proof Let K be a compact subset of Y\ . Then in K the partial
derivatives of :f_ of firet order are tounded, so Infinitesimal
leﬁgths are multiplied by a blounded factof: let N be a bound.
Then the image of a ball of radiue ¥ 13 contained in a ball 6f
radius N"' ; thus If & 1is contained In a number of balls .in K
of total volume less tha_n & ,.;.(B> is contained in a union of balls
of total volume lees than Nma. | '

‘ Now as in Part 0, 2.1, we may find a countable set of discs
'D—{G('{. A ém) contained in A, , with the 0 <x¢.5i\covering N .
Then 1if /‘\;l = An M ()(,‘-’ ‘,%ﬁ') ,'we can cover /'\;L by balls contained
in U(xq, 2 EQ of total volume less than £; ; hence by the
above, (A,) by balle of totar volume less than N £: . Thus
5— (/‘\ ri.) is nul, and so»is the counteble unional:(/'\). ﬁg

Corollary 0.1.1 Suppose A open in (R’M, ™ {n, :} U= RN
smooth., Then J_@A) is nul.

Proof Define F:1lx h.-m;-) an, by F(&Y) = ;(x) « Then
J—(40= F(U»(O)’ but clearly W«O is nul in R™. $
D Lia N™ a emootn manifola. AC.N 1s mul if for esch G.N.

¢: M“‘\)}Rm; CP(’MA A) is nul. '

Since by the lemma, nul sets are preserw}éd by smooth maps,
it is sufficient to verify the condition for a set (’L(a( ,(PD() of_
C.N.s with the U covering N .
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Prop 0.2 Suppose Ac N;n nul, f: N:&—éN i: smooth, Then.]i(f\) is nul,
Proof The result follows at onze from Lemma 0.1 and the
definition, ¢
Corollary 0.2.1 Suppose M<n, ? : MW—-) /\/I\’L smooth, Then.F(M}is nul,
Proof As for Corollary C.41.1.
Theese give the basic properties of nul sets: we now go on
to the deeper result which we shall need.
D L2 Let -5\» Mm""> (VAR be emooth., A point PE. M ie &

regular point of :}1 if clﬁ : Mf’ - v{(f’) has rank ‘v ., Otherwise

is a critical poiut, and :Y.(PB a critical value of)(: .

Theorem 0.3 (Sard's theorem). Let ‘Ff cM™ — VYV v be a smooth
map. Then the set of critical valuee of 5. ie nul.

Proof We observe that it is sufficient to consider values in a
C.N. of V , and further that, since M is a countable union of
C.N.s, we inay alsc restrict attention to & C,N, of M . This
reducee the proof to the case \/=/RV, M an open subset of /R,M
Now for ™ £V, the result follows by Corollary O.4.1. y

We give the proof here only for M=1", For ™M >V, we
refer the reader to the paper by A. Sard, Bull, Amer. Math. Soc.

48 (1942) pp.883-898.

Let P be a critical point. Since M =V, the Jacobian
determinant of :y_ vanlshes at P s 80 given é , We can find a
ball containing F with J’QL)( ® 1in the ball. Hence the volume of
the image is QSX volume of original ball: 1t can be contained in
balls of at most twice this total volume.

If K iz a compact submanifold of R%: A the set of
critical points in K , We enclose these in small balls of total
volume less than 2/.0\ (}Q, say. Then.ﬁ(A\) can be encloeed in balls
of total volurﬁe lese thand B/U,<K>. But é) is arbitrarily small,
sth(A) ie nul. The set of critical values is a countable union

of sets \_P(A\> , hence also nul, $
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Chapter 1 Whitney's Imbedding Theorem

We open our discuselon of the deeper properties of emooth
manifolds with Whitney's inmbedding theorem for two reasons., The
first 1e historical: emooth manifolds were originally considered
as submanifolds of Euc_lidean space, and this theorem reconciled this
approach with the abstract form of definition which we prefer.
Secondly, the proof is quite simple, and openes the way to ocur later
discuesion of the general transversality theorem.

Theorem 1.1 Any compact marifold Mm (perhape with bonndary) can be
imbedded in a Euclidean space.
Proof If the manifold is bounded',‘ double up: any irnbedding of the
double nestricts to give an imbedding of the original manifold.
Now let P ° f'{.& %%(O, 3> be the C.N.s constructed in 2.1,
Part 0: since they are locally finite, and M compact, there are
only a finite number. Also as in 2.'1 .1, Part 0, 1let
@i((%’:ﬁ (Z"ICP(P)D for P in the range of (Pi , O otherwise.
Now define functions} |
Fro (P) =, (P)
’LJ (P) _@ CP)I CCP (P)> P in range of (Pa'.
otherwise.
Clearly, ithe 3.,‘] are all smooth functions of P ;3 1f the range of
i 181441 ¢ N , there are(M+1) N of them, so they define a
. (m+ 1N '

smooth map m
F: M= iR
We assert that F ie an imbedding: by 2.2.1, Part I, it is suf-
ficient to prove F(‘l 15 and an immersion ( ™ being compact).

First, since the Cp,l (’H (O 13) cover ™M , each P& M
belongs to at least one such. But in this set, § 3 2 1)
f,‘_ (P> -X}<CP (P)) , and so these ClJC«.} form a basis for M

(11\ +~ 13 N

Thus Jf- Mf’ R;P(P) is (1 ) s and so I 1s an 1mmersion.

Now if r(?) = F(QB, and Pg (P <4L(0 q)) then
1= 6 (PB “7C (P) and 8o 1= :{:10(60 § (Q) and @ & qj) u(oﬂ)

also. But in thie set, we can take the\_}‘. <=i< }’3 as



I1.1.2
co-ordinates -~ since these have the same values for P and Q s
then P=Q . Thus F 1ie also (‘l—1,>. ﬁ

This 1s the first of Whitney's theorems: the proof is very
simple, but the rezult is rather weak, We shall now obtain a
stronger version, with a bound on the dimension of the Euclidean
space, and an approximation clause. It is also possible by eimilar
methods to give a proof for non-compact manifolds; for us, it will
be more convenlent to defer this extension till we have the trans-
versality theorem,

"
BEach vector in R determires the parallel unit vector from
n-1
the origin, and hence its end-point, which lies on S .
m n .
Lemma 1.2 LetJ: :M™_ R ve an imbedding. Then the set of points
n-—1 wn\,
of S whoese vectors are parallel to a tangent of { is nul, if
MmZ2Zm + 1 , and the set whose vectors are parallel to a chord is
nul, if N 2 2 e + 2.
Proof Any tangent of M ~ is parallel to a unit tangent. Let |/
be the sub-bundle ofT(NDconsisting of unit vectors. Then
— — n
d.f Al (M> > | (R >def1nes &}6-—5T<’R h’) , and since all tangent
n !
spacesg to R have been ldentified with [R“’, there is a smooth map
WT(R“) -~ [R™ ., Horeover, since B coneists of unit
R Py | -
vectors, | 10'2':;\. maps (R 1in S, Hence the set of points in S* L
whose vectors ‘are parallel to a tangent of M is the imgge of 8
under & smooth map. Since 6 has dimension 2m—-1 , the first
result follows from Corollary 0.2.1.

For chords we proceed similarly. Let MxM be the product
manifold,A(MSthe diagonal, and consider C = MxM—A (I“\) thise
is also a esmooth manifold, Since :P ig an imbedding, any two
| , - IR
distinct points have distinct imagee, so if we dafine:;\| . C
by :F' (P, Q): } (P) —_ ¥_ (G)_) (vector subtraction), the
image does not contain O . Thus we can normalise the image and
define Qtz T C = ’)M—q . Again we see that the set of points
of S~ ' whose vectors are parallel to a chord of M 1ig the image
under & smooth map; thie time of C. Since C hae dimension 2w,

the result follows as before, $;
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‘Theorem 1.3  (Whitney's Imbedding Theorem) Let M wbe a smooth
compact manifold. Any map of M to /| R2m+lmay be approximated
arbitrarily closely by an imrbedding.

Since We have not yet discuesed topologies for mapping
epacés (see Chapter 3 belo*v), approximation is here to be understood
in the sense of pointwiee convergence,

Proof Let f“- MMHRZTM" be the given map, }l!Mfm—) Rw
eome imbedding (which éxisfs by Theorem 4.,1). Consider the product
map§'3' MM—— RZWM*_“ ¢ thies is an imbedding. For since -P

s
is an immersion and(ﬁ 1) so is-f3 Now by Lemma 1.2, the set E
of points of S those vector is parallel to a tangent or chord

is nul, thus its eomplement is everywhere dense. We choose & pbint
X , close to the unit poiat on the last axis, and not in E . Now
pro;)ectqt (M)in the direction X to Rdm_ . Clearly the first

2 m 4+ 1 co-ordinates of the projected map .5. differ from those

of .:Fz ,' and hence of &1 , by an amount which can be made arbitrarily
small by choice of X . | '

We say that _th_ is an imbedding. For since A is parallel
to no chord of:ﬁ3</"\ 'm) no two distinct points of ™M have the
same image under_g. ; and since X is parallel to no tangent
vector, there 1s no tangent vector vhich ies mapped to zero by d‘lt\tf
Thus s]tqr is an immersion and(1-—1> hence an imbedding.

We may now repeat the projection procees a further(“-Dtimes,
obtaining ultimately an imbedding in[& 'Mwith co-ordinates
differing by arbitrarily little from those of . ‘ ' $

Theorem 1,4 Any map of a compact M to Rzmmay be approximated
by_‘.an 1_mmeréion. '

, 2wm+-1
Proof As for Theorem 1,3, we obtain an imbedding inm '

, and
2L ' :

then choose X LS s arbitrarily close to the unit point on the

last axis, and parallel to no tangent vector (which is possible,

as before, using Lemma 1.2). Projecting parallel to X , we

obtain the desired immereion. $
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Chapter 2 Existence of Nondegenerate Functions

At a later stage in these seminars we shall give a method
for describing compact manifolds up to diffeomorphism, The method
consists in defining a smooth function Jt M,M - K 3 and then
we can regard ™ as "filtered" by the subsetJtJ(w:a, o] as
increases. In order to carry out this procees in detail, it is
necessary to suppose S_ nondegenerate,

Let CF- be a smooth function on M , and Pa critical
point of\.F , 80 that Q’JE<M[>3 = O . If we_tgke local co-ordinates
with P as origin, we have {‘,(szo and Sx; venishes at O

for1 &1 { ™. It is now natural to consider the Hessian matrix

2

B;EZBX} of second derivatives of -F at O . We regard the Hessian

D43

D 4L

as a symmetric bilinear furm HG): Mf X M[) - /R , where
2

o~
H@)(Z%%}p Zbi §7«; = 2aib; %{%x; .
in local co-ordinatea, Abstractly, if m. v & fo,, we extend Yy
to a vector field V defined {at least) in a mbd of P ; then
HOE) (o, v) = w (v)).
(Recall that a tangent vector ies a mapping of functions on M to
the reals, and hence a vector field maps functions to fun\ctione\_).
Thie is independert of the extemsion V of Vv (since P is a
critical point), and is clearly the same as the definition by

co-ordinates.

P is a degenerate (nondegenerate) critical point of Qc ir

HG—> is a singular (nonsingular) bilinear form, {. is riondegenerate
if it has no degenerate critical point. |

Now suppose given an imbedding 1 : M — R LA Then
since we 1dent1fy'ﬂ_(ﬂ2"‘> w1th R'x R™, we may identiry [N (R“/ M)

n

with the submanifold of [N x R™ given by pairs {(P,v\:Pé M, v
orthogonal to clx‘ (M 'by} Recall that the exponential map is
given by exp (!0, V)= P+ v (vector addition).

Let ™M be a submanifold of the complete Riemann manifold N
Then a critical value of exp:N(N/MB*)N is called a focug of M;

if the corresponding critical point ie a vector at 'P , 1t is

a focus of M at P .
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We observe that by Sard's theorem, the set of foci of M 1n
N (or in.ﬁ%TL) is nul, It is then clear that the existence of
nondegenerate functions will follow from the theorem below, For
PE-(RM - MB , deflne Llp: M —> Rq ’ byL.F(Q)::IP—Q‘

Theorem 2.1 L_F has a critical point atf;ZE M 1re this normal to M
at . & 1is a degencrate critical point iff P 1s a focus of M
at C{ .

Proof The first statement 1s clear, Far the second, flrst
suppose M a curveinﬂ& Then a focus must be a point of inter-
section of consecutive normale, i.e. a centre of curvature., But
l-P has a degenerate critical point at GQ iff ‘p-—X1 is constant
to the second order at x-——Q , 1.e. again if and only if P is the
centre of curvature of M at Q .

For genersal 1\4 , the argrment 1s a little more complicated.
Suppose that P ::C;bkﬂf' is a focus, 1l,e. a singular point of exp,
at(Q ~r). Then for a consecutive point (Q"‘ %Q,'\J +é\/) in
some direction, the difference §Q + SV 18 of the second order
of small quantitlies., ©Now since A is on a normal at GR ’ L_r
has a critical point at  , 8o &LP‘MQ — ﬂi'\ is zero.

But at CQ;# éDCl , to the first order P again liee on the normal,
andc:“-P: MQ+éQ_ '-7[R1 is zero. Thus if M 1is the tangent veétor
at & corresponding to &Q, '\A(_\{ (l—,o)\, =Qat Q for any Vv £ M Q
i.e. H(LP\("‘*,V)—';O for all Vv , and H(L[c) ie singular on Mq’
soéQ is a degenerate 2ritical point ofl—F .

If we suppose conversely that CQ_ is degenerate, we can
reverge the argument, Since H(lg)is singular, there exists W
with H (L,Q(u,v)=0 for all vE Mg, so d'LI’ : Meroq = R}
vanishes to the first order if we move in the direction W , 80
to that order, P also 1ies on & normsl at QA+ éQ , and hence P
is a focus of ™M at GQ . f#;

Corollary 2.1.4. Any compact manifold M admits nondegenerate
functions,

Proof By Theorem 4.1, M can be imbedded in Euclidean space,

by Sard's theorem, the set of foci (eritical values of a smooth
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map) is mul, &o we can choose F)¢ M not a focus, and then by
" the Theorem,!—P is a nondegenerate function, fﬁé

We remark that compactness is inessential, and also that
using the approximation clause in Theorem 1.3, we could obtain one
here, Also the condition7>4lpﬂ ie irrelcvant; however, we should
replace L‘O = 'P*-Q( by P~ '7' in this case; P itself will
then be a nondegenerate critical point. We shall obtain very
precise forms of this corollary later, even specifying the needed

number of critical points.
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Chapter 3 Jet spaces and function spaces

We now approach the general tranversality theorem; for this
we need a numbter of preliminary notious. We first diecuse jets.
Lemma 3.1 Let:l:fﬂ{\r-——) er be a-smooth map such that :l: and all its
partial derivatives of orders & ¢ vanish at O . Let (P,W*’ be
diffeomorphisms of RV, ]RN keeping O fixed. Then*\ﬂ_(? has all
partial derivativees of orders { ¥ zero at O ,
Proof The result is au immediats consequence of the chain rules
for differentiating "e function of a function". 'ﬂ;
Clearly, also, the fesult holde if the maps are only locally
defined, and writingf»:j —fp , holds also if we epeak of 7, &.
having equal derivatiw{:s rather than of -P having zero ones,
D 45 Let B,KV\:@M be smooth maps, and let P& \/. Then
3~ . at P if, w.r.t. some local co-ordinates at I and C}(PB,
~ we have ?(P)r- #\,(P> , aud all partial derivatives of order £ W
of } and 'f\. at IO agree, |
By the lemma, this is independent of the chosen co-ordinate
system, Clearljr,fvw is an equivalence -relation for mape defined
on a nbd of 00 . An e:quivalelince class is called an F-jet of maps
from VV to M at £ .  The set of all .jets of mape of V to M 1ie
the Jet space J F(\/, M).
» Each jet is a jet of a map at some Pev , 8o there is a
natural projection ’n}: Tré/, M> -V, Similarly (eince M>O0),
since two functions g‘lf{—with the same P’-—jgt at P ’ havej,(P>=-'£.(P),
there is another projection I : T‘P(\/, M)~ M. In fact it is
clear that for " =0 (when derivatives do not come in to it) we
have J_OCV) NB; \/,( ™M ; here we-n‘a;ay define a topology and the
structure of a smooth manifold on the jet space using that on the
product. | V
Moure generally, consider V"-jets of functions on a nbd
of P with\f.(PB:Q. With respect to local co-ordinates at RQ,
since tfvo functions with the same partial deriiativee define the

same jet, we may take such partial derivatives as co-ordinates in
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T*< \/, M). We need a streamlined notation. Let I«"-(’C,v”‘;xv) ‘
be a set of locsal co-ordinatee at P , ?] =<7, Yyt 70\«) local

co-ordinates at Q_ . We write W =Q»J,, ey Wy ) for an
w W) wv
arbltrary set of non-negative integers; 2>C \_f,m)f—, -"x-v .
J RN\ W R \W, !wl = {U + O
W A%, --'(axv ’ =&t y » and
w! = (.u,'. Cae by | « Then if :?. is a function on a nbd

of P ,\{_(P)-.-Q, its partial derivatives of order & ™ are simply
the numbers 'Uuw,} ="y, ’?({J (o lolgr, 1 $.}, $1M,> , thus
theee valuee determine the M-jet of :ﬁ at P « GConversely, given
a set of numbers Qw’tf' (where the point (Qo,}>must lie in the
prescribed nbd of Q), there exists a corresponding function - in
fact, the polynomial “w

.= 2.0, ;X / !
ti f
Hence the set of r-jets $witn® ({)-F, 1(4) = Q 1s teomorphic
to a Eucq.idean gpace, -

If we now take (‘J(,;' 'uu,}) as local co-ordinate syetem in

\T'(\/} M)- which we have seen to be possible - it is easy to convince
oneself that the co-ordinate changee are smooth (they exhibit,
again, the chain rule for partial differentials); we shall spare
the reader a detailed exhibition of them. We conclude that

J—P<V,M) is a smooth manifold.

We now observe that the projectionsT; and T, are emooth
maps. Also, let Qf: V — M be a smooth map. Then at
each PV the equivalence class of is our M-jet at P , 80O

5— defines a cross-section I; Y *—)Th(\/) M) , wWhich is
smooth since S— (and hence all its partial derivatives) is. Here
it is useful to really restrict ourselves to infinitely differenti-
able mgps -~ the condition wae not essential in the preceding
chapters. In the case "'=Q , of course, j is just the graph

of :f_; we may consider our case as generalised Trom this.

We now use the jet space terminology to discuse epaces
of maps. Write Mv for the set of smooth maps of V in M :

we wish to give this set a topology. First suppose V compact.
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Now each Jet space\T (V) M> is a smooth manifold, so admits a

™
complete Riemannian metric \‘g : ¢ we shall replace by the non-
- ]
Riemannian metric‘f =”‘}<§") 1)- , which gives the same topology.
Then if 5,‘? Vo M are smooth mape, we define
~ — s "EEI(A) ' V
A Gl,‘}) —Pufpév f f )S} ') (this is finite since Vis conpsct)
If we used :Y to define a topology, we should obtain the topology
of uniform convergence of tF (with ite first ¥ derivatives).
-~ :
Inetead, we take :f(}-,‘é]) =Zt~1‘ S‘r- <§,}> to define a topology -
here, convergence is equivalent to simultaneous convergence of:F
with all derivatives. Hence we may reasonably call it the
smooth topology.
1t V 18 not compact, (in fact in general), we define
v
D 46 The smooth topology on M’ is the topology of uniform

cohvergence of all derivatives on compact subsets.

Lemma 3.2 The smooth topology is metric,

Proof We know this is so if V 1is compact. If not, write
V=Ui:°1 \/-,L as a countable union of compact submanifolde (with
boundary, but that iAs irrelsvant) - say discs. Then the topology
for MWL is defiped by a metrice S‘l , bounded by 1. Hence t{le

o

metricxzizz_qlﬂtg ;. defines the product topology on Tr,i MV‘;

and hence the required topology on the subset Mv. $
Theorem 3,3 With the smooth topology, MV is a complete metric

epace,
Proof We have Jjust established that this topology is metrisable.

Now again firet suppose V compact. A Cauchy esequence in Mv
must a fortiori be Cauchy with the metric Sr‘ . Since J-P<V, M)
is complete, the maps :f_:L converge to a limit ;}'—‘_w , Which is
continuous, since t_l_le convergence wag uniform.

Now for the} P’ the co-ordinates ILO," are the partial
derivatives of the 'L(O'}. Let 60’ be derived from W by increasing
&£ by unity, and|w'| §{ ~: then 'l\(,,;q', = %k and BO uw,(}
is the indefinite integral with respeét to x,L of‘l,Lw"'. IEtegra-

P’
tion commutes with uniform limits, so the same holde for \¥ .
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Iy b\‘ ! S .
We deduce that forJ: ,Mm)c} ='3X1 uw"again,‘ so that theuoa}\ééare
 times continuously differentiable, But this shows that ;* is
the graph of an F-times differentisble function JL , clearly independent
of I , eo <F is smooth, and is the limit of the sequence,
"
If \V is not compact, we write V:UV\', , and then M as a

a— Vi
closed subset of the compizte || ﬁhﬁ Yis also complete. 5#;

v
It follows that Baire's theorem applies to the space M
(2.9, Part 0).

Corollary 3.3.1 The intersecticn of a countatle family of dense open

v
subsete of P4 is 8till dense,

This ie an exceedingly useful result,
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Charter L The Traneversality Theorem

Y] n

Let V, M vbe emooth manifolds, and let N be a submanifold
ot M™, Let :f»‘- V—> ™ bve a smooth map.

D 47 The map is trarsverse to Y if for every FE_V with
FE)=QeN,  df(Vp)+Neg=Mg.

This may also be interpreted as stating that df, induces an
epimorphism of VP on MQ//\/Q , or equivalently, if Né is the
normal space to N at & (the annihilator of NQ in MZ{( - see D 20),
that d} induce2 a monomorphism of Né— into V:

If dimV( codim N , the above condition connot be satisfied:
in that case transversality requires {:(V> to be disjoint from N .

The folylowing result gives some 1nd1cétion of the geometrical
meaning of the condition.

Lemma 4,0 Let\-f-:V —> M be transverse to a submanifold N of M ,
Then§—1(N3 _‘—W iz a submanifold of \/ , whoee codimenslon equals
that of N in M |, '

Proof Let P& V, J-(P)=Q.EN , and let N be locaylly defined at Q

by X, =--- =X, = O , where the X_,L have linearly independent

differentials at & , and €=Codine N .  Then by transversality, the
‘ functione x.,oj- y ,x—.., O:F ’havé linearlyAindependent differentials at
P , and clearly their vanishing defines Wnéar fo .  The result
follows by the proof of 2.2, Part I (using L4.1.1, Part 0). j};
We extenﬁ the concept as follows, Let N be a submanifold
of :}—P(\/) M) » ~ Then we say that —f‘ is transversé to N if :[} ie
go, Then roughly speaking, the- tranéversality theorem astates that
almost any map ls transverse ‘to' N . Thies 1is very general, 80 Wwe
need a lot of apparatus: we develop all the local results in a
lemma. -
Lemma 4.1 Let :f» VV‘>M W\‘ne a smooth map with‘graphot : VVQJ_P(V, M\)'
end 1et N be a submanirola of T (V, M) of coatmension P. Let
}(P) =Q€ N. Then we can find _
1) a c.N. W, ot P 1V, i1) a C.N. U or Q1in TP(V, M) and
111) an open nbd W or :F in Mv such that



_ II.4.2
a) For 35\«/, ?:(MI)C- '\Lz_
b) For every E,W’ there are mape £, arbitrarily close to } in Mv
such that I\A, is transverse to N N
Proof We first choose a C.N. inT~<\/)M)at @ , within which N 1s
given by equations H)\-_—O (16)\ £ P) , where the HX\ are smooth
functions with linearly independent differentials, Hence we can find
a Bubset {'Z./a. I WS 5[9\; of the co-ordinates I;L,Mw}at R such
that IBHV‘QZ/,\)‘:/: O at Qo , 8ay W,1l,0.8, 1t iB posi)tive.
Now, having fixed in asdvance the local co-ordinates at p and
Q , we may take for u?_ any nbd of Q within which N is defir_xed
by thi egu:ations H\-z O, and JBHZZ/J>D>O. We choose /l/L" such
that }(u')c W, : thece will nearly be the nbds 1), i1) of
the lemma, It will be convenient to write (without loss of genera]iW)
2a=xn (0NEq) Zn=Upyin (LEXNLP),
In order to obitain the result, we must now take a map , With
i{ﬁ_:\) C.M_L, and attcmpt to deform 3 to be transverse to N. Wwe
shall define the deformation locally; 1t mey be extended to the rest

of the manifold by ueing bump functions, We define & \‘V--> M by

WA
v . ~q. v Xt € X X NS N ENXHT
G(J"(ﬁ') Xy &y ,£P>~}J(x,+£" Xt Cq X g g P>" ‘l%{‘;‘/ﬁ’
where the <y @are coretants to be determined. We s‘ﬁallfcalculate the

partial derivatives of theH\{(x) with respect to the {,)\ at £€=0.
/

U S H (& s (& U,

@INAX = ,
DE Pif 'am,,} DE (1)
But by definition, W, , (& )= G 8o |
= ' w f WA
U-wl, (&) = Bw ?J’ (I'+€,,--.,XQ+C¢L.X€*‘\ ;KP)_’_qZL)\-i I\al &awx'
and E’Mw, i (GL): O if /u,>7, J #:(}/"* dl)"'}-p

e
W .
C/&‘wa"’if,u. 29, =47
3 (7
g’i/‘&u “»JriQ("?ﬁt;'--,"r)} if o £9
b W
Now set X =€ =0, ThenOwX "= O unless b= (,)/A_, in
=1
which case it = (/L0 ! We set ¢ =<w/,__'> . Hence at X =€ =0,

< g, U, (G) = du (G
if &9 %é,/u af,h
Ifpn > 9, ‘gum,}(@ = O if (Mﬂ#(f&u}‘p)
DE L 1 1f (w,})‘(w/m”}/*)
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and so substituting in (1),

[HW(&) = o HNG) DU, - DHA(G) <
e Z“'J ‘Buw,* %3‘:,1«{= dX (59)

%LLIQ/&,'
thue in any case QDHN (G = D Hk(@) at x = € =0,
DE DZ

We are now ready to complete the proof of the lemma, For any

? defined (at least) on a mbd of A, , with ;{ (M')Cui we define

Q-I% Hl(@ ,
K(%, /= >E/~ , thie is a function on {A , and we have checked

that at P we have k(@c.@ >h > o : ’ Now choose & , and
then '[A_’ , such that on :L_L, , we have ‘K('jﬁ,{-_}) % D , provided
l£] $& . Then |n/ is the set of maps 3 with i (ﬁl)C, ,'U-z and
K (3, ﬁ) >J§ D on ﬁ', provided Jj|&® : this clearly defines an open
set 1n MY,

In particular, for}g W, K(;) is nonzero on"u, . By the
Implicit Function Theorem (L.2, Part 0), the equatioms

H x (é(x:‘ EESESIVIR ST "'16,:\) =0

define £, . 2 €p as smooth functions of X, X, , with[el< &, in

an open subset of M., (points whose images under § are close to N Yo
By Sard"s‘theorem, we can Pind arbitrarily small regular values §°
of this map. But at a regular value,a’&,, e d E’f’ are linearly

( °
and since K 3,(. \)is

independent functions of dx,, - - -, dxv;
nohzero, dH' Yo, dH-[', are linearly independent functions. of these.

Hence the induced map from N'J' c J * (which admite thede as
basis) to v -1é monomorphic on ’LL, for'é-c(‘X,Eo>, i.e, Gt.(x, C‘)“(I :
is transverse to N . Taking €° small, it also approximates

g ().

I‘B is now easy to prove the general theorem:

Theorem 4,2 Let N be a submanifold o J ! (\/,M>. The set of mape

j—'- \VV = M transverse to N ig dense in MY,

Proof First let V\ be a compact subset of Y. . Then K can

L 4
be covered by a finite number of the nbds 1/‘., of the lemma, The

intersection of the corresponding sets N is an open nbd of:‘l ,
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and the subset of ]/\] of functions oQ’ with j,u, transverse to N

is dense, by the lemma. By Baire's theorem 3.3,1, the subset of y
with ?IK transverse to N ie also dense (Baire's theorem applies
to an open subset of a complete metric space - see 2.9,1, Part 0),
and is open, being defined by mapping a compact subset of v to
an open subget of a Jjet space.

Since :y_ was arbitrary, we now see that the set of 3 with
?[K transverse to N is a dense open set. The resgult follows
by a second application of Baire's theorem 3.3.1. $

Complement 4,.2.1 ir YV is compact, the set of :y. V—> M transverse
to N is also open in N“v.

This wae established in the proof of the above theorem. $

In general, the set of —5— is a dencec {x§eet; by further
applications of Baire's theorem, we see that the set of -J-\ satis-
fying a fiﬁite, or even countable, number of conditions of the above
type 1s etill dense,

We now derive a number of extensions of the above theorem:
these are rather more useful than the result in its original form.

Prop 4.3 If F is closed in V and §\F is transverse to N , then:F
can be approximated by 3 , traneverse to N , and witha’F': H F

Proof Cohsider the subspace of IV\V of functions agreeing with Jc.
on \/ . ' Since, if P is such a function, f. is transverse to MW
gbove an open nbd of \/' , We can apply Baire's theorem as in the
proof of 4.2 (the spacz is clearly still complete). |

Prop L.l Let N be a cell-complex contained in Jw(v, M), with
codim N XdimV.  Then the set of :}f_ with& <V> aisjoint from N
is dense in MV .

Proof by induction on dim I\I . Suppose proved for dimension 1- 1.
Then any S— can be approximated by g with 5 (V> disjoint from
the skelef.on N‘l-'l . But now any f\_ sufficiently close to als'o
avoidsN v , and we can apply the theorem to the manifold N ":-N1-1
to make 4 transverse to (and so avoiding) that. fﬁ
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Corollary L.L4.1 Let FJC.JAN<9J%>have a subcomplex K whose codimension
(inJ-) ig Ddim \/, and with N-Kk a manifold. The set of :? with

J: (V> disjoint from K and trarsverse to N —K is dense.

Proof Ag for 4.4, anv él may be approximated by 3 avoiding 3¢ .
and then apply the theorem {taking an approximation close enough
st1ll to avoid K )e We obtain £, , as desired.

Prop 4.5 Let N be a submanifold of TV‘(V,,M) x‘J_‘k(Vl, Mq_). Then the
set of G_‘ .’Sl':.\) & M'V’ X Mlvz. guch that I‘ X:;l—)_ ie transverse to N
is dense in hAY'x hAqYL.

Proof Follow the proof of Lemma 4.1: we there found variations f;
say of &} , and Zz.Q} Ja_. Taking these as a simultaneous variation,
the remainder of the procf caa be completed without essential
change., fg;

Prop 4.6 Let N be a subranifold of jr(\/, M\ X \7’“(\/' M\ ,D an
open nbd of the diagcnal A(\/> inVxV, C = VxV =D . Then the set
of :F &Mv such that (:FXQC)IC 18 transverse tc N 1s dense in Mv.

Proof By 2.1.2, Part 3, we may cover C by a countable union of
products of discs ’Mf‘ X 'M? where ’M-T"LL:_( are Eisjgint. By Prop 4.5,
the set of pairs S,l ‘. IUT_) M,QQL:M:_—% M with:f.| "vi , transverse to N
is8 a dense open set. It folqus (from_definition of topology oanW)
that the set of Qt'. Vo M withcp ;U.7< X gl'llf transverse to N 1s a
dense open set. The required set is the intersection of all these,
80 by Baire's theorem (2.9, Part 0) ie still dense. ﬂ£

Corollary 4.6.1 Let N be a submsnifold of J' (V,M)xJ(V,M) fvaom
such that (§><§')<‘43 does not meet PJ . Then we can approximate

:F- by a mapj , transverse to N ) and~ wi_th(i *33& disjoint from ?’j

Proof Since N 1s closed, some nbd of Gﬁx:g.)ﬁ also avoids N: we may

take the inverse lmage of a emaller nbd as I)in.the above. But for

-—

any sufficiently close approximation j’ toJ} s (3x§>]}is still diejoint

from N . $
There are of course numerous results which can be obtailned

by a judicious combination of these extensions, but it does not seem

worth attempting to formulate a common generalisation of them all,
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Chapter 5 Applications

™ ~ v
Theorem 5.1 Let M be a smooth manifold, N a submanifold, V' & manifola

with boundary. Then any QC: Y= M can be approximated by maps 3

tranaverse to N , and if l%V is transverse to N , We may suppose
gI1dv=1{1]3V.
Proof Apply Theorem 4,2 with '=0, and considering the submanifold

Vi N™ e V% Mm=—3'°(V) M) . The last clause follows from
Prop. L4.3. _ ' _ dF
This wae an earl& form of the transversality théorem, and is

useful fo.r application_s to cobordiem theory.

_'Ijheorem 5,2‘ Suppoee ’MZQ\r- Then immersions of V in M are dense in MV.

Proof Consider the subset N ofJ_1(V) MB consisting of singular
jets; 1.e., of jets where the matrix (ﬂi‘D has rank (:\f._ This is
defined by the vanishing of(’ﬁ\—V’-{- \> deterfninants_ in general, so is
a simplicial complex of codimension at least M —V+1 2 v+ 1,

By Prop 4.4, the set of maps |+ VM withI(V)disjoint trom N 1e

dense, . But these are Just the immersions.
Theorem 5.3 Suppose M >,2v+1. Then imbeddings of V in Mare dense

in M V, provided V is compact, If not, imbeddings as closed
submanifolds are dense in the set of proper maps. | |
g;o_of Pirst suppoéé\/ compact: +then any (1-—1)1mmersion is an
imbedding. Now. any 5\-'- V- M can be aiaproximated by an immersion 3 R
by Theorem 5.2, S8ince 3_ is an immersion, for some nbd :f)‘ of A(V)
in Vx V, no distinet pair of points in b, have a common image under
j . We 8hall now apply Corollary 4.6.1, takingﬁ (:,])l and N as
the set of pairs of jets in T"(V,M)xZT"(V,M) with the same image
(i'.é._Vg Vix A <M> ). Thie has codimension ™., 80 sinci"y\’\ >2‘\I",
£ x f\_ is transveree to N on C = Vx Vv ~D only if (f:’\ &B(C->
is disjoint from N + But if (, approximates closely enough to ?_.,
by 4.2.1, l{, is ptill an immersion, and Awill not identify paire of
points which 1ie in D .  Then A 1is (1— 1), and so an imbedding.
For vV non-compact, we express it as a countable increasing

union of compact subsets V. , By the above, the set ofof, with j_lvt
1
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an imbedding is a dense open set, hence the intersection of all these
is still dense, Since the modification on QD‘ to be an imbedding on
each V;L can be made smaller as we move further out, we may find such
an approximation to any proper map which is another one. The result
then follows by 2.2.3, Part I. $
Even this is not the final form of Whitney's theorem - a further
argument along the same lines proves
Complément 5,3.1 If Mmy2v-+ 1, andf_ . V— M is proper onto 00(V>,
then :s\. can be approximated by an imbeddinsg,
We will not go into the details, since the argument really
uses a different topology on Mv from that considered above, Now

we can similarly improve the results of Chapter 2.

v
Theorem 5,4 Nondegenerate functions are dense in [R .
Proof (cf. 5.2 above). Let N be the subset of singular jets in

q(v, R) : ﬂ this is given in local co-ordinates by the squations
M,L =0, 50 is a submanifold. By theorem 4.2, the set of functions
.f which are traneverse—to N is gense.

We now say that J\f\' is transverse to N if and only if is
nondegenerate. P is a critical point' of f whenj(PB = Q & N

Taeking local co-ordlnates ag usual at P Q we must calculate

dﬁ-( % 5/3% %%XB%/QV 23 /Ktm‘; ’gu*
’§x1+‘24- /5; (dx} %ﬁg

since atQ ,3}/ 1—0 . But the tangent space to N is spanned by
%y and theb/x’ (since N is defined by the equations 1/(, =0), and
these with the sbove &pan J-Q if and only if the matrix %X%x*
is nonsingular, i.e. Q is a nondegenerate critical point of f.

In fact one can make thie a little more precise yet. If {P

are the critical points of };. , recall that&_( )l are the critical

values.
Prop 5.5 Nondegenerate functions with all critical values dietinct

are dense.

Proof Let N be the submenifold of J—'(\/, IR>)\ J. (V, IR> given by
pairs of singular jets with the same image (i.e. value). This has
codimension 2v 4+ 1 (as N in Theorem 5.4 has codimension V7). By
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that theorem, any g can be approximated by ‘} with only nondegenerate
critical points. Since thess sre all isolated, there is a nbd b
of ALV) in VxV containing ro pair of critical (for;) points;

a fortiori,%(b> avoide N . By Corollary 4.6.1, we can approximate
by a map ﬂu transverse to (and so avoiding) N everywhere -~ of course,
L can still be taken ndndegenerate. $

Such functione are called generic. In general, given VM,
a generic map of Vvto Mmie- to be thought of as one which satisfies
all the transversality conditions which can be stated in terms of 'V,'WL
alone (using no special facte sbout V,M ) To find a satisfact.ory
general definition of the word "generic" in this context is still an
unsolved problem . The above is the case M =1, and Theorem 5.3
is the case P\ %2V +1 . We now discuse a very general cage, °
namely when 2 ma 7 S’V ;. We shall use the results later, for
Haéfliger's imbedding theorem, | ‘

We need to make, in all, six applications of the transversality
theorem.‘ First, let'/\/1 be the subvariety of T’ (V) M)consisting of
jets with rank & v =2 (here, we use "variety" to denote a manifold
with singularities - for our purposes this may be defined as a
countable, finite-dimznsional CW-complex), For g(ﬂl’ xm\)matrix to
have rank V-2, 1m§oaes gome conditions: now in aﬁ open subsget of
the space of such "matrices, the first V-2 columne are linearly
independent, and the condition ie then that the-re.maining (’M -+ 2-)
lie in a subspace of mvof codimension 2 . Hence the codimension
of this set of matrices, hence of N, , 18 L("“‘V+2.), which is .
greater than V~ if lm;&r_s, 80 by Prop 4.4, the set of :{: with
:} (V) disjoint from N,l is a dense @é-set.

Next, let N,Lbe the subvariety ofJ1(\/‘ M)consiating of
singular jets (i.e, of rank {V=1), Then by Corollary 4.4.1, we may
suppose :P transverse to Nz(since the singularities of N?. all 1lie
on N.’). Hence, by Lemma h.O,\ﬁ-'(IJL)is a submanifold of V ,
whose codimension ie that of N,Z , namely(‘m-VH\). We call this
the singular manifold Z of :F, at each point of Z ,4;_ has rank

(«V--. 1). The dimension of 2. is (?—V"""’L" ‘)‘
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Now 1let /\( be the subvariety ofjl(Y M) consisting of singular
jets of rank V-1 of a function at r such that Km(df>fc Z,o , and
jete of rank S\ -2 . Since 2 has codimension (‘W\. -V + 1) , the
condition Ken (d}) CZF imposes(’m-'\rﬂ)further conditions, and I\/
has codimension ?_(W\ “V 4 0 By Pror L.L, provided this exceeds ‘\J"
iee. 2 23V - 1 , We may suppose that (V> avoids N3 .  Observe
that this means that at each point of 3 |, df (Ko» d\r_> is not tangent
to N'z_ . We now phrase these three normalisations in terms of
analyeis, First take co-ordinates in V and M, and the usual
co-ordlnates in the jet space (V M) Then we have
LK) =Yy, +Z} Wi,/ /isy +Eik ° %xi%yk%’gur\)}
where, we recall,U . 1;] y&/ng . Now by the first normalisation,

at each critical point P d has rank V-1, We suppose co-ordinates

chosen so that at [, \%/X spans Ker (3) thus at P , O= CJJC( /3,()-
%/
Then at Q ;ﬁ <P), N 2 may be locally described as the set of
Jete such that the first row Of(u;b .)is a linear combination of
’ f\r' i
',,} = Z C.'L'\/L.;, for all .
) ‘B/a
Hence the tangent space to [\I atQ has as bagis the /im ‘tid'
/guv ’L#Dand /gé .s where /351. =2, U, /'Ll Now the
condition that (F is transverse to NQ. , 1.6, d}(\/lo{‘*‘ ('\1 3Q- B—Q
gatates that the space spanned by the /3'1,“ ; 1s also spanned by the
2 ML} '{wh,} (from(N )q), and the } "JJ/fax_ %xk /N’L”J’
(from dj_ (VP) ). Also, the condition that }‘_ is transverse to l‘ls
i.e, d; (%1_1) is not tangent to Nz » now states that the first of

the rest, i,e. for suitable £; , U

the last set of vectore is linearly independent of the first set

(they are linearly independent of each other since JJ_ has rank v -1 ).
To simplify this, first choose the co-ordinatee in \/ go that

the /SJC.L ('M v+ 4L V) epang ‘then the ‘:’\{( )correaponding

P At
lie in (N )Q The matrix whose rows are( y‘%x}) (%/8 324‘\.4'\Fand

‘é
"‘//Dx ‘3131 £i8 v 418 DOW nonsingular: we make a linear trans-

formation of the y& to reduce it to the unit matrix. Then by
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Taylor's theorem,
YR
Y, =5 x” + Q,(X, Cee )b
forz(.ng “j =X + QJ (11, ...jgv)+

*,04 + Q. ("q_r“')%)"’""

and for 2 44 \frn—"'+1 "jm+v- s+ =1

where the QJ' are quadratic, and dots represent terms of higher order,
Finally, put I"} I'J'+Qj( B V))'y1=1j1 - -.("Jz""i ‘j\) ) and
"j. V-1 \Jéﬁ"f" - Qid-‘v—" "jls"':‘j y) - clearly all allowsable
changes - and the quadratic terms drop out too, so that moduls terms
of the third and higher orders, :[‘- is described in a nbd of P by

Y= EXr s Y =X Y =X (1)
We shall see later that by further co-ordinate transeformations, AP
may be seen to take exactly tlhis form.

Our further normalisationes are concerned with double points,
rather than singular poiante, of . Next let N be the subvariety
of J (V M) X J' </ ’\4> congisting of pairs of jets with the
same image, one of which (say the firet) is singular. We wish to
apply Corollary L.,6.1. Now certainly in a nbd of (P, P) € Vx V,
~the image of :F_ avolds Nq_ if P is not a singular point., Suppoee
then P & Z_ . Then in.a nbd of P » the function is described
by the equations abova, If\p(oo 0} f_(’-ﬁ Xy '-;'X.v_) for small
X., then to the second order in them, X ;= © (2 4& £ ‘\J') , equating
th; corresponding ;{J , andJi'J(,?; =0 , equating the corresponding’%
Hence all the (. vanish. So in some nbd of (P P, f_ XJﬁ does
avoid Nq_(except on A (Z) Y. Since NL{. has codimension 7“**(’""""44):
greater than 2\1- if .2%23-\,—, by Corollary 4.6.1, we can approximate
:}\- by a map (let us again call it $ ) such that :P avolids N,,_f

Now let N5 be the subvariety of T°xTJ° congisting of peirs
of Jjets with the same image. Again, before we apply the theorem,
we must investigate the mbd of a critical point [ , We shall
use equations (1) as exact - the error will always be small; and
we Buppoge ')( not of a smaller order of magnitude than the other I
(otherwise, refer co-ordinates to a different point P on z ).

Then clearly,two pointe (1—1‘ e \,3 AR »)‘—V) have the same image
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only if
X<t JL';; =xf (2¢j¢m) o ' (=% 3c4-)=7c1x,-L (2 ¢igm -+ 1)
so for distinct points, X,=~)(1and xi:x’/i-=o (2 ¢i{m-v+1) ) xi;')({
(w -+ 2 <1 ¢ '\r) _ Now we have
di( ax\ X /«4. Yrm 2 B/aﬂgm+v-1 )
for 2 & <m-ven,  df (%’Sxm = F5yi+ Xy P org it
and for M -4 < 1§V, df. (%,gx&> = D/S“ja.
and for the other point, change the sign of .‘)C,’ + Then since xq*O}
it is clear that these vectors span the tangent space to M at
the common image of the two points,

Now to say that (\.’(;F is transverse to NS is the same as to
say that when}(P> *J— P/) Qs thent‘.q-(\/‘o)L J!_( > M We check
this near the diagonal: 1if two adjacent points have a common image,
they are adjacent to a critlecal point, and we have Jjust checked the
condition in the nbd of a critical point. Hence we can apply
Corollary L4.6.,1, and suppose:{' X_]C transverse to NS' (except on A\__/)
where the condition does not make sense). Thus the inverse imagé
of N‘S in VxV 1s a submanifold: thie ie not tangent to (say) the
first factor V (except at a critical point), so its projection in
the second factor V 1ig an immersion, The image is the set of
double roints A of Jﬁ

Finally let Né be the esubvariety of T"x ._T°x \TD coneisting
of triples of jete with the same image, We again apply Corollary
L,6,1 strengthened for t:;iples (instead of pairs). First check
that three points of \/ , of which two are ﬁeighboﬁring, cannot ha:ve
the same image under :? ; now the neighbouring ones must be near a
critical point P , and a point distant from P has a distant lmage
(by the fourth step), and from the details above, we see that three
points close to P cannot have a common image, Hence we can make
\.f. transverse to NC. H since this hae codimension 2m , We can
avoid triple points if 2m 7 3 Vv,

Theorem 5,6 Let Mw,\ Vﬂlr)e smooth manifolds, 2™ >3+,  Then any i V= M
may be approximated by an j\, , which is an imbedding except as
follows. There are double points, forming a submanifold A of
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dimensionZ\r—fm, and singular points, forming a submanifold Z of
codimension 1 in A4 . Near 2 , QD‘ is given loeally by (1). Hence
D‘:} <A> is a submanifold of ™ with boundary S = :F_ (Z)

Proof We have seen that /) is an immersed submanifold; when
there are no triple points it is imbedded. That A remaine a
manifold near 2{ y With Zi a8 submanifold, follows from the equations
above: 4\ is simply given by X =0 (’Lgﬂl M-V 1\) (modulo higher
terms). Moreover ﬂl(é> is also clearly a submanifold, except
perhaps near \.P(Z) 3 but there it is> iocally given by “j' 2> O ,
Y= O(24) §M V41 ana V+1¢ ) $m) which makes the matter $

quite clear,
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These notes are & continuation of Parts C (analytical foundations),
I (geometrical foundaticns) and II (transversality and general position),
issued in Cambridge in 1962 (copies available on request from the Department
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me to understand the non-simply-connected case, and the theorems stated by
Barry Mazur in his blue book (Publ., Math, I.5.Z.S. Ho.15).

It is intended thet further parts shazll be as follows: III (immersions
and embeddings) - a few enigmatic references to III are needed in IV - V
(cobordism), and VI (surgewy); these will probably appear at about yearly
intervals (though I hope sooner). Suggestions for improvements in presentation -
will be welcomed, in anticipation of attempts tc wewrite the notes more
comprechensibly,
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Chapter 1 Existehce

Definitions Let W be o manifold, and suppose ¢ W and B W disjoinmt

manifolds with union »V. Taen the pair (¥, 3.W) is a cobordism. We call

the pgir (W}'B;U) ﬁhe dual cpbordism. We also call W a cobordism of}B_W to

z);y, and _jsjayf%hgt D-V, ),V arc cobordant, If W is a manifold with corner,
and Y_V, Bc" W, ¥,V are parts of the boi&’n@ary such that Y-V and J, W 'ar_e
Caisjoint, dVo-¥W = /¥ = 3(Y_WUD,W), ve cell W a cobordism with corner,
We shall ﬁsually depbtg a quordism_by a Singlé lettér and often jq§ﬁ céllﬂ

it 2 manifcld, For example, we usually regerd = product M x I as a cobordism,
with 9_ (M x I) =M x 0, 9, (¥ x I) =¥ = 1; if M has boundary, write

. 550"1 xI) =)k x I. Our manifolds will be qompab"% unless otherwise stated.

Suppoée M a cb%oidiSm;' bl Sr_1:i "t )5+f.M an imbedding}i-

r-} m—r—1)

Introduce a corner (I,6.5) along (S x S . Now glue ¥ x D™ to

M by £ (I,7). We know this gives a result unique up to diffeomorphism.
This is described as M _with an r-handle attached by f, or as MUfhr, and f as
the attaching mep of the handle. Ve caell r the dimension of the handle. We

define }+(Mchr) = (M - ImP) o (OF x sm—r-1). ? we have a sequence of

attached handles:

. . r Ty
H= MC3f1h 1H..“h%kh s

we describe this as a handle presentation of il on M; if the maps f; are

not specified¢, as a handle decomposition, In particular, if M = ¢ x I, we

speak of & handle decomposition of N with base Q (here, Q may be empty).
Observe the similarity of this definition to that of a C.W.-complex: one
of our main objects will be to show how the theory parallels that of finite
C.W.-complexes, The purpose of this chapter is to prove the existence of
handle decompositions for compect manifolds: in the next few chapters we
will show how to reduce such a decomposition (under some hypotheses) to

its simplest form.

To prove existence, we shall use nondegensrate functions.
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Lemma 1.1 Any cobordism V admits a nondegenerate function f, with all

critical values distinct, attaining an absolute minimum on a_ W only,
and an absolute maximum on b+ V only, 7
Proof Let B _W x I, b+1‘f x I be tubular neighbourhoods of J_¥V, b+w which

are disjoint (I,3.1). Define g:W——-—)[-1,2] by:

for x £ 2_W, gx,t) = t-1

)
)y (1)
x £ B+»¥I, glx,t) = 2=t )

and some extension to a coatinuous function taking only values between
0 and 1 elsevhere: +this is possible since W is normal, Approximate g

by a smooth function h, agreeing with g near ZW (use a partition of unity,

as in 0,2,1.1). Now approximate h by a nondegeneféfe function f with distinct

critical values (II1,5.5) agreeing with h, and so g, near )W - which is
possible (II,4,3) since g and h have no critical points in a neighbourhood
of B\'.T,

Complement 1.1.1 Ve mey suppose that for X close to ¢¥W, £ is defined by

the formula (1.). p

How give ¥ a Riemannian structure (0,3,3) adapted to the boundary
(D29); <for convenience we suppose it as ia (I,3.3) - that is, & pro;iuct
metric in some neighbourhoodé of »VW. Then the differentialA 1—£_orm df_
induces at eath Pe\_‘f. an.eiemént dfp of WP*;" using the Riemannian structure;
this is ideqf’,ifj:.ed with :,n eleméﬁt of {WP '~ i.e. a tangent vector., Thus df:
gives a vector field, which e call \VA

In XC‘}, we can use (0,4.5) to integrate f and obtain orbits ,O_t(P), cach
defined for a cert’ain brange of values of-P, Wear a poiqt of B;W, we cé.n
take coordinates X, oeesX such that W is defined by X, 2 0, x, is t‘he:.

t-coordinate in the tubular neighbourhcod, so that £(x) = x,

n

Riemannian structure is of the form ds> = "dx12 + il j=2
yi=

gij dx; dx; .

Hence \/ £ agrees with a/ax in such a necighbourhood, and orbits are of

1
the form

?t (x1,:o.,xn) = (x1 + ‘b,xz,..o,xn) X1 ?/O, x1 +t>/0.
Each of them meets b_ W ia just one point, and together they f£ill out a
neighbourhood of B_ ¥ in a (1-1) menner, Similarly for B+ V.
If we regard 0t(P) as a fu.;nction of t, it is smooth, and we have a

metric, so can speak of speed,

«,.:.
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Lemma 1,2
= . _ i
(&) 2@, )], o= ez |
(b) The speed oz 9, (P) at t=0 is lafP[_
Proof o
(2) di f(”t(P))’ = Vf(f)’P by definition of P
= df(Vf)IP
_ ~ _ | ]2
_<dfP,dfP/ = ‘d"p.[

in the Riem&nnian inner product on Wp, since this defined Vf.

(b). Take coordinates. (x1 ’ .y xn) et P (so that P has coordinates

(0y +u+,0)) such that at.P the Riemannien metric agrees with the standard

metriec in Rn. ~Let df = Zaidxi_ ¢ then
- . .
Vet =2a, /axi (at P)
Thus, at P, 3 8. () .
- 3, i :

so the speed of ﬁt(P) at P is just (2‘:&4)5 = ld"’ {
Now suppose PE ﬁ and that the maximum ra.nge of t in which jat(P)
is deflned is (a b).

Lemma 1.3 Suppo.se'W compact., Then either a is finite and as t———-yé,

pt(P) tteﬁvds:‘.f.o 2 po:int on B_ V, or 8 = =~ oo, and the closure of each

(o, (?) st g —ZX)} contains a critical point of £. (Similarly for b).
Proof If a is finite, by Lemma 1.2 (b), the pdints p,(P) form a Cauchy
sequence as 't;;-—-aa (Since ‘.'T: 1s compact, ]dfp[ is bounded); since W is -
complete, they tend to & limit point Q. Iz 0 was interior to .W, it
would follow tl;a,t Q w.'a.s"‘“o:d the 'orbit which could then be extended:

thus Q is on 2)\-'1' Slnce by Lemna. 1.2 (a.), £ increases along cach orbit,‘

£(Q) <f(P), s0 Q is on B

Now let a ; — co. Then by Lerma 1,2 (a),

f N dfpt(l,)| 2w
converges. So 'd (P)[ has infimum zerd as t—3 — oo, "Outside any
open nelghbourhood of the set of critical points, fdf[ is nonzero, and
attains its lower bound (by compactness); S0 ,Bt(P) ‘meets any such
critical points is compact, and so meets

neighbourhood., Sut the set of

the eclosure of the orbit.,

Rry-Ae




Ve are now ready to eneslyse the function f. For g2 ER, write

=
L]

{fPevw: 2(P) Lo}

M = PE VW : 2(P) = a);

thus for a<-1 v : ¥ = ] »
8 = 1 A S MY = DLW
8 =& =1 v =d vx[o,£] ¥=)uWxg- '
a=2-%F W= W-2 ¥ x [0,€] u =2,¥ x&
B =2 Wt =W B =) W
; + o
a2 We oW M = g

provided that £ is so small that B\,W x [0,8] (‘\“(.- +4~) are contained in
the neighbourhoods described earlier, Clearly, for a < b, v Wb; we
want to aescribe how Wb is formed from W=,

Thgﬂérem 1.'4 | Suppose that for a< ¢ X i), ¢ is not a crit?'.ca.l velue ;>f f.
Then (2) £ [a.,l:;j;:;.s: diffcomorphic to 1 x [a.,l:‘t‘]; o

b . a
(b) W is diffeomorphic to W

Remerk Since a,b are not critical values, i°, P and £ [a,b] are sub-
menifolds by (II,4,0).
Proof  (a) Let a< £(P) b, The orbit through P must terminate (at the

lower end) at & critical point or at B_W, by Lemme 1,3, In either case it

meets Ma, for we have assumed the absence of critical points in between.
Similarly it meets Mb. Since £ increases along orbits, the orbit neets H and
Mb in just one point each,

Define a map h : f-1,[a.,b]—-3Ma' X [a,b] as follows, I1f -
agf(P)i\‘ b, the ?irst component of h(P) is the unique point where the
orbit through P meets M%*, The second component is £(F)Y. h is (1-1),
for if h(P) = h(Q), then P and Q lie on the same orbit, and have the same
value of £f; since f increases strictly along orbits, P={). Also:h is onto,
for if R EM&, we knoy ?ha.t the orbit through R meets Mb, so if a < tsb
there is one (and oaly one) point P on the orbit with f(P)=f, and so
h(P) = (R,t), Parthery, h is smooth, for if h(P) = (ﬂ+t(3),f(P)), fis
smooth, and p.t(P) & smooth funetion of t and P (0,4,5) ‘and Bince
;‘%@&u is nonzero on the orbit, t is a smooth function of P,f(2 (P)),
and £=0 defines t as a smooth function of P. Finslly h™' is smooth by &

similar argument,



(b) It follows from (a) that 3P is obtained from W™ by glueing on
M* x I along Ma. The result now follows easily : using a tubular
neighbourhood of % in W® a.nd. the bump function, we could produce an
explicit diffeomorphism, and even a weak difi‘eotopy of it with the
identity map of Mb.

Complement 1.4.1 If V is & compact submanifold of W, conteiniag no

critical point, and with \/f nowhere tangent to },V, and Q;V is the set
of points of AV at which /f pcints into V, then V= D V x L.

The pr(-)of needs only ineSSentiai chanées.

The above shows that "as long as a does not pass through a critical
value; the diffeomorphism type of 'l femains constant”. We now have to
investigate the critical %alﬁe.

Morse lemma Let £ be a smooth function on a neighbourhood of O in »re
with Ta-ylor expax-ns"ioﬁ

2 ya 2

Xt A A% + 0(]x

£(x) = - [3)-

Then there is & smooth coordinate change y=y(x) such that

y(0)=0, -—;—?; = Iﬁ’ and near O
2
2(x) = - 21y + 3 Y5 e

Proof We have £(0)=0, so by (0,3,1) there exist near O smooth functions

- . > .
£, vith £(x) =infi(x). Also, fi(O) = =% = 0, so we can apply the

axi c
result egain to obtain h.. with fi(x) =ijhij(x). Write

glj(x) = %(h (x) + h (x)) We think of £(x) =zgij(x) xix:j as a

quadratic form, and dmgonallse. Note that

i
2 .
g;;(0)=12% | ={-1 f=jx )

X, DX, | i=
Set y, = (< g11(x)) (Z 1 g1Jx )s where the siga is that of g11(0)
Then hx' = - 1, x1 = if i>1, and

Bx1 o RN :
+ 2 n
£(x) = - ¥y + 21 =2 giJ(x) X%, .

We now repeat the reduction, observing only that although g'ij(x)

depends on xj we can eXpress X, by Yqs and the dependence is smooth.

Eventually we obtein the required result,



Theorem 1,5 Suppose that for a Sf(P) &b there is justgdne
critical point, 0, which is nondegenerate and vith £(0)=
W is diffeomorphic to W~ with a handle attached.
Proof  Our discussion of orbits in Theorem 1.4 remains§ valid except

for those orbits with O as & limit point., We mmst the,?éfo;e‘invgstigate

a neighbourhood of O, Take cocrdinates YyreeesYys with

then in a néighBourhood of O we can expend

£ly) = ¢ + zz_aijyiyj +

Here (aij) is the matrix of the Hessian of ? &t O;

diagonalise this quadraﬁic;form, and write

2. . 2 2 2 ' 3
L 4 = - X ~e oo™ X ‘sae { ) .
f(x) = ¢ ] Xy + N + + x4 (1x]7)

}

The-intgger'k is called the index of the Zessian, of the critical

point O, By the Morse lemma, we may suépose that fshe term O(foB) i

'Riemannian stfucb¢
agrees with the Buclidean structure.in this coordifpte system : it s @ °F

certainly possible to find such a metric;

We draw Pigures for f(x) = c—xf + xg , showi» W—1 and'w1 .

In this case the curves Mé are hypérbolae with asymptotes y2=x2;' e e,
except for M° which is this line—pai;, and as-é iﬁéréages up fo zero;

w2 incregses without essential change, but it engulfs the ofigin vhetr-— - -
a=0, .

Choose. £ so small that for Ixi + 'ﬂ < 5 ¢, the above formulae

are-valid, Iow copsidgr the following modifications: ' “/ : i

24 | &7 TF
g 72 7

Add a handle-

W Introduce a corner:



i

This shows how to imitate W&, Formally, write x = (& ,%), vhere
5 =~ = - -G
S = (X1,-..,KA), \— (XA+1,.n.,xn), f(x) = C IS‘ +I}fd ,_’ a\nd
consider the tube )’r‘dgg_ ]@{g_ &< ¢ this is the handle.”
AN
Let V be a'smooth manif_cld with corner which

{> £ near [Ql =< . This includes

-a

(i) Coincides with |y l<
the corner lj_[ L} ' S
= |y =
(ii) Coincides with W~ £ When ]x[ + [y‘z 5 ¢, and contains v E
(iii) Fas OV everywhére.transverSe to the orbits.
This may be found using a bump function, |
Then by (I,6.4) M_ € s obta.lned from V by straightening the corner - or
equivalently, (I,6.5), V from M £ by introducing one. o |
Now \E <¢ \ [}, }‘§E,, defines & product D’\ x D% X , which meets V in |
the set ti{: T, ‘)US‘ E , an s A x]).n""';l on thei.x; common boundary.
Since the union U is ev1dent1y smooth, and V and D A x D% >\a.re -defined
by cutting it a.long S>\ -1 x‘l o >, by (I,7.2) (in the extended form),
Uis obta.lned by gluelng these. Now we éﬁéer#e that U is a smooth menifold,

transverse to the orbits, w1+.h no crltlcal points between 1t and Mb thus

_ by complement 1,4.1, we find Ww° diffeomorphic to U, But U consists of W*

with & A -handle attached.
Complement 1,5.1 If the Hessian of f at O has index A s we attach a

A -handle,

Complement 1.5.2 If there are several nondegenerate critical points at
level ¢, we attach several handles. Indeed, we can apply the above
argument in & neighbourhood of each,

Corollary 1,5.3 W has a handle deeomposition on 2,..—1\{.

It is a.]:sé poséible to proceed in the opposite direction.
Theorem 1=6 Given ‘a ha.ndle decomposition of W cn —B_W, there is a
nondege;eféte functién f on ¥V (as in Lemma 1,1) with just ome’ critical
point of index A for each A-handle,
Proof The result is fro%red by indllm'ﬁion on the number of handles: if
there -a:re none, W= B_-W x I, and ve take f' as the projection on I. . Now
let ¥-be defihed by attaching 211 but the last handle: by the induction
hypo‘bhésis, f can be defined on V, _cénstant "o>n E+ V. So if we can

define £ on (B+ V ox I)uh) , we can glue back (using collar
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neighbourhoods of B+V on which f reduces to a projection) to make

f smooth. Zence we mey suppose that W has only one handle,

A~

How let g : S % ,Dn-}., \?;_—W be the attaching map of -a

)\-handle. Let R be the closure of the complement of the image.

n-_->\

Consider the set H C_IR)\}: ® . definéd by -1 —l:\(l2 +fy\2 <1

R SR

ine K, Hb —x2 2:—1re . 1, d.

define ) _ >+ y -[x/ +y| sp. + 1, an 3;5{>;§£fi/
3-b

d¢H

H

M\

]

BCH by | x[%y[% 2. Define G 21 4 Dn_i\_.}b_ﬂ by

1
G(u,v) =.({1 +Vl_v/2)?"u,v): this is ecasily seen to be a diffeomorphism.

Define A:I — [—1 ,1] by F(x,y) = —\xt2 +'yl2. MNow we attach H to

R x [-1,1] to £orm ¥’ by G: (\,CH ~—;s}"1 x SD—}x [-1,1], where
FAEL)

| s v . ,,fv ) '
G(X,Y) = (|:| ) lyl’ (K,Y))- W—/H@ﬁ—-‘

Define £:W—3[-1 ,1] by £i& = P, fIR = projection. This is clearly a
smooth function, whose only critical point is the nondegenerate one in
H. B_‘.‘J'is diffeomorphic to B;W: talte the identity on R x -1, and
extend by g OG-: on ) E. TFinally, this process gives a manifold
diffeomorphic to that obtained by attaching a handle by g: .if we use
the cénstruction of Theorem 1.5, it suffices (by a rémark in the next
chapter) to observe that we have the same attaching -sphere and normal

framing,
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Chapter 2 Hormalisation

We could now,procged immediateiy to make varicus deductioné about
smooth manifolds from the existence of a handle decompositioﬁ. First,
however, it is convenient to normalise a present&tipn. Recall that
MUfhr is defined by attaching p* x 1™ to W using =zn imbedding

g 5571 « Lm‘r_a)“m.
It follows at cnce Zrom the difféotop& extension theorem that this is
determined up to diffeomofphism by the diffeotopy class of £, for if g
is a diffeomorphism‘af M, g induces & diffeomcrphism of Ml%hr with
Mhéfhr. By the tubular neighbourhdod theorem, it is even determined by
the diffeotopy class of T = 21s™ ' 0 together with & hom;topy class of
normal framings of f(Sr_1 x 0) in ‘?%_M. |
Definition Leb I/i\.{,,h‘r be 2 menifold with handle. The attachiné sphere

(or a—5ph9rq) of.hf\is the sphere f(sr-1 x C) in "9, M. The belt sphere

e .t sarmes

{or b—5phére).is the sphere O x gn-r-1 in.‘5+(MLbhr). The éggg is the
disec T x O. .

Lemme 2.1 ket r <s. Then (Mufhs) Ug b’ mey be obteined from M by
attaching the handles simultancously, or in the‘feverse order.‘

Proof Let m = dim M, Q- = 3+_(Bf§!ufhs). _Th_en ;we have in o the a-sphere
Sr-1 of h' and the b-sphere gi-s-1 of h®, Since (r—i) + (m-s-1) =
m-1-(s+1-r )<< m-1 = dim @, by (II,5.1), §* ma& be approximated by a

—5= 1
@-5=1. ¢ the approximation is (C -) close enough,

sphere not meeting S
we still have an imbedded sphere,diffcotopic to the old cne. By further
diffeotopies, we may make Sr—1 avoid the tubular neighbourhood

D° x Sm-s-1 (using the diffeotopy extension theorem, and the obvious
Pact that the tubular neighbourhood mey be 'shrunk' to avoid Sr-1) and
shrink the tubular neighbourhood s x D™ so that this, too, avoids
p° x 851, But now the attaching map of the r-handle is disjoint from
the s~handle: its image lies in Blﬂ, and the handles may clearly be

added in either order,

Corollary 2.1.1 Lny W has a handle decomposition on EL_W with the

handles arrenged in increasing order of dimension,

Follows et once by induction.
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From now on we shell generally assume that hendles have been~—-- -
arrenged in order of increasing dimension, HNext, we comsider handles
of comsecutive dimensions, To cIlarify the exposition we describe

1

only the case Wn+1L&hr L%h?+ : write Mm for B+(Wt§hr). In Mm we

heve the e-—sphere s* of hr+1

and the b-sphere S" " of h'. These have
complementary dimensions,
By (II1,5.1) the imbedding of st may be spproximated by a map transverse
to Sm—r; if the approximation is close enough, we have merely altered
the imbedding by a diffeotopy., Now since the dimensions are complementary,
and the mep transverse, intersections are isolated points; since s* is
compact, therc are only finitely many.

We now teke an intersection P of S* with S and normalise

T

S x T

in the neighbourhood D* x S™F of P in M., Regard P as in S" ,
so the point is O x P, First we will deform part of S’ near P to lie
along D' x P; -indeed, by the implicit function theorem (0,4.2), the
projection of £(S") in D x 8™ to D x P is locally a diffeomorphism
at O x P, and there is an obvious diffeotopy along great circles in Sm-T,
It is easy to extend this diffeotopy to Sr, without introducing any new
intersections with Sm-r. Hext we observe that the tubular neighbourhood
D" x 8™ of 0 x S can be shrunk, by a diffeotopy, to a smaller
concentric tube D x S intersecting ST in a subset of the D* x P above.
Ve can extend this diffeotopy (by the D.E.T.) to one of M, and, if we
prefer, apply the inverse diffeotopy to f(Sr); this has the effect of
stretching out the part where s* lies along D' x P to the whole of D'.
Finally, choose a tubular neighbourhood T of P in Sm-r; then D¥ x T end
D' x D™ are two tubular neighbourhoods of D" in M, and so diffeotopic
(by the T.I.T.); use a diffeotopy to move the imbedding of S° x D™
so that they coincide,

The same process can be done for any intersection other than P.
Definition In Wm+1t%hrL%hr+1, the handles are in normal position if

M=)

all intersections of D¥ x ST T and S* x D are of the form Dz X D?_r s

vhere Dz x Dg-r————i D" x 87T is given by the identity on the first
factor and an imbedding (those for separate walues of i disjoint) on the

second factor, and taking the product; and similarly for



1=

D} x D) T ———3 8T x D777,
Then the argument above proves
Theorem 2.2 Any handle presentation of (W, S -W) may be modified
by diffeotopies so that.
(i) The bhandles are arranged in increasing order of dimension, -.
(ii) Any twc hendles of consecutive dimensions are.in normal

position,
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Chapter 3 The homology and homotopy of handles

It follows from the definition that there is a deformation
retraction of Mu%hr = Ml%(Dr‘x ™) on Mug (0 x 0), so that up to
homotopy, attaching a handle is the same as attaching a cell (its core).,
In fact, it is clear that, D* x D™ deformation rctracts on

r-1 Ne~=T r . . . )
S x D vD x 0. This gives & very close connection between handle

decompositions ané cell complexes. In particular, we deduce the following

from Corollary 2.1.1.

Proposit;pn.3,1 If W is closed, it has the hémotopy typemof a.finite
CW complex, In general, (W, 3-W) has_ﬁﬁe homo£opy type of a finite C.W.
sair. e - :
Proof The first statement follows b&ntaking a normalised handle |
decomposition of W and replacing each handle by an equivalent cell, In
fact it would not be difficult to show (using the methods of Chapter 1)
that in this éaséiw is even homeomofphic to'an appropriate fiﬁite Cc.V.
complex, | |

For the seqond statément, note that»by the first, we can regard .-
as a finite cell complex, and agein apply Corollary 2.1.1.

Ve now di;cuss duélity. Obser?e that with f, -f is also nondegenerate.f
Iﬁs critical points coincide with those of #, but if £ has index Mat 0, it
has 10c§11y’the form |

2 2 2
f(x) = c-x1. el XX hud xA + xA+1

Foeet X
l ses n

and ~f has index n- A . Using the correspondence (Theorems 1.5 and 1.6)
between nondegenerate functions and handle decompositions, we find the
following.
Proposition 2,2  Suppose VW has a handle decomposition on LW with ’
A, T-handles for O € r £n. Then it alsc has_oge on Bf:w; with
oL (n-r)-handles. |

If wve ignore corners, we may identify the handles in the two cases,
and observe that in the reversal, a~ and b-spheres are interchanged.
Now up to homotopy we may replace handles by cells, For homology; weA

have chain groups

c_ (W, 2_¥) = W 43/A SR 4 (o(r times);



we must calculate the boundary homom rphism

3 €y (4, 32) —sc_ (¥, 2_W).

This is determined by incidence numbers, cne for each r- and (r+1) -handle.

Lemma 3.3 The incidence number of handles h''' and h¥ equals thé
intersection number of the a-sphere s¥ of hr+1 and the b-sphere
n-r-1 by ' i

S of h .

Proof Here we shall write Wr+—‘; = (J¥Wx1I)u all s-handles’ for Ss®r, "

and M = D+Wr+l s the laterscotion mimher ig 't;aken in M, whei‘e we use .
2
Lemme. 2,1 and add all r-hendles simultaneously. A word about signs: the
cells in the cell-complex (D' x 0) are arbitrerily oriented; this-induces.. . .

orientations of their bounding a-spheres Sr'"1 and of ‘the ‘normal bundles of

their b-spheres., If an a-sphere s* and a b-sphere Sn—r—1 meet transversely-

at a point, we take the sign + or - according as the orientation of s* does.... .

or does not agree with that in the normel bundle of 21 L thus

orientability of W is irrelevant. If, though, V¥ (and hence M) is oriented,
orienting the normal bundle of a belt sphére is equivolent to orienting the

sphere, and we can count multiplicities in the usuel way,

n-r-1

Now we may suppose that ST meets S transversely: then the

intersection number agrees with the (local) degree of the projection of

T

S” on the normel disc Dr; but this degree is the required incidence number.

Theorem. 3.4 (Qp‘al.ity Theorem) If W is 6rienta:t»1e, Hr(W,' W) T HYT(W, Q).
Proof By Proposition 2,2 we can identify the chein groups of (W,a_ W) with -
the chein or cochein groups.sf‘(W,E§+W). B&Uﬁédﬁd 2.3, the incidence
numberéfQQe tﬁe“éamé ﬁp to sign (only a-spheres and b-spheres are inter-
changed) énd thé isomorphism identifies the ‘one boundery with the other

coboundary.

Corollery 3.4.1 (Poincaré Duslity) 1If VW =, H (V) = Hn‘r(w),

Corollary 3.4.2 (Lefschetz Duality) H_(¥) ZET (W,9V)

gt = B, (W,3W),

The proof‘above is'surprisingly'réminiscent of .the earliest proofs
of the reéﬁlt, but of‘coﬁrse is only valid for compact smooth manifolds,.
As a‘sfécial case of homology groups, we mention connectivity.

We retain the notation of Lemma 2.3, Observe that the a-sphere S_1 of .

a O-handle is the empty set; ' 'in fact a O-handle consists precisely of



an n-disc, disjoint from J -¥ x I. Now the a—sphere s° of a 1-handle is
e pair of points: ' these may or may not be in the same component of W%.

If not, the 1~handle connects the two components; but if they are, the
corresponding hendle -does-not affect connectivity.

If -V is nonorientable then so, of course, is W, If, however,

B'AW is orientable, so is W%, since adding a disjoint set of discs hes
no effect, Ifor does adding a set of 1-handles which connect different . .. .

1
2

components of (we are thinking of 1-handles as being added in turn,

not simultadeously). Kowever, the attaching map for a 1-hendle is & map

of s° x an1 -~ i,e. of a pair of discs., If these are mapped into the

i
seme componernt of W? with opposite orientatioas, then the orientation of

W% cen be extended over the handle; but if with the same orientation,
W1% is nonorientable, Thus if, say, W% is connected and orientable, we
may speak of orientable and oY nonorientable 1-handles., It is now easy to
see that r—hdnéles for r % 1"do not affect orientability; "for they
introduce no new (potentially orientation~reversing) elements of the
fundamental group.

This illustrates how the addition of handles affects W; we next
discuss what happens to the boundary on addition of a handle,

r-1 n-r

Definition Let 7' be & menifold, £ : S x D®F +M an icbedding. The

operation of removing the interior of the image of f, and attaching

r n-r—1

p* x s to the result by 2|51 x s®T1 is called & spherical .
modifiééfion of M, of type (r,n-r).

We observe the following:
(S1) The effect of a sphericel modification is determimed by £ - even
by the diffeotopy class of 2 (by (I,4.2)).

. . N I d
(S2) The modification gives a manifold ¥ with the same boundary as M:

in particular, if M is closed so is M’.

(S3) Set W= (i x Is,h"). The manifold W (with cormer, if M hes a
boundary) thus has M, M7as o W, 34W; we may call it the -supporting -
menifold of the modification. Also, J W = oM x I,

(S4) 1If M‘is obtained from M by a spherical modification of type

(r,n-r), we can obtain M from M’by ode of type (n-r,r). This is

essentially the remsrk that we maode above in discussing duality. We



have the same supporting manifold for both modificationé.
We recall that if a cobordism W has M = Q_‘m 0= 2% WV, Mand W

are called cobordant.,

If Mn_1,.ﬂn—1 are oriented, they arc cobordant in the oriented sense

if Wn is oriented, and W induces the given orientation of l, and the
negative of the given one on I — this is usually written as JW = Mu (-N).

Proposition 3,5 Mn—1, "7 are cobordent if and only if one mey be

obtained from the other by a scries of spherical modifications; if
oriented, they are cobordant in the oriented sense if and only if, in
addition, the modifications of types (1,0~1) end (n-1,1) all c'or-reépond to
1-handles qf the orientable type;

Proof The first statement is an immediate consequence of (S3) ana
Corollary 1.5,2;5 the second follows from that ané the discﬁssion of
orientability above.

Finally let M‘be obtained from M by an (r,n~r)-modification: we.fisﬁ
to discuss homology and homotopy. There afe two approaches; to use the
supporting menifold V = M x I)\thr or the inﬁersection X = M;\M'. For,
up to homotopy, V is obtained from M by attaching an r-cell, and from M’
by attaching an (n-r)=cell., On the other hand, M is obtained from X by
attaching an (n~r)- and an (n-1)-cell, and M;from X by atfaching an r—
and an (n-1)-cell,

Proposition 3.6 Let r< n-r. Then M end li‘have the same (r—2)-4ype

(in particular, if r > 3, the same fundamenfalvgéoup). If r<n-r, and
X, % are the homology ?nd homotopy classes of.fhéva—sphere g(s™" ﬁ 0),
in M, then
(i) Hr_1(M') is the qgotient of Zr_1(M) by'the subgrogp genéré%éd by x.
(ii) If r=2, ’NH(M') is the quotient of ’RH(M) by the normal suﬁgroup .'
generated by j? . . l -
(iii) If.EhtLE!--rW}(M’) is the quotient.of‘ﬁrr(M) byvﬁpe ’W}(M)—submodﬁle
generated by f? . |

These all follow from standard properties‘of Eell éomplékes. We
can express the homo;ogy,relatipns byvé single diagraﬁ, as follows,
Observe that the_inclusiong M7y c (WM x I) :}(W,M)vinduce isomorphismé

of relative homology groups in dimensions # n-1. Indeed, excising most of



X, they become (D¥ x gor=1 o gr=t g

, ) <0 %27, 877 % D°7)

and both relative groups vanish except in dimensions r,n-1;

in dimension
r we bave an isomorphism,

Proposition 3.7

We have exact sequences

——— ~
H—i “ (M) B (W,M) Hi(M’) Hi(W,M)
*i+1( ) i (W) . (X)

o (W,M)
1
~_ > w o~ \_,/

\.\:—:.+1 (M')/ \‘}, e \H_(M) / \\,

for i ¢ n-2,

Proof Identify HJ_(M’,X) = Hj(W,M) (j € n=2) and HJ. (M,X) = Hj (W,M’), duelly.

Then write out the exact homology sequences of the four pairs (M,X), (M%,X),
(W,M}, and (W,¥).
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Chanter 4 HModifying decompositions

In this chapter we discuss several modifications that can be
made to handle decompositions: introduction or cancellation of e
complementary peir of handles; addition of hendles; replacement‘of
a handle by one in 5'diffe;ent Cimension. These will be used below to
obtein a minimal form of handéle cecomposition.

As thg,simp}est cese, we first discuss O-handles. Ve may suppose
that W is ’Zoﬁnected. How if W hes o( i-handles, we know that
Wi dwx1 o, D°. To this we add 1-handles, which must make it
connected; moreover, a 1-hendle zffects coangctivity only if ité ;;sphere
s° has.£hezfﬁo point; in differeé£ combonen£§ of W%; iRe;rrange.the 1—h££&1€$
(ﬂéﬁ&aWZ;f)!Such thet the first fev each connect different componentsHGf W%:
till it is councectec. Observe that for ome of these, we hdvé two manifolds
with boundary, ené = disc imbecded in the boundary of each, Attaching
11 X I is the some (I.7) 2s gluecing along the (n-1)-discs-i.e¢., forming
the sum (D40), ioreover, by (I,7.6), for any manifold RS Al o
So the O-handlc¢s ~re just czncelled out, and the various components of

;}-M x I addec togcther,

Iroposition 4.1 %2 ndmits = hondle presentotion of the following kind.

If J-W = f , therc is one O-handle L", and = -umber of 1-hendles.
If Z)—W is comncetsl, there arc no O-handles, but = aumber of 1-handles.
If 3-W has components M, 1< ixk, therec cre no O-handles, then
P (i) ? - 15K
(k-1) 1-handles ccnnecting the components to give M(1) xI + ...+ M(k) x I,
then o further number of 1-handles.

Corollary The new presentation has, if o~ = ¢ , one O-handle end
(a(1— 0%+1) 1-handles; if ) -V $ #, no O-hzndle and (Dk1-cib) 1-handles.
For each use of W +D° T il to simplify the decomposition removes

just one O-handle ond one 1-handle,
We next wish to discuss cancellation of hondles. We first prove the
simplest case.
n-r-1 T . . .
Lemma. 4.2  Let QJ: D -3 D be the imbedding, by stereographic
projection from (0,...,0,-1), on the boundary of the upper hemisphere.

Then ST x D®Ty. n™T >t

litq



Proof VWe first give the proof for r = 0, n = 2. Let E be the
. 1.2 2 - 2 2 .
ellipse 3x° +y =1 and & ths confocal hyperbola 2x™ ~ 2y = 1. Write
Int and Ext for the (closed) interior and exterior. We shall show that
Int E A Int I is obtained from S° x D2 by iatroducing & corner along
s® x D1; that Int E A Ext & is diffeomorphic to D1 x D1, and that the
attaching map 1 x 9 becomes the identity. It follows that the required
menifold is diffeomorphic to Int E, which is evidently diffeomorphic to
p° (e.g. use the function % + y2 and apply Gomplement 1.4. 1)
E meets & at 1 p } Consider the
=ly= A )- /
component of Int E n Int E in x>0; it has the focus kﬁf*~—§if
(1,0) as interior point. Rays through the focus define a vector f1e1d
everywhere transverse to the boundary, which may therefore be used for
stroightening the corner. A smooth cross—section is given by
(x—1)2 +_y2 = %, which meets the rays through the corner in (1,i%).
Thus the component is obtained from a disc by introducing corners at
opposite ends of a diameter, as stated.
In Int EnExt H we use confocal coordinates. Each point (x,y) of
the plane with xy £ 0 lies on just two of
2
/;‘\+1 + ;\
one hyperbola, given by —1 < 7;1 < 0, and one ellipse, given by O <}\2.

However, these two meet in 4 points. So we write/u.2 = 1+JA1, 1}2 =A

and obtain o x_=/_<\/1 +\"2
———

y =P J1p
vhere the positive square roots are to be taken, and -1 <€/LL411. It
is easy to verify that this transformation is smooth, with‘nonzero
Jacobian, (1-1) onto the whole plane except for y = O, xzjz 1.
Hence, in particuler, it: induces o diffeomorphism of the rectangle

}4 Z/é |\7{ f; 1 onto Int E ~ Ext E, as required.
Now return to the case of general r and n, which is obtained by

rotating the figures about x- and y-axes,. Write

X

/AL
< r+1 2

2
and ‘xl =2 Xy etc. Then the transformation given by

1!

(x1 ye ‘.'”"xr'+1 ) ) Yy = (y1 g ’y_l_r_1

(/-L1,..-, r+1) Y= (7)1""’Vn—r-1)



i

-ﬁ~/ﬂm;r Y, 'ﬁgJH~\/qz

i
induces a dlfPeonorDhlsm of the D’+1 x poT! given by
bu}z Q?%7 \\,‘ 1 onto the intoysection ¥ |x[2 + \ylzrs;1,
2 . - - - N ‘e
2|:J - 2|yJA ;: a
Likewise ir the in’ens ection ; x[2 +‘y{2 (:1, 2lx(2 - 2|y[2 ,

considex +5c flelal¢o -med by rayc ‘Hrouoh the r—sphere y—O (x(

and perpendiculay to iv (ada not p:aduced Deyona thelr 1ntersection
with x=0). This éer{ainly is a vegzor field (except on thé.sphere and
on x=0), and JC ens Llj see that it ir tranévérse to the Bsdﬁaary, sé Ean

be used for roundlng the corner, Kcinding it, we obtein the manifold

(x| ~ 1) lyl2 %, vhere the corer is tovbe introdﬁéed aloné
lx] =1, |y| =1 (in fact sr‘i Sn"r Ve |

Consider S~ x 277 (: ,én~r41 x B witﬁ-coérdinates
(u,v,t), so ]ui 1, |w [? +..[t|2 s;:'; We define inverse difféomdrphiéms

belween this aad the manifold above b
= J == "Cl H ; ' -
"7 k) ve=2y b2l

X

u(1434) v =Y.

Note that |x’ iz now.ere zero, sc it :nd its inverse are smooth, We

also note that the ccraer §x| = 1. |y| - & becomes the locus |w| =1, t = O.

Finally we must identify the attacting map, = The Sphere S° x O given
byleqz'éz%, V=0 maps (vié f’ ) o xf =%, b, then rbunaing‘
the cormer mvlitiplies = by 2"'E and 1ea &s y at 0, Finally we obtain
u =xlxl=}%/*' and v = (w,%) = (0,~1);moculo the obvious identifications,
in fact, we hééf the *denulty hap, The e-taching map is a tubuler
beighbourhoodﬁof this, ané we note tha%A; normal diréction 'B/a;vi maps
to some positiTe muitiblé o? E/QVi 5 using the tubular neighbourKood -
theorem, it follows that the atfééﬁing ma; is, up to a diffeotopy; as ©
stated. E

Note that if diffeomorﬁhirm is repléied by homcomorphism, this
{and the next lemmz) become much;easiéf to srove;” it was the“necessity

of rounding the corners systembtically which .ed us tolthe formulaec

above. o ey Re
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Lemme 4.3  Suppose that for Dn'ﬂfhry;ghr+1, the a—-sphere of
hr+1 meets the b.-sphere ofvh? transversely in one point. Then
(i) D" Ts x DT

(ii) The diffeomorphism 'a £ can be so chosen that g becomes the map

1 x 0 02 Lemma 4.2, and so Dnufhrugh-rﬂ =",

Proof Ve first normalise (Theorem 2.2) so that we can write

r-1

n-r-1 — D x s%” is of the

r b-r-i O\ . R 5
g_(D_ D ) C;!,)D . - ilow g+.D+ x D

form Q;1 x @ (in normal position, g is & product mep; it is

n—r-1
isotopic to thc particular form shown, by the Disc Theorem), Also by the

n-r-1i

disc theorem, g (0" x D ) is isotopic

Yo any other imbedding with the same

orientation (for this manifold with
corner is contained in g slightly larger

disc, which can be constructed , using a .tubular neighbourhood of the cornmer

and we use the uniqueness of thet disc). This determines g+(Srf1 x Dn—r—1)’

hence also {7} ot (Dn-—r--1

XP )), whick may thus be put in a stan@ard

position., Applying the tubular neighbourhood theorem to this, we see that

f, too, is essentially‘unique. Thus to prove (i), the .existence of an

f with the Tequired property will suffice: we introduce a corner on D" to

make it D* x D*™", and.take for f the inclusion of BD x Dn—r"‘{ _The result
is s¥ x Dn-r} and g cen be bteken as 1 x B, ow (ii) follows,.also‘s;nce

the peir (f,g) was essentially unique.

G el -

1

Theorem 4.4. ' Suppocc *hat Ter Mnufhrughr+ s the a-sphere of hr+1 meets

the b-sphere of e transversely in one point. Then we can suppose EL,M

contains a ‘dis¢ D™ " to:which both handles are added, Thus we can write
M" = §* + D%, with-the handles added to D", and so -
MobTo ™ = + %o nTo ™) T 4+ D0 T b,

Proof First normalise as fozsLemma-4q%L . Then the:}mage'pf g_ is

contained in & disc (as before); and similarly the image of f is
contained 'in 2 tubular neighbourhood-of the boundary of this disc,
vhich merely extends it .to a larger disc. The rest follows from the

lemma,

Definition A pair of handles of counse¢cutive dimensions, with the
- ¥ - - -

a-~sphere of the second meebting the b-spherc of the first- transversely



in ome point, is ca.lled e complementa.rv pair,

We can thus para.phraae Thcorem 4.4 brlefly by sa.yln,g that a
complementary pair of handles may always be cancelled. The c\onverse.
result is 'now’trvzivi'a.i;

Theorem 4.5 At any point mf a handle dec.om-_position of a ma.nif.old,
a complementary pa.ir of'hé.ndles can be introduced,

Proof “At any p01nt" means when w; mave coastructed some unlfo"ith, A
say. Now MTH +D by Prop I,7. 5, and by Lemma. 4,2y we can add a
complementary pair of handles to D, hence alsc to M,

Ve o>i>'sem:1re‘ tha.t adding two complémehtary handles in succession to
M has the éffect om V = D_‘_- M of performing consccutively spherlcal
modlflcatlons of types (ryn-r) - leading to ¥, say - and (r+1 n-r-1) -
returning to V:.\{}"R'évérsing' the second of these shows that we can also
‘go from V 4o V by & modiZication of type (n-r—1, r+1). The condition

on the first modification necessary for this replacement to be possible

...... —

was the existencc of a complbmenta.ry handle,‘ arguing as in Lemma 4,3,

ve s'é'e! ‘thet this 'i’si equivelént to requiring the a—sphere to spam an

r-disc in V, such that the foverd normal vector o the sphere in thé disc’

agrees trith the Tirst vector of the choseéa normal freming of the a-sphere.
We now diécmss f'addition" of handles - this is to be understood in

a homotbpﬁj sénse". Since 2+.M need 6ot be simply-connected, an (r;i.)-

sphere in it does not neccssarily haVe = i}e'fl-determined ‘homotopy class,

This ambiguity may be resclved by-:tntroducing as further structure a -

ba.se-p01nt * in D M, a.nd for each handlc with attaching" ‘map

I‘

£: 2D m—'r——%\_,,\/l a path in ?,+ M from * to £(1 x 0): the homotopy

class of f may then be defined in an obvibus way, Of course we shall

look for results which do not depend'much" on -the ‘choice of” pa.tﬁ. chEsl
Theorem 4.6 (Sandle addition theorem) Suppose d, W = M connected, SLLllk
2<r <m2, Let "f,g: }éDr % D®T_3 M be disjoint imbeddings, ‘
determining ‘homotig-}'); classes 1'94,'{3 £ ’|T'r_1' (M); 1let a/é_ ‘h’1 (M). e
Then there are Jimb‘édaings h oh ;Dr X Dm:r ——% M, dis;joint from 'f, o
and determining P +c)\ F OL 6 ’rr’ (M), such that B oo
Wy h'y b' T Wy hle . T (for € = i). S e

f 8- e ‘f“hg

]



Proof Ve observe that injects to zero in Wufhr; the idea of the

proof is to deform the second handle 'across' the first, by a diffeotopy

of the attaching map in a_*;(Muth‘;); we know that this will not affect the

diffeomorphism class of the result, =

We have supposed M connected, so there is a path % joining £(1 x 1)
and g(1 x 1), Hotice that this path may be taken in any homotopy class.

By general position arguments (II, Chapter 4), we can make the path an

imbedding, disjoint from the images of f and g; we can choose it to start

along the outward normels to Imf and Im g, and finelly we can deform it off

tubular neighbourhoods of Im f ond Imé, so thaot it meets Imf and Im gonly at

its ends. Choose two normal framings €reeesC o for ‘A so that SPEREEE L

r-1

give the standard orientation of g(S x 1) at g(1 x 1) and both possible

r--1

orientations of f£(S x 1) 2t £{1 x 1): +this is possible since r £ m-2:

r=-1 1

and choose o Riemannian metric in which f(S x 1) and g(Sr— x 1) ere

totally geodesic (see I,3.6). Then exponentiating normal vectors to A gives

™1 s Mwithg (0 x D7) Cg(s™ x 1),

an imbedding P“:I x D
’, r-1 ) r-1 . I .
# (1 xD Y C. 2(S x 1) Extend A by 2 diameter of D x 1 in

B'+(Mofhr), and @’correspdndingly to an imbedding 9:[0,2] x Dr_j_3,2)+(Mufhr),
We now define an isotopy of g by

ét (x) = x if x g{ (?(O x Dr*1) \1

g, #(0,y) =9 (2t Bp (1 =iy ). y) JJ

the properties of the bump function ensure that these fit to give & smooth

r-i

diffeotopy. This 'pulls' the cell 9(0 x D7) ¢ g(S™™" x 1) across part

-1 x 0) is

of the disc D¥ x 1, covering the central point. Since g(S
diffeotopic to g(Sr"1 x 1), we also obtain a diffeotopy of g, which we
can extend to one of g such that the final imbedding h is disjoint from

~h-r-1
(=)

0 x . bBut we can think of the (f-) handle as shrunk to a small

neighbourhood of this b-sphere (¢.f. proof of 2.2), so h(Sr-'1 x D™T)
lies in M again,

Since our diffecotopy has (clearly; degrce 1 on the atteched cell,
the homology class of h is that of g plus or minus that of f, the sign

depending on an orientation chosen earlier, The same applies to homotopy,

except for comsideration of base points., But freedom of choice of
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homotopy class of A is equivalent to the freedom of choice of Zr

in the Theorem.
Remark VWe could also discuss the homotopy elasses in

ﬂj}(Wn?hrughr,W) represented by the handles; these also are’

added, in the same way.



Chapter 5 Simplifying decompositions

'

In the last chapter we gave a method of simplifying handle
decompositions under geometilc assumptions. We shall now .obtain
some corresponcding results upvie; algebraic hypotheses: _thi"s'_will

enable us to operate with haidles using only homotopy data. There are
‘ . : : ..

several ways of applying th cancellation theorem 4.4: we start with
the most direct. It is int:resting to note that this closely resembles

a technique of Whitehead, vith C.W.-complexes,

Theorem 5.1  Suppose n }, 2r + 3, Wt =M x It.«hl‘uf’vhl"+’1

Then W = 1 x Tofn®t! ,nTH,

Proof The case r=0 follows from 4.11; otherwise we nia;r sﬁf)pose M

. R : - -
connccted, g i e

‘We idehtify h' with DT x ]_)m_r.Sinm a 2 2r+2, we can perform a diffeotepy

, and Tr’r(W,M) =0

T41
~ togensure that-the attaching maps of th: h = aveid D x 1. The disc D' x 1

determines an eclement of ’rrr(W,M), whici is zero by hypothesis, Hence this

disc is homotopic in W (relative to its bouﬁdary) to one in M; i.e., there

is a map F:Dr+1

and the lower into M, Since 2>2r-+ 3, r¢ may suppose that InF is dis,]'c;int

- ¢

—3V, which tekes the uyper hemisphere of ST onto DF x-1 -7

from the cores of the handles (of dimens ons r and (r+1)). We chn'therefore —--

also deform it off tubular neighbourhoods of the cores, so that eveﬁtﬁéiiy' '

InFC 3+W. e may suppose Ff‘Sr en imbediing of st in 3+W: “this

imbedding is homotopic to zero, hence alsc diffeotopic (we again’ use

n>/2r+2). So by Theorem 4,5, we can use i~ for the a-sphere of the first

of a complementary pair of handles hX+1; h;—Z , where hXH is disjoint
from the other hr+1, But hi” is also complesentary fo ht s SO
WM x L™ o (T, %*2) (Thecrem 4.5)
A
T r+1 T+ 42
M Ig(n ok, )c_.zh‘ v by

. 1 2
~yxI win™ h__:'-m (Theorex 4.4),

Corollary 5.1.1 Ve can replace M x I in the theorem by V, provided

%.,¥ C V induces ’IT‘1 (‘é+v) = 7(1 (V). .

Proof Set M, = -r)+V; we may su"ppose W=Vuou (M1 x I) o handles;

vrite W1 for the closurc of W-V, Then it is e’n‘ou'gh to show that
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’R’r(w1 ,M1) = 0, Ulow if F¥=1; by van Kamperi’s~-fthe-6rem»,~'
T (W) T F (V) * T )=
1= 7 W ea) T )= W),

and if r > 2, by the Burewicz theorem,

8 —~ W iy N f ~ ot
/rr’r(w1 ,M1) = ;_r(w1 M, )y *.Tr(u,v) = -_-;r(w,\r),
(the universal cowers of \71 ,V,M1 are induced from that of W, since under -

our assumptions, the fundemental groups map isomorphically), and we can

now use excision,

1

Corollery 5.1.2 If W = Vo kh'w ™', 7 (¥,V) = 0,

’TT1 () +V) = ',1.';1 (V), n> 2r+3, then W = V,...!.hr'"1 v khr+2.

Proof Write V. = Ve (k~1)n’, Since T (0,V) and 7, (V.,V) venish,
£H~I‘

so does T, (W,V,), Also, if V=N x1I, ¥ =3V, then V. M x Ielk-1)

l’ e

“so ‘3'1'(1‘411) = ’R”1 (V1) if n> r+3. For a genecral V, we use van Kampen!s theorem,
as a.bové, to deduce 'ﬂ'{'( }+V1) = :71"1V1 . How by 5,1.1, we have W '—:—'V1 v mrﬂi“h”Z;

the result folipws b& induection on k, -

Corollary 5.1.3 Suppose (¥,V) r-connected, 71 (,’3+V) z ’E’1(V),
n22r+t3._ Then W has a handle decomposition on V ﬁth no i-handles for i < 1:.
Proof Use 5.1,2 repeatedly to replac;e i-handles by (i#2)-hax;d1es for
i=0,15.04,T, | .I | :

Remark Ve can tighte'n up the proof of.’l‘.heoxjem 5.1 to c(;ver also the 'c.a.se‘l

n=2r+2, T £ 1, ‘(In faet the only point tc be watched is the deformation

of F off thg cores - of the hr+1.) But we obtain a mére general result,

below, by t.a.l'difbferen_-t iﬂmethod, for r ?.{ 2. To introduce this method, we
first consider a simi)le specié,l case; (the first, histb'rically', too - due
to S. Smele): w<.a observe ‘tha.t we su?:ceed in cancelling ha.ndles, Lmt
merely replacing some i)y others,

Theorem 5.2  Suppose B+Vn simply~-connected, r=¥ 3, (n<r) 274, Let

1 r+1

W =VohTukh™' ana L_(V,V) = 0. Then V= Vo (ket)n™,

Proof Let n yeessly be the intersection numbers of the a-spheres of -

1
the (r+1)-handles with the besphere of h', . By..Theorem 4.6, we can

'add' or 'subtract' the handles; hence if ni,nj are nonzero, say

-~

. L . . k e
n; > n:j > 0, ve ?an“r?plac.:? o, by ni-nj. Fence by induction on 21 Inil

t



we may suppose all the D, zero eicept.dne — say'n1.
assumption Er(W,V) = 0 now implies o, = & 1.

Now use Theorem
Then the a-sphere of

r+1
h +

Dy Lemma 3,3, the
1

2.2 to normalise the handle decomposition,

. . T , . .
ané the b--sphere of h™, both of dimension at
- . . . + . T
least 2, meet transversely and :-ve intersection number -1 in j}+(th ),

which br Prop 3.6 is sicply--conanccted since :)+V is. Hence by(ﬁlﬁ)
But ther b ané hi '

connecti ity.,

we can perform a diffeotomn) to reduce the aumber of intersections to one.
We ~ow consider the ger ra

ere complementary, s» can be cancelled by Theorem 4.4.

casze and, in particular, abandon simple-~
notions ¢. simple homotery theory.
which we

This is more technical, and we shall eventually refer to the
€ed O assvme,
Hypothesi

We first state the general conditions
5.3 7 = 7umtumt, W (W, V) = 0, M (F,V)E W),
We have r..2, n;r.2.4; or r 2 3. n~r = 3, and 72(.)+ﬂ) :ujT1(W). Set,
M=o (Vud®), W= T (M) and A=77 [TF] '
=N ; y .
The r:ag /W consicts of Pinite (foermal) linear combinations, with .
integer coc ficients, of elements of T, with the obvious multiplication.
Using Prop .6, T7.(V) = 7’“1(1«1);’ ’Tl’1(2»+1'f)'; T, (Vu kn") = ﬁ-‘r1 (W),
{(note if r= tha’ our hypothesis implies ”ﬁ}(v) el fn}(W)) and the
isomorphism arc induced by inecliusion map:.
covering spa\es, Zy +he Hurewicz theorem.
hypothesis g .ves
covering spa

Qe

We use tilde for all universal
. _ 7 ~t

¥ o(v,v) = =_(W,V), so our

T T

some information about tic chain map in the universal
To usc this, ve need the lemma below;
we need some ‘otation,
Let * be 2 base point in
M to the a~sprires of the h

first, however,
these lie in .

v ﬂ‘a+w (k' -zc in M)- join by paths in
L and the b-spheres of the h':
r-handle hj vith the a-sprhe~z of h

all of
r+1

Mow to each inver=ecticn F of the b-sphere of an
i

we ascign vhe element gPéi’w
£
also set “p

represented by the path from * to the a-sphers, :ound this to P,
along'the‘b—sphere, and back by the chosen path of the b-sphere. We
+

(c.f. Lemma 3,3).

= ~1 according as the orientations agree or differ
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~Jt

Label the: handles b, (1£5<xK), h§+1 (1<i€0); Lot h} h§+1

~ : o :
be the hendles above them in W, determined by some¢ lifting of *,.and

. -~ P
lifting the chosen paths, and let e;, e§+1 be the corresponding chains

~ ) ) )
of (W,V). Ve note thet all the handles of (W,V) are of the form
gig, gii” for various g € 773 these are all distinct, since we took
' ~ ~
the universal cover; so that Cr(W,V) and C__, ('\TIJ,V) are the free
A-modules with bascs the {f;} , <’é:+1} )

~r+1 -~r
i - = 4 i
Lemma 5.4 (i) Ve ha.vg Bei = 2 P,j L,ngej,_ where the sum is over
. .. P r+1 . r
intersections P of the a-sphere of hi witk the besphere of hj’

{ii) If the coefficient of '5;: in ’Ezﬂ is i1, we cen perform a diffeotopy

to make h§+1 complementary to h§.

Proof (i) If P is the poiﬁt of h§+1 lying over P, it represents the

intersection of the a-sphere of ' ')
1

‘'with the besphere of some grl'l;.‘.
If we lift the defining path of 8y Ve see that g'=%3. The result now
follows from Lemme 3,3 (which did not use compactness).

(ii) It follows from the assumption that, with one exception, we.can
collect intersections of the two spheres into pairs (P,Q) with gp=Eq»

E.P:- EO. The result will follow if we show how to remove the intersections

g—r-—[_ have complementary

P and ), Observe that the spheres — say S:. and S
dimension in M, a,nd. éach has dimension= 2, If we join P to by an arc
in Sa, and one in Sb we obtaein a cirele; moreover since gP=gQ, this circle
is nullhomo¥opic in M (which is of dimension > 5) and so it bounds a disc.
b? the usual method of

removing intersections (due to Whitney; see III) applies, and we cen

If we can make this disc disjoint from Sa and S

remove P and Q; this can certainly be achicved if the codimensions r and
n-r-1 are 2 3.

Now consider the case r=2, n-r > 3, Here the disc may be supposed
disjoint from Sa; also we note that the process of constructing the d'}sc
gives first (vhen £P=- EQ) en ennulus vhich pushes the circle off S @ S.
So the result will follow if we show ’TT'1 (¥ - Sb)': 771 (M). The proof of
this is sufficiently illustrated by the case k=1; here we may identify

M-S, with ;}+V-S1 , vhere s' is the a~-spherc of nZ,



So W, (M -8)F T3,V -8)TW (37T T, () (for the

codimension of s! is> 4), If r =n-3, r >2, there is a similar

argument using- the hypothesis TT1 (>.W) = _'T!’1 (). The proof breaks
T

down completely if r=2, n=5,

Remark 5.4.1  The same argument enables us to extend Theorem 5.2

to the coses r=2, r=n-3,

Theorem 5.5 Theor m 5.1 {(ond its corollariecs) hold whenever n> r+4;

also if n=r+3 provided r £ 1,2 znd 771(;)+w)‘; ’h}(w).

At s <t~ Lol
Proof Since Z (W,V) = 0, :B:Cr+1(W,V) Y cr(w, ) is onto, BO we can
- T

~r+1 T - .
solve ‘B(E:)Eei ) = ¢". By Theorem 4.5 we con introduce a complementary

1 +2

pair of handles hz+ . hg ;5 by ocpplying Theorem 4.6 repeatedly, we can

'add' to the a-sphere of hz+1 any A -linear combinztion of the a—spheres

r+1i ~r+1

of the other h" ', So we may supposc 2 (eA S

) = ¢". Now by Lemma 5.4(ii),
we can perform o diffeotopy to make h£+1 complementary to h:, and by Theorem
"4.,4, we can then cancel these two handles,

Theorem 5.6 Assume 5.3, and thot the inclusion of V in W is a simfle
homotopy ecquivalence (so k=), Then W=V,

Proof Ve shall not discuss here the definition of simple homotopy type,
nor the equivalence of definitions via triangulations and handle decompositions,
but instead assume thot our hypothesis is equivalent to assuming

2):Cr+1(ﬁ2§3 — Cr\ﬁ;53 o simple isomorphism {that it is an isomorphism

follows if the inclusion is any homolopy cquivalence )., lience the matrix

of ¢ can be reduzed to o unit matrix by a sequence of moves of the
following kindss

(i) A4dd some multi-le of 2 row to another row,

(ii) Multiply sone row by an element of 7, or by -1.

(iii) Take the direct sum of the matrix with (1),

But each o7 these can be induced by a change of the handle

decomposition: (i) by handic addition (Thecorem 4.6), (ii) by changing

the path from * 4o an a-sphere, or the orientation of a cell, and

(iii) by irierting a complementary pair of handles (Theorem 4.5). Thus
~r+1 ~

€.

we may as:ame that the matriz of ) is the identity, and ;}oi = ey

Now by L=mma 5.,4(ii), we ccn perform a diffecotopy on the a-sphere of

h§+1 (i:aving other handles fixed) to maeke h§+’ complementary to hz.
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But then the hendlcs are cozmpbvlemeﬁtar}r in pai.rs, -end can all be
cencelled, by Theoreﬁ 4.4,

We observe that the proof of 5,2 shows that, in the simply-
connected case, any matrix of deternminant I1 can be reduced to the
identity by moves (i) and (ii), sc that if 7 = {1} , & homotopy
equivalence is a2 simple homotopy ejuivalence, The same is also.
known to hold if = Z 23, 2_74, or if ‘¥ is free or free

ebelian, or an clcmentery 2-grou:.



Chepter 6 ‘Tﬁe h-cobordism theorems

Definition Let W bé a cobordism. If the mclusions of H»_VW, zafw in

VW are homotopy cuwuivaleaces, ¥V is called an h~cobordism; if they are

simple homotopy e:uivalences, Y is called an s—cobordism,

Theorem 6.1  Assine that the inclusion of 3°W in W' is a homotopy

equivalence and tr
fundamental groups.

(i) The inclusio.’

~

»v the inclusion of » W induccs an isomorphism of

‘Then

of W 1s a homoto cguivalence
+ Py equ

(ii) If cither in:lusion is a simple homotopy cquivalence, so is the

S~
other, ard if o =

Proof By Corolls

0~ or 1-handles (n.

this ;ayé we may ¢o cel ‘he r-handles for r< n~4, and leaves only those with
r=n-3, n-2. Also, "7 elementary homology thecory, therc must be the same_
number k of Handles »f these two dimensions, and the chain complgx of the
universal cover corn

has a handle decompc

attached trivially)

cdnjugate (viz g—3 .7 2€T) of that of &, so D, is alsq an isomorphism.
C o e —

Thus all Hi(Y,'} Y= 0, all 1Ji(w,.b+W) = 0 by the-Hurewicz theorem and

(i) follows ' + > Whitehead theorem. [For n€ 4 we can use a.more direct

., ¥ is diffeomorphic to & ¥ x I,

7 5.1.2, ¥ has n handle decomposition on,2)+W with no

.5). Take the dual’ decomposition and apply Theorem.5.4:

s sts of a single isomorphism ZB:Cn-2——9¢Cn—3' So W

. and for this the matrix of : 3*:03—; C, is the transpose

-
JOUN

proof which is ¢ rays validJn

Now let th inclusion of 3 W be 2 simple eguivslence. ..Then ?5i$ a

simple isomorph sm.

so W 2’]} W=z, and ¥ 2 vooulv is prewcd,

if nZ 6, by Theorem 5.5, 211 handles may be cancelled,

P

Corollar§ 6.1.1 Bu-pose i {n> 6} a simply—connected h-cobordism.

Then W £ 5 _W % I,

The same arguments will give us somewhot more geaeral results -

if we relax the compaciacss condition., Fof example, .et V be a

submanifold of ¥ such th-t there is a diffcomorphisme:V= & -V x I.

Then, as in Lemma ".1, we ron find 2 nondegenerate function on W whose

restriction to. V has no critisal points; +he proof o (1.1) is only
changed by —u'=ng the given pro-uct structure to define

cen now carry out ail the hand?- decomposition and cancellation arguments

g near V, Ve

>
.

ition on )+'\.1 with only 2~ and 3-handles (the 2-handles



in W-V. Vrite I for a tubular neighbourhood of V in ¥, R for its
interior, 2 = VW = Nand ¥ = UnX ;BCIV =ECX. S
Theorem 6.2 \\{it}x f;he above notations, suppose X an s-cobordism. Then @
can be extended to a _d.ifffc?omox:_.phism of W on ‘B_W x I,
For, as in 6.1, we can ca.gce_l all the handles in X,
Lemma 6.3 W;th_ the above notations, suppose ' ,Vn—c h~cobordisms, and
c >/3. Then X“is an h-cobordism,
Proof Since ¢ 3 3 is the sodimension of V in W (and of 3 V in ) W,
o +V in B+W), removing V does not alter the fundamental group. So it -
is enough to check that E_X Z X induces isomorphisms of homology in the
universal cover, by Whitehead's theorem., This reduces the problem to the
case when W is simply-connected.
Now since a_V is a deforwetion retract of V, and N is a disc bundle,
P _N.is a deformation retract of N, also of B_N U Y. Hhence 0 = K, (N, 3 Ne¥)
= H*(\'J,Xué_‘:f)‘ by excision.»
But 0 = H*(W’, 3 __W), so using the homology exact sequence of the triple
D VCX v YC W, ve deduce 9 = Hy(Xud W, 2 W) ;"H*(x, o X) by
excision., The ;esult follows.,
Corollary 6.3.1  Suppose W' a sizply-connected h—cobordism, n > 6, v
a submanifold, ¢ 2 3, such that Vn-c T D _V x I, Then (V,V) = (3 W, V) xI.
For since W=V is simply-conneited, the lemma shows that 6.'_.”2 applies.
Corollery 6.3.2 Two h—cobordant seirs of homotopy spheres (TT'O,T‘;)
(i=0,1) with n > 5, ¢ 2. 3 are diffeunorphic,
By 6.1.1, the h-cobordiam of the T? is a product, so the result
follows from 6,3.1.
We also have a #light generalisatior of 6.1.
Theorem 6.4 Suppose.\l'n cvoa simpie homotopy equivalence, that n>,6,3_$1=_ar‘t<",
and that \d_'_V v, B+W C ¥V induce isomorphisms of fundamental groups,
Then W = V93+V‘ =z I,

Proof Let M = 3+V, X be the closuré of W=V, Then

S Uy E om0y, T (V)T )

T, ()1
By Corollary 5.1.2; X has & handle decomposition on B+W with no O-
or 1-handles,: So W has one on V with no (n-1)- or n-bandles, Applying

Theorem 5,5 repeatedly, we can gol xid of i-handles for i< n-3. The.



result now follows from Theorem 5,6-

s - N .
Corollary 6.4.,1 (Disc_bundle theore:)., Suppose ¥ a submanifold of

Wn, Z?M = ¢_, ¢c> 3, n26, MCW a zimple homovcpy equivalence, and
W gy T T apme 3T Y e daas 2 A :
(.1(B+W) = 111\uT),, Toea W has the siructure of a disc bundle with M
ar “ero cross~section.

Proof Letv V be e tubuiar —eigubourbood of M2  then 6.4 applies.

TAp V)= ’Ti’: (V) siance n 2 3 (it can 31lso happen for c=1,2).

12
PR 4 R " e n n
Corcllaxry 6.4.2 If U die contrasiible, n> 5, “1(2\9) = 0, then W "= D",
Tak M a poinl in 6,4.1%.
. - . . . cp =D
Coro.lary 6.4.5 (f_o_:_gg_"ge__-’-‘:Jéjrgtc_'f:"j_) £ T is a homcvopy sphere, n>6, _

n . . . . . .
then 7 may be obtained 2y glueing o dissc vogether along the boundary.

e o

Thus '~ is homeomorphic o S .
a | - o . - n
Proof Let 7 be ohe clocnre of vhe souplement ol a dise D in T°. Then

W is omctopic %o {T .-point), so is simply-~ccanected, and its reduced

‘homol gy groups vanish. so V ic comiractible. By 6.4.2, Ww2=D". The last
remars folloys since any homeomorphism of SDW‘] can be extended (taking the

n
cone to D7,

Rem- 2k The result follous from 4.1 if n<L 2, and holds if n=5, when we
Z 5
she 1 show later +that vny T7 bounds & contrvactible W . The cases n=3,

n=« are unsolved,

11

Cor llary 6.4.4 frppose M, compact. >,vz‘; =@ (i=1,2), £:M > M, a

. - _ . .m c . .
sirple homotorp; cumivaien-t =ad 2¢ > 1, Then by X D" is a disc bundle
ovr M, -

1 _
Proof  If <3, ng1, M1=T42-.:SI (e poindt) and the result is trivial.
Kw let ¢c>3.

"hen by Haefliger's ~‘heorem {.f1), we can approximate f by an imbedding

P M, in M, x Dcn The - ‘ult now follows from the Thcorem, .
d ) . .
* —~
Lorollar:- .4,5 Suppes in addition that c>m+i and £ (T, +1) =T, +1,

M 5

For under these coaditions 1.: normal bundle of g(IVi1) in Mz x D° is

stably trivial and stable, henc +triviai.

Theorem 6.5 Let T%° be a homot ay sphere in s™ (n>6, ¢c 23), Na

tubular neighbourhood, V the closure ¢ its complement. Then V is

diffecmorphic to gty pret

]
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Proof Let H’ be a larger concentric tube, I° & fibre, S° jits boundary.
Since Scf1.bounds the contractible Dc, its normal bundle is trivial, Ve
assert that the inclusion of Sc-1 in V is a homotopy equivalence; indéed,
both are simply~connected (V since S" is end ¢23, so S-T is also) and the
complement of Vo D® is the interior of N—Dc, a cell bundle over a cell and
so contractible, O3Sy duality, VoD% is contractible, and O = Hr(V’-Dc,Dc) =
Hr(V,Vnyc). 3ut VA D® is en ennulus with 8¢~ as deformation retract,

hence H_ (v,s% )

= 0.

If ¢ & n-1, QV =29V is simply~connected, &nd n-c+1 > 3, so the result
follows from Theorem 6.4. If ¢ = n-1, T is a sircle, and unknots, so the
result is trivial.

Theorem 6.6 Suppose W~ (n >,6) such that B_W, B_{_\‘T end WV are simply-
connected. Let Hi(W,Ei_W)': F + T, where ¥ is a fres abelian group of rank
JB i and T is é finite group with Ti+% generators, Then W has a handle
decomposition on & _VW with Ti~%'+;3i + Ti+% i-handles for each i,
Proof .~ By Corollary 5.1.2, there‘is a2 handle decomposition with no O-
or 1-handles, Similarly, we can dispense with (n-1)- and n-handles. This
gives a chain-complex of free abelian groups whose homology is that of
H*(W,:}_F). e put this chain-complex into normal form; +then it is a
direct sum of eclementary subcompléxes, each with rank 1 or 2, and differential
either

S —= /L —C or o-—sz-e—>z—‘70.

Now the change of base need:d@ to put the chain complex in normal form
can be induced by = sequence of slementary automorphisms of the chain
groups, and by Theorem 4.6, cack of these can be induced by a change in
handle decomposition. It remains only to remove the elementary subcomplexes
with®= 1. But Theorem 5,2 (ext:nded by Remerk 5.4,1) assures us that such
pairs. of handles may be cancellel.

It does not seem to be easy %o obtain e ressonable theorem of this
kind without assuming simple~conncctivity. The best known are 7.4 and

7.5 below..
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Chepter 7 Simple iloighbourhoods

Ve shall nov give a very brief discussion of Masur's concept
of simple neighbourhoods; however, we make no attempt to give complete
proofs. The ‘details would be comparatively trivial to supply if we were

discussing combinatorial manifolds, so the reader may prefer to think of

these (nearly all the proofs in Part IV remein valid, only the éetails
are much easier, on account of cormers).

Let M" be & compact menifold, Kk & finite complex. Wé call an
imbedding f of X in M tame if M is covered by coordinate neighbourhood
v, C ", @t U =) such that each Q4 of: ah (V) = ®" is linear

on each simplex,

o

Definition A submanifold u of M is n simple .neighbourhood of f(K) if
c . o

KC U, the inclusion X C U is a simple homotopy equivalence, and

’|T‘1(9U) ‘;’TI_’1§U -~ X).

For example, .if K is & submanifold, o tubular neighbourhood is a

simple neighbourhood.

Pronosition_7.1 A smooth regular neigpbourhéod is a simple neigﬁbourhood.
This follows .almost at once from the defipitions; as to the lgs£ clause,‘
we observe that if U is a regular neighbourhood, there is a map ZQUf——ﬁKj
such that U is the mapping cylinder. So U - K= QU x [0,1).

Proposition 7.2 A smooth regular neighbourhood has a handle decomposition

with one h' corresponding to each simplex ot or X.

This must be proved by induction over simplexes of K; in fact, the

handle is simply obtained by thickening the simplex,
Remark Conversely, any handle decomposition may be 'unthickened® to the
cores of the handles to give a corresponding CV complex K.

Theorem 7.3 Simple neighbourhood theorem Let m3 6, codim K 2 3. Then

if U1, U2 are simple nei ghbourhoods of K, there is a diffeotopy Qf Mr
constant near ¥ and away from U1\J Ué, which moves U1 to U2. . 7\ .
Proof Let UO be a smooth regular neighbourhood of K in 8 n 82.

For i = 1,2 we shall show that Ui = UO v (3(&)x,1): the result then

follows at once, 8ince for j=1,2,0, EBU& C:TinD Uj - K induce
isomorphisms of fundamental groups, we can apply 6.4, and the result

follows.



Remark  Suppose the condition K, (DU)7E. jf;‘(p_.z)mig_@g_ggggpition
strengthened to state that DU U-X is a homofoPy equivalence. Then

in the above, we could pfove:the closure of"vU'i-UC en h-cobordism, but

it would stili not‘in geﬁeral follow that it was an s~cobordism, if the
codimension of X was 1 or 2. This does work, ‘though, if W’ (BU) =0 1Z2 or 2.

Theorem 7.4 (Uon—stable neighbourhood theorem) ‘Let K K1 be f1n1te'

C.¥W.-complexes and &K = 7 Aq & simple homovopy équivélénce. Suppose
U™ — K by unthickeaing, and %,Z, heve diménsion £n~3, n 26, Then
U has a handle decomposition which mimics the cell deeomposition of K1.

Proof By a theorem of Whitchead, (improved), we can go-from X to K,
by a sequence of "formal moves" of dlmension (n=2). (Note n > 6). We-

can imitate each o? these by a change in handle decomposition: an -
elementary exﬁensioﬁ by'inffoaucing 8 ‘complementary pair of handles

(Theorem 4.5), ané &n elementary collapse by a handle oanceliation
(Theorem 4.4), For this last, we must check the necessary :onaitions.

If the collapsed cells have dimeneions 0,1, we can ﬁé%-Pro; 4.1; Cif their
dimensions are r,r+1 where 2€r<n~3, we observe that 5.3 .s satisfied and
that B'?a"i"“ - 'é;, and apply Lemma 5,4(ii), If the dimen-ions are 152, - .-
check that the a;ttaching ' of the 2-handle is homotopic. hence isotopic,

to a circle which meets thejb;sphere of the 1-handle onl: once. In

principle, this completés the proof.

The same arguments lead also to T

Theorem 7.5 (Relative non-stable neigshbourhcod theorer  Suppose vt hes

a handle decomposition on V with no i-handles for i> n-2. Assume
(a V) = 1(V)E—”_)A"’1 () :‘”ﬁ;(a+W), n36, Let (3,V) be a C.W.—
pair with no i-ce11§' outside V for i >n-2 and £:Z->V 1 simplé homotopy

equivalence r:l V.//Then‘w has & handle decomposition based on V with

cells corresponalag £0 thosé 0f F mod V. = b= woms e wom Ll hia

This is sqaﬁed in a very sharp form (I h0pc ‘not too sharp to be

true), and we sgell not give the proof.

R

~ L /o
N Sha :

Tes



DIFFERENTIAL TOPOLOGY

Part VA Cobordism : geouetric theory

These nctes oontinue Parts O (analytical foundations), I (geometrical

foundations, II (transversality and general vosition) and IV (theory of handle
Pcw{g’fr “WW aie

decompositions), originally issued at Cambridge, but-ne# available on request
to the Secretary, Department of FPure Mathematics, The University, Liverpool, 3.
These were not prepared in close connection with a seminar, so the acknowledgements
mainly due are to those who originally develoned the ideas: primarily Thou,
also Atiyah (for much of Chapters and 6), kiinor (for demonstrating the variety
which cobpordism could encompass), Conner % Floyd (for much of Chapters 6 and 7)
and Graeme Segal - who first obtained the results of Chapter 7 in their present
generality.

I had originally intended to include a Chapter &, on exact sequences of
cobordism groups of knots: +this is now omitted, but the reader may refer to
the Bourbaki seminar (no, 280, 1964/5) by A. Heefliger, which gives the argurent
I had intended to use. Since our Part III has not yet (and may well never) be
written, I will define it, too, by the references which seem to me to give the
most ccherent account of existing general methods (excluding surgery).

3. Smale Glassification of immersions of spheres in Euclidean space,

Ann, of Math., 69 (1959) 327-344.

M. W. Hirsch Immersions of manifolds, Trans, Amer. Math. Soc. 93 (1959)
242-276, k

A. Haefliger and Immersions in the stable range, &nn. of Math. 75 (1962)
M. W. Hirsoch 231-241.

He Whitney The selfintersectisns of a smooth n-wanifold in 2n-space,
Ann, of Math. 45 (1944) 220-246,

A, Haefliger Plongenents diffé%enfiable# de variétés dans variétes,
Comm. Math. Helv. 36 (1961) L47-82.

A. Haefliger Plongements différentikbles dans le domaine stable s
Comma, Math. Helv, 37 (1963) 155-176,
and Bourbaki seminar no. 245 (1962-3)

A, Haefliger and On the existence and classification of differentiable embeddings,
M. W. Hirsch Topology 2 (1963) 129-135,



PART VA
Cobordism : geometric theory
Chapter 1 Types of cobordism

We have already said that when W . is a compact manifold with oW a

disjoint union of closed sets 9 VU 6+W, W is called a cobordism of

oW to a+w, and oW, a;w are called cobordant. This concept is of great
generality, and there is a wide variety of possible generalisations and
restrictions. Our policy here will be to indicate the different kinds of
alteration that may be made to the definition, each in the simplest possible
case: these may then afterwards be combined ad 1ib. We establish a

convention thut cach type of cobordism relation is specified by a description

of the propertics of 6_W which are relevant, and there is then a corresponding
set of properties of the W which are permitted for the cobordisms: these will
be made precise in this chapter for each new idea, but the convention will be

in force subsequently. Note that it is always essential that the manifolds be
compact; otherwise the trivial relation V= 9(Vx [0, 1)) shows that
everything is a boundary.

Oriented cobordism

We consider only oriented manifolds M. Then the cobordisms W must
also be oriented. We call the oriented manifold W an oriented cobordism
between the oriented manifolds a;w and a;W if at each x € 3 W (resp. a;W),
the srientation of 9 W (a+W) followed by the imward (outward) normal at x

induces the orientation of W. In terms of homology classes, this becomes
W] = - Nl
2, [7] [o,W] [a W]

Cobordism with a given structure group.

In the first instance, the tangent bundle T of - M has structure
group GLmGR) : an orientation is a reduction of this group to SLmGB). We
generalise this now by letting G be any topological group (usually, but not
always compact) and ¢ : G — GLmGR) a homomorphism. Then a G—structure on
M is a reduction of the group of T to G, If ¢ 1is the inclusion of a
closed subgroup, we can define this as a cross-section of the bundle associated

to T with fibre GLmGR)/G. In general, we form the classifying space B(G),

so ¢ induces a vector bundle EG over B(G) : then a reduction of the group

s



of T is & pair (e, £f), where f : M- B(G) is amap and e : 'rm—->f*§G_
a bundle isomorphism: two reducfions are equivalent if there is a reduction
of the induoed bundle cver M x I which induces them at the two ends.

The natural definition of & cobordism W now demands a reduction of
o @ el (we shall use e o

denote the trivial vector bundle of dimension r), so the induced structure

the structure group Ty However, 'rwla'v'{ =

on the boundary is a reduction of the group of 7, _® El, rather than of

aw
Tow itself, We can base an adequate definition on this, noting only that a
convention about the choice of isomorphisms of rw[aw on T, & El is

necesgary: viz. that the pesitive vector el is to be identified with the
imward normal to 4 W in W, but with the outward normal on a+W (this is
necessary to obtain an eguivalenoce relation: see below).

However, the most satisfuotory general theory uses a further weakening
of the concept, and some preliminory notation is necessary. OSuppose given a

commutative diagram of groups and homomorphisms

‘e G - i G i G -
n-1 -1 n n, n+l
\B)n-l J’¢'1f1 ‘L¢n+l

vee 0L ®) - b ® - 6L @ ...

(in the lower row we have the natural inclusions); +then we say we have a

stable group G. A wealk G-structure on M is prescribed by choosing an

integer r and reduction (e, f) of the group of T ® e te Gm+r;

(r, e, £f) and (r', e', f') are equivalent if the reductions (e, £) and
(et, £') of T, @ €® are so for some 8 3 r, r', Then if a cobordism
W has a weak G-structure, it induces weak G—-strdctures on o W, a+W (using

the above convention .to identify. rwlaw- with- 7__ @ tl): we call it a

oW

oobordism between these manifolds with the induced Sfructtn:;es.

Cobordism ef Prirs

Let M be a sutmeonifeld of N; then we call (N, M) a pair., If

(7, V) .is 2 pair of marifclds with boundary, ond W s a ecbordism ef

37 to a+w, we sek 9 V=VNa W end 3+V = VN a+T.-'\'. Our definition of
submanifold “hen implies that V is o eotordism of a_V te 8+V, asd we shell
cell the peir (W, V) a cobordism of the poi (?__‘.'T, a_.v) to the poir

W [
(a+ s a+v)



L .
We can also restriot the structure groups of the tangent bundles of W
and V separately; more important, however, is to consider the normal bundle
of V in W, which has group GLq(IR) if q is the codimension of V in
W. Given qbq : Gq - GLq(]R), a reduction to G0 of the group of the normal

bundle of V in W can be called a normal Gq-structure of V in W: it

induces normal Gq-structures of 9 V in 9 W and of a+V in a+W. Note
that here there is no need to speak of weak structures and of identifications:
the definition is more natural than the one above, and we have the notion of
cobordism of pairs with normal Gq—utructure.

Cobordism of Maps.

A map means a continuous (or, if preferred, smooth) map £ : N
of compact smooth manifolds, If V amnd W are cobordisms, and F: VoW
defines by restriction maps F_: 8 V— 9 7 and F+ : a+V—> a+W, we call F
a cobordism of F_ to F+. In particular, a homotopy of f is a cobordism,
Since (c.f, proof of 0, 2,1,1) every map is homotopic to a smooth map, and
homotopic smooth maps are smoothly homotopic, the restriction to smooth maps
f makes no difference, The special case when f 1is an embedding gives
cobordism of pairs above: we aould also restrict f +to be an imwersion, Also
since (II, 5.3) if n > 2m, any map is homotopic to an embedding, and if
n > 2m + 1, homotopic embeddings are isotopic, all these theories agree in
such a stable range, It is also possible to replace f by an embedding in
N szm, and restrict the group of +he normal bundle.

Cobordism of Bounded Manif'olds

Let W be a manifold with corner; suppose the closed parts into which
AW divides oW are separated into three, with disjoint interiors: 4 W, acW
and a+W, where g T and a+W are disjoint, and the manifolds a_Wua+W
and acW have common boundary AW, Then we call - W a ccbordism of a_W to
o W. We elsowrite AW =ATN3W=00W and AW =AWNoW=200W, s0
3,7 1is a oobordism of A._W to A+W.

By itself, this definition gives nothing: any manifold M with
boundary is cobordant to the empty set by the manifold W obtained from

M x I by rounding corners at M x 1. So the interesting cases are those in

which an extra condition is imposed on the cobordism acW.

3
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Cobordism with a cohomology class; bordism

First consider pairs (M, a) with a € Hr(M; G)s Then (W, a) is
a cobordism of (9 W, f) to (a+w, Y) if « restricts to S on W
and to Y on 6+W- Now the functor H ( ; G) is representable by the
Eilenberg-MacLane complex K = k{G, r), 80 we can equally regard a as
a homotopy class of maps M- K.

More generally, let- K be any space and consider pairs (M, a)
where o is a map M— K. The definition of cobordism is the same as
above, Note that if & : lix I— K is a homotopy of a to a', (M x I, §)
can be regarded as a oobordism ~f (M, -a) to (M, «'). We shall later
consider the dependence of the notion on K (rather than M), and will
then say that (M, «) determines a bordism class of K.

If L 4is a subspace of K, we shall also consider the ocobordism
relation for manifolds with boundary, where (i, ¢) is a pair consisting
of & manifold M with boundary and a map of pairs a : (M, al) — (X, L):
a cobordism will be a pair (W, B) where g : (W, aéW)-» (X, L) restricts
to the given maps of (9, A;W) and cf (6+W,.A;W).

Equivariant cobordism

Let G be a Lie group,’whioh it is eonvenient to assume compact. We
consider pairs (M, ¢) where i is a manifold and ¢ : M x G~ M defires a
smooth action of G on M. This induces & G—action on g8K. Then if W is
a oobordism, with G-action ¢, (7, ¢) is an equivariant cobordism of (09, ¢_)
+o (a;W, ¢+) if ¢_, ¢+' are G-actions induced ty ¢, AL'variant is obtained
if we restrict theé isotropy groups of ¢ +to lie inA an assigned cliass of
subgreups of G - fqQr example, if we have fixed-point-free actions.

The remaining examples involve comnnectivity, and we will see in Chapter
2 that they are of a slightly different nature: we shall call them all 'of
type (C)'.

Connected cobordism

Here we oconsider only connected (hence, in particular, non-empty)
manifolds M. The ccbordisms are restricted by the requirement that a3 W,
a+W, and W all be connected. A natural extension of this is

k-conneoted cobordism

We now require M to be k-commected, for some integer k » 1. In this

case, of oourse, M 1is orientable: we make the further ecnvention that M is



oriented. The corresponding kind of cobordism is an oriented cobordism W,
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will later play a specié.l role. Also if dim M < 2k, then M must be a
homotopy sphere. |

The natural way to fit this into our present context seems to be to
fix a space X, and insist that each manifold ¥ wunder consideration be
provided with a homotopy equivalence hM : M= X, A cobordism W must then

satisfy the condition that hW extends the maps ha w and h this

9 W
implies that the inclusion maps of 4 W, a+w into W are homojc-opy equivalences.
It is usually more convenient in this case also to restrict to oriented ocobordism.
The only case to be singled out later is when X 1is a sphere.

I~cobordism

Here, X 1is a fixed closed manji‘ﬁld, and we consider only pairs (M, h'M)’
where hM is a diffeomorphism of M on X, A cobordism is a pair (W, hg)
where W 1is é diffeomorphism of W on X x I inducing the diffeomorphisms
ha w % 0, ha 5 x 1 on the boundary, Naturally; this again is a trivial
th;ory which+ﬁ; will only usec in conjunction with others: we usually indicate
its application when X is a sphere s" (the commonest case) by referring
simply to 'cobordism of Sn',
Goncordance

X is a fixed finite simplicial complex, and we consider pairs (M’Iﬁ)
where hy : X— M is a swooth triangulation of M by a (1inear) subdivision
of X. OCobordisms must be triangulated by X x I. We shall not give the theory,
nor full definitions for these notions, but mention them for completeness. The

word 'concordance! is sometimes also used for I-cobordism.,

Cobordism with a houmotopy class

Consider pairs (M, a), where M  is simply-connected (so that base
points are irrelevant) and a € ﬂr(M). We call (W, o) a cobordism of
(6 W, B) to (a+W, Y) if the inclusion waps send S and Y to a. We
can also replace homotopy by homology, or the sphere Sr by another
space K (and in some cases weaken the requirement of siuple=-connectivity).
We will later need the restriction n - 2 > r (or dim K).

Theorem 1.1 In all cases, the relation "¥ is cobordant to MN'" is an

equivalence relation.
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Definition The equivalence classes are called cobordism classes.
Proof  Reflexivity We use M x I to provide a cobordism of ¥ to itself,

In each case, any additional structure on ¥ automatically defines ons on
M x I which extends it: for the natural projestion # on ¥ is a homotopy

s o ®
equivalence, so the homctopy conditions extend, Tn & € and a

T TmxI’
G-action on M defines one on M x I by the formula (m, f)g = (g, t).
That M x I provides a cobordism of M to itself is now trivial except in
the case of cobordism with a structure group, where we wmust use our
convention about orientation.

Symune try Let W be a cobordism ef a7 to a;w: we wish to
interchange their roles to call it a cobordism of 3 W to 3;7. This again
is trivial in every case excert that of cobordism with a structure grou;,
where we must change the (weak) G-structure of W to 'interchange the ends',
We change it by observing that one weak structure induces another, using the
identification of @ e with itself induced by reflection in one of the
line bundlescongﬁiuting sr, The induced structure on Ta? & €r+l differs
from the desired cne by reflections in two line bundles: the product of two

reflections is homotopic to the identity, so the induccd structure is

equivalent to the one required.

Transitivity - Let W, W2 be cobordisms with Nb =9 Wi,
Ko=0 = 9 W, N,=2W,. Toobtaina oobordism of M to N2, we will
glue Wi to W2 along Ni (cof, I, 7). This works without difficulty for

cobordism with a structure group (our convention is natural here) and for most
of the others. In fast, we need only toke care with the glueingfor cobordism
of pairs and for equivariant cobordism.

In the case of pairs, let (N, H) =2 (7, V) = a_(nvé, V). Te
choose collar neighbourhoeds of Ni' in- Wi and in W2 which respect the
submanif olds Vi and Vé: this is possible by I, Theorem 3.6, If we now
glue, V, UV_ becomes a smooth submanifold,

1 2
For G~cobordism, we first observe that every G-uwanifold has an equivariant
Riemannian structure, obtained by taking any such structure, looking at its
transforms by eleiients of G, and integrating with respect to Haar measure on
G (which is legitimate since the Riemannian structures form a convex subset of

a Banach space). The construction of I, Prop 3.1 now gives equivariant collar

neighbourhoods of the boundary; glueing as in I, 7.1 we see that the action of

G remains differentisble. The proof of the theorem is now complete,



Chapter 2 Cobordism groups and rings.

We next investigate the various possible structures that can be put
on the sets of cobordism classes: here the two key remarks are that disjoint
union will (in most cases) define a sum operation making the set of classes
an additive abelian group, and that Cartesian product induces various
multiplijcative structures. A few more delicate operations will be defined
later on.

Lemna 2,1 Disjoint union defines an addition which turns the set of

cobordism classes (of a given dimension) into an abelian group, except

for cobordisms of type (c).

Proof The other kinds cf structure pass at once to the disjoint union,

Union is compatible with cobordism: if V, W are cobordisms of 3 _V to a+v,
a_W to 6+W, then the disjoint union V, W is a cobordism of 9 VU W

td a+V U 6+W. Thus we have a binary operation on the set of cobordism classes,
which is commutative and associative since disjoint unions are. The empty
manifiold acts as zero.

We obtain an inverse to M whenever M x I may be regarded as a
cobordism of the disjoint union k x O U ¥ x 1 +to the empty set (the induced
structure on M x O m@must coincide with that on M : on M x 1 it can be
different). This is immediate in each case except cobordism with a given
structure grous, where we have an orientation-reversal on M x 1 (as in the
proof of symmetry in Theorem 1.1).

In the cases where connectivity is important, we will use connected sum
instead of disjoint union. For h-cobordism and I-cobordism we need to take
X as a sphere for this to give a group structure: din other cases it gives a
map relating three different cobordism sets (of Xi, X2 and X1 # Xz) - as
indeed did disjoint union.

Lemma 2.2 In all cases except cobordism of maps and equivariant cobordism,

connected sum of connected manifolds of dimension > O is a commutative

associative operation with unit, compatible with cobordism. The set of

equivalence classes thus acquires an abelian group structure, provided for

h~ and I- cobordism we take X as a sphere. In cases where disjoint union

and connected sum both define a group structure on cobordism classes, the two

structures are the same.
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Proof We first cheék that connected sum can be made compatible with all the

extra structures except a G-action. If hi and MZ are k-connected, so is

Iy # M, - except in the trivial case when dim ¥, < k (so the i, are

contractible, and have boundaries). For h-cobordism, we have maps hi : Mi-+ Xi,

where the X%. can be taken as manif'slds., It is then simple to adjust the
i
h, by homotopies to respect the discs used to define #, and thus obtain a
i

homotopy equivalence Mi 37 M2-+ Xl # XZ' The corresvonding assertion for

I-ccobordism is trivial. Weak G-structures can be defined near the discs
f_(Dm) c M, by framings, induoe& by the fi from the standard framing
i i .

€ s5eeey © of IB@_ If e is the extra basis element when we add a trivial
1 m m+1
m

line bundle to T e change the framing on D" @as follows: at v e D s

refleot in the hyperplane perpendioular to em+1 -~ v, then in the one

perpendiculzar to €l This can be achieved by & homotopy (Dm is contractible).

If the new framing is ' then e' is the imward normal veotor

' )
10 0000 e’ o+l
to Sm~l in D', Thus the weak G—structures on h& - fl(Dm) and M2 - fz(Dm)

-1 .
it together along st af ter changing the sign of e For cobordism of

m+1°
connected pairs, we glue both manifolds simultaneously, using imbeddings

fi : (Dn, Dm)-+ (N, ¥) - the theory of this operation is essentially the same
as for ordinary connected sum. With homotopy classes, we consider pairs

(M?, ai), a, € wr(Mi). Here we need r < m - 2. Then oy determines a
homotopy class in M? - Int fi(Dm), and henoe in M, # M, we add the
resulting classes. With cohomology classes, we first adjust the maps

@, i Mi-+ K by homotopies so thet aifi has image the base point: we then
have a natural inducsd map of M1 # MZ'

In each of these cases, the operation is clearly commutative and
associative, and the sphere st (associated to the weak framing induced
by that of ﬂfm+1, and zero homotopy and cohomology classes) acts as unit -
this needs a mouentB thought in the case of a structural group,

We must next check that the operation is compatible with cobordism. First,
there is a guestion of arientation: but if any condition on structural groups
provides an orientation of the manifold, the conhected sum is unique: if not
(but the manifolds are still orientable) we can fake a further connected sum

with a nonorientable manifold, and orientation becomes irrelevant, and we then

add the inverse of the manifold (see below).
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[the here the use of an earlier convention that if other conditions on a

manifold require orientability, we add an orientation to the specifications].
Next, let V and W be connected cobordisms, of dimension n + 1, and

£ D" > 8 _V (similarly £, & g+) be used to define the connected sums

o VoMW, 6+V'§ a+w. As above, we suppose either that all manifolds are
oriented or that V, W aremnorientable. Then we can join f_(0) to f+(0)

by an arc o in V, and thicken to obtain an imbedding F : Dn x I =V with
f_ = F|Dn x 0 and f+ = F|Dn x 1 (if orientations do not fit at the first
attempt, V 1is by hypothesis nonorientable, and we coupose the homotopy class
of o with an orientation-reversing loop). The hypothesis n > 2 is needed
to use general position to get the arc imbedded, but if n = 1, a more direct
oconstruction suffices, Similerly defines G : Dn x I =+ W, DNow delete the
interiors of the images of F and G and glue the boundaries, and we have a
cobordism of 9 V& a W to a+V'ﬂ'a+W. The verification that this construction
is compatible with extra structures is the same as £ r # 1itself, except in
the case of siﬁple—connectivity. Here, if n > 2, general position shows that
the complement of an arc in V is simply-comnected if V 1is, so we consider
only the case n = 2, The only simply-connected closed 2-manifold is 32,

and if 82 = 9_V, observe that wl(V'- a) 1is generated by conjugates of a loop
encircling «, which can be taken in 82, but is then already mullhomotopic in

2
82 - f_(D ) (a contractible set). 8o V - a is simply—connected in this case also.

It remains to obtain inverses, Note that’ s7 bounds Dn+l, and the zero

structures on S° all extend to Dn+l. Conversely, let W be a connected
cobordism with a+W = ¢, Then we assert that a_W is cobordant to the zero
class, For deleting the interior of an imbedded disc from W, we obtain a W'
with 8 7 =20 W', 0+W' = 87, The verification that a structure on W induces
one on W' is again the same as for #, and the induced structure on s
extends to Dn+l, hence is the zero structure.

The inverse is now obtained by change of orientation, as usual: say
M gives rise to Ii'; together they bound N x I. Nbﬁ take an imbedding
£ : D" > K this extends to T x1 : D' x I — M x I. Delete the interior of
the image and round the corners: +this gives W With a9 = M £ L', But now
any structure on M induces one on I x I and (again by the scme argument as

for #) on W. Thus M' is indeed inverse to M. Note that in the cases of

I- and h- cobordism with X = Sn, this construction gives W diffeomorphic
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(resp. homotopy equivalent) to Dn+1: then deleting an imbedded diso gives

W' diffeomorphic (or homotopy equivalent) to 8% x T.

The last assertion of the leuma is checked by constructing a cobordism
of MU' to M4 M': for this we take M x I UK x I and attach a
l-handle to join i x 1 and M' x 1, Then for a structure group, a pair,
or a cohomology class (the three remeining cases), we note that we can
use a framing over the added handle, add a handle-pair (with trivial normal
bundle), or wap the handle to the base point.

This concludes our discucsion of additive structure. There is less
to say about multiplicative structure in general which is not obvious: the
general rule is that the natural (‘'external') product is a little too preciss,
and e must weaken its induced structure to obtain a wore uséful nultiplication.

First, products are compatible with cobordism: if 7 is a cobordism
from 3 ¥ to a+W, then W x M is a cobordism from 3 W x M to a+W x M.
Also, products are associative, and distributive over disjoint union.(though
not over connected sum), and there is a natural diffeomorphism of M' x M on

M x M', which gives rise in most cases to some sort of coumutativity of

multirlication.
Next, let us exzumine cases in a little more detail. If I, M2 have
weak Gl resp, G2—structures, then Ml X M2 has a natural induced weak
Gl x G2 ~structure, and hence also Gj—stxucture if we have a morphism ¢ : Gi X G2-+ G3

(see next chapter for definitions) this includes oriented cobordism, for example..

I (h&, Vi) and (MZ’ Vé) are pairs, the natural product is a set of
4 manifolds. Here, the most useful notion is to multiply a pair ¥, V) by a
manifold H'., Iote that the group of the normal bundle is unaltered.

Again, i1t 18 unwise to wultiply two manifolds with boundary - the
resuiting structure is so complicated - aend it is more likely to be profitable
to multiply manifolds with boundary by closed manifolds,

Eyuivariant cobordism has a natu?al externzl product: actions of G on
F and of H on N induce an actioh of GxH on Mx N hence of any
subgroup. If, in'particﬁlar, G ; H, Wé have a diagonal action of G.

" The one remaining case (siﬁoe we exclude connected cobordisms, after our
failure to obtain distributivity) is cobordism with a cohomology class. Given
two pairs (Ml’ al) and (M2, a2), where ai I Xi, the exterior product

1

is the pair (L& x M2, a, X a2). Te will usually have a map £ Xi x X~ Xj’
04 <

>

and replace @y X &, by fb(al x a?), to obtain a bordism class of X3.
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This seems the most appropriate place to mention a general method of
constructing exact sequences, several illustrations of which will appear later.
Here we will not be too precise.

Suppose two kinds of structure specified, called an a-structure and a
f-structure, with the latter stronger than the former. For example, we may
consider structure grouns Gl and G2 c Gl, or maps to spaces Xl and
X2 c Xl’ or actions of groups H1 and H2 > Hl’ or kl—conneotivity and
k2(> kl)-oonnectivity.

a Qﬁ .

By Qn and n we denote the cobordism grou)s of manifoldswith
a~(resp. f-)structure; and by Qagﬁ the cobordism group of bounded manifolds
with a-struc .ure, whose boundaries have a f-structure inducing the given

a-structure.

Lemma,gké. There is an exact sequence
e
e S L N L
n n n-1 n-1
Proof (sketecn) The first two maps are the obvious ones; the third is
induced by talking the boundary. Ixactness at d% l' is immediate. It is clear

that the composite of two maps in the sequence is zero, If M is bounded, and

o% (as a f-manifold) bounds V, we can giue ¥ to V along ali to obtain a

closed manifold M' wWith a-svructwe. A oobordism W of ' to M is

obtained from M' x I by introducing a corner at 3i x 0, and setting

a W= 1ux0, aCW =Vx 0 and B*W 2l x+Ia PFinally, if t@e closed’ admanifold

Il is trivial as a bounded (a,3)-manifold, the corresponding cobordism W

has 9 W = M, a+W = ¢, and so acW a closed F-manifold, a-cobordant to M.
Insome cases, any manifold with e-~structure then has a p-structure except

on a olpsed subcomplex or submanif'cld, Then Qa;ﬂ can be calculated differently,

for if M is a bounded (a, #)-manifold, K C Int M the exceptional subcomplex

and L a 'smooth regular neighbourhood' or tubular neighbourhood of K, then M

is (a, f)-cobordunt to L by W, obtained from Ii x I by rounding the corner

at 9k X 1 and introducing one at 9L x 1, An analogous remark avplies to

cobordisms.
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Chapter 3 Examples

Before we proceed with the theory, we give here a number o examples
wnich show how the different variants on the simple cobordism relation, as
listed in Chapter 1, may be combined in useful ways. 7e also take the
opportunity of introducing the notation for those groups to which we will
refer later, and of making clear the application of the results of Chapter 2
to the cases which arise (though we shall not repeut the proofs).

The simplest case of 21l is unrestricted cobordism of closed n-manifolds.
Te obtain & group, classically denoted by }]n: but which (to fit into a
systematic notation) we shall write as Qi. Multiplication gives a commutative
and associative product Qg X 92'4 Q$+n’ and a point acts as unit. e thus
have a comautative grdded ring QS. Each element is its own additive inverse,
so we can consider QS as an algebra over ZZ'

Next we have oriented oobordism, giving a group Qio (formerly
writtep Qn). Multiplication gives a graded ring, as before, which is
commutative inhthe graded sense, and has 2 unit: we write QSO .

More generally, let G be any stable group, We consider the cobordism
groups of manifolds with weak G-structure on the stable tangent bundle - say
provisionally Q! G. Then we can obtain & bilinear pruduct Q'G % Q'G - Q'G

n m n m+n
by imposing on G the axion,
(M) We have a family of mips wm,n: Gﬁ % Gn~+ Gm+n such that the following

diagrams commute up to conjugating by an element in the component of the identity:

Y
¢ xe % G ¢ xo 4 G ¢ x ¢ -2 ¢
m n m,n m+rn m n m,n m+n m n m+n
ilm x 1 llm+n llen lim+n l¢mx¢n J’d)m+n
¢ .xc 4 G W
m+1 n o oml,n mmdl G x G ol G il c-Lm(m) x GLn(IR) - GLm+nCIR) .

The product becomes assoclative if we impose also the axiom

(A) The following diagram also commutes (in the same sense)

r, =1
G, x G x6 BRI o g
2 m n Z+m n
lewm,n i¢€+m,n

¢e juggel

G, x G —

G
£ m+n £+m+n.
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The product gives a commutative graded ring Qf if we insist also on the

diagram
(c) G x G i@.’t?.ﬂ?izl‘.o eL  (R)
m n m-+1t /
& b
¢m+n l‘bn m
o xC  WEmEL g )

where T is the natural interchange of factors, and T' means conjugation
by an element Whose determinant has sign (-1)"7,
We shall also need a gtability axiom

(8) There is a function q _of n, increasing (in the weak sense) and

tending to infinity, such that in is qn.-connected.
We now show that if (S) holds, we can replace the structure group on
the stable tangent bundle (which has been a constant source of difficulty

up to this point) by a structure group on a normal bundle.

Lemma 3,1 Suppose given a commutative diagram
¢ x G L4 G
r 5 r+3
f 5
Loy Lorss

GLrGR) x GLSC{R) - GLr+SC{R)

such that the map ¢ : G = G induced by ¢ is c—connected. Let K be
v O —r—— r+s -

. ; . r s
a C.W. complex of dimension < min (¢, r—2), and ¢ , 7 vector bundles over

K, with a G_-structure on ns. Then the function f induced by ¢ from

r T 8
Er—structures on & to Gr_*_q—structures on & e 1n is bijective.

Proof Let X, be the classifying space for Gi(i =r, 8, T + 8);} E, the

total space of the principal bundle with fibre GLi(JR) induced over X, by $. -
Write Ef’ En, Efan for the spaces of the corresponding principal bundles over
K. Then Gr—structures of ¢ correspond to sections of the bundle over K with
total space E§ x GLrCIR) Er; gimilarly for € @ n. But the Gs-structure of 7

induces a fibrewise map

. : ' x 1
E§ x eor(E) Er - Efﬁ,n ® GEr..{R) “Tres @)

r r+s
< and the induced map of fibres is E, = Er+s’ which is at least min (c + 1, r - 1)-

connected since X - Xr+ is (o+l)—connected and GLr(!R) - GLr+S(R) is

8
(r-1)—connected. Thus (1) is at least (1+dim K)-connected, so any map of XK
to the second term can be factorised (up to homotoPy) through the first, and

f is surjective; moreover, the result is unique up to homotopy, so f is
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bijective. (We use the well-known result - a corollary of the homotopy lif'ting
theorem - that sections of a bundle are homotopic only if they are homotopic
through sections).

Corollary 2.1.1 Let I CIRW+N have a weak G-structure, where the stable

group G satisfies (M), (&) and (8), and ay Z @ Then the normal bundle

has a GNrstructure; conversely, this implies a weak G~structure on M,

In this case, & @ n has a standard framing, and hence G-structure.
We use (A) only to identify the wo of the lemma with a composite of maps in.

Corollary 3.1.2 If G satisfies (M), (4) and (8), and N » m + 2, q zm+1,

N
then Q'S is isomorphioc to the cobordism group of pairs (Smtgj Mm), with GN

as group of the normal bundle,

'Striotly speaking, this uses the extension of the leuma where we fix a
G-structure of the restriction of ¢ +to a suboomplex of XK: the proof is the
same, It is more oconvenient to use normel than tangent bundles; accordingly,
by Qg we will denote the cobordism group of m-manifolds with a G-structure

on the stable normal bundle. By (3.1.2), under (M), (A) and (S) we have

Let us observe, before leaving our general discussion of cobordism with
a structure group, that if the ¢r(Gr) are not all contained in the identity
components of the groups GLrGR), then the 'orientation reversal' used in
Lemma 2.1 to define inverses does not in fact change the G-structure: wup to

homotopy, we can realise it by conjugating by an element of G. In this case,

we call G nonorientable, and observe that QS san be considered as ale—module°
Otherwise, we call G orientable; then the class of a point in Qg clearly
hag infinite order,

zThe important examples of stable groups G are the classical groups
0, S0, Spin, U, SU and Sp, and the trivial group {1}. Of interest 4lso are the
groups Spinc, Pin, and PinC of Atiyah, Bott ard Shapiro (Topology 3 supp. 1;
see esp, pp 7-10). Clearly, there are many ways of inventing more: for example,
we can take products of the above with each other or with any group of linear
operators on a finite dimensional vector space,

We next consider pairs (V1 "), where V has a weak G-structure and
the normal bundle an Hq—structure. We introduce no notation for this, since
the oobordism problem here can be reduced to the prvious case. DMore generally,

m+q+r

consider the situation Mm C Vm+q C S s Where the structure groups of
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the normel bundles are Hq and Gr' Then the normal bundle I C Sm+q+r
has an H x G_-structure.
q r
We shall only consgider the stable case r >m + g + 1 where the
imbedding of V in S is irrelevant (we can always find one, and any two
such are isotopio, by (II, 5.3) ), though this restriction could be somewhat

weakened,

Lemma 3.2 Suppose Hq compact. Then the pair (V'7%, 1) is

_(_Gr,_Hq)-coborda.nt to the empty pair if and only if Vo % is G _-cobprdant

:bo zero and Mm is Gr % Hq-cobordant to zero,

Proof The necessity of the condition is evident., We shall prove sufficiency

by establishing a principle of 'extension of cobordisms' (c.f. homotopy extension)
which will frequently be of use when considering cobordism of pairs with
various restrictions. In this cuse, we need a construction to extend a
G % Hq - cobordism of M +to the empty set to a (6. x Hq)—cobordism of
(V, M) +to a pair (V', ¢). Since cobordism is an equivalence relation, it
f‘ol?.ows that V' 1is Gr—-coborda.n‘b to ¢, say by W'; then (W', ¢) is
the required (Gr, Hq)-cobordism of (V', ¢) to (¢, ¢).

Now since Hq is compact, we can suppose that it acts orthogonally
on R, ILet Nm'*-l be the given G x Hq-OObordism of M to ¢: then there
is an induced bundle over N with fibre Dq, whose total space we denote by
Lm+q+l. Note that the restriotion to M of this bundle is the normal bundle
of M in V; hence we can identify a tubular neighbourhood of M in V with
part of the boundary of L, We form V x I, and attach L to Vx 1 by this
identification, giving W. Since L and V x I have G-r-structures, which
agree (by hypothesis, N is a cobordism of M with the G-r X Hq structure
induced from V) on the part identified, 7 pas e G .-structure. Also,
M x I UN=DN' is a submanifold whose norual bundle has éroup Hq'

Set VxC=9W. Then (W, N') is a (G-r, Hq)' cobordism, and
N' N a~+W = ¢. This completes the proof lof' the lemma. |

Corollary 3.2.1 The cobordism group of pairs (V°'3, 1), where V

has a weuk G-struciure and the normal bundle an Hq-structure (Hq compact )

is isomerphic to QG ] QG'XHq.
m+d — m— _
Proof We have defined a map to the direct sum, and proved it a

G,
monomorphism; 1t clearly respects additive structure, The map to Qm q

is onto, for given a (G x Hq)—man:ifold Mm, we oonstruct as above a bundle
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over M with fibre Dq, and can talke V as the double of this menifold.
Finally, the image contains Qi+q & 0: we need only consider pairs with W
enptye

We observed in Chapter 2 that the collection of the above cobordism
groups (with m varying) was an Qf module if G satisfied all the axioms.
The module structure clearly respects the direct sum splitting: thus
Q‘;’XHq is an Qf-module - as is indeed clear directly. Note that if G is
a stable group [satisfying (8)], then so is G x Hq.

Next, consider bordism: we denote the cobordism grouzs of manifolds
° with wealkk G-structure and 2 map MW —> X by QS(X): thus QS = QS (voint).
If M has a boundary, (X, Y¥) is a pair, and we have a mep (M, aM) » (X, ¥),
we obtain a group Qf (X, Y). It is also possible to use a group other than G

(but mapuing into G) for structure group of this extension appears less

Tout
interesting. If X has a base-point %, the natural maps =» — X — % induce
G

Q- Qf: (x) » Qf which split QS(X) as a direct sum Qf @ ﬁf(x). We will
consider bordism in morc-detail in Chapter 5.

For equivariant bordism, we let H be a compact group of operators,
and A a family of subgroups of H; G will continuc to denote a stéble group.
Then the cobordism group of manifolds with G-structure and an action of H
such that each isotrovy group belongs to 4 will be denoted by IE (H; 4).

Note here that H wust act on the G-structure., Since every isttrcpy.group is
necessarily closed, and since if a given subgroup of H occurs as isotropy
group, then so do all its conjugates, we may always suppose that A 1is a
union of conjugacy classss of closcd subgrouns. Equivariant cobordism will

be studied in Chapter 7.

As to connescted cobordism, we observe that already in Lewma 2.2. we
proved that disjoint union was cobordant to connected swa, so that in
dimensions 2 1, the connected cobordism group meps onto the usual one. The
map is in fact bijective, since if W 4is a cobordism to ¢ of a connected
manifold 9 W, then so is the component W' of W which contains a 7.

There are analogous results for k-connected cobordism, but we postpone these
until the section on surgery (Part VI).

By Lemma 2.2, h-cobordism classes of homotopy n-spheres form a group:

we denote it by @n. Consider pairs (Tn+q, Tn), with a diffeomorphism

I+

n+
e, shtd and a homotopy equivalence Tn-a §1: we obtain another group @g.



18

If we frame the normal bundle also, we have a group 'F@i. If we replace the
homotopy equivalence ™ Sn by a diffeomorphism (I-cobordism of pairs),
we get a group Ci: if we also have a framing, we cbtain FGE. If it is
replaced by a smooth triangulation by a {linearly subdivided) simplex
boundary, we get groups Pn’ Pi, FPn and FFE.

Further groups are obtained by making strong restrictions on the
boundary, For example, call a manifold i almost-cloéed if a
homotopy equivalence haM : M — Sm_‘l is given. The corresponding kind of
cobordisi is that in which aaw is an h-~cobordism. We write Pm for the
cobordism groups of framed, almost-closed m-manifolds; Pi for the group of

(s+97L "), with framed normsl bundle and M almost-closed, and

pairs
DPE "for the group of pairs (Dm+q, Mm) with the same restriotions (here,
Mm is a submanifold of Dm+q but for Pi, o was a submanifold with
boundary of Sm+q—l)’ Chapté® 8uovwasito.hate givemvexact Séquemces which relate
these groups of structures on spheres, but again we postpone fuller discussion
until Part VIL

To illustrate the generality of the definitions in Chapter 1, we point
out that the ordinary homotopy grou.s appear as a special case of cobordism
groups: more greCisely,. wn(X) is the group of I-bordism classes of maps
"+ X: our definition of the equivalence relation, and of addition, coincides
with one of the traditional definitions.

We give no examples of cobordism with a homotopy class: no research

seems to have been done in this direction.
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Chapter 4 Thom theory

Let € be a vector bundle with total space E. and base B If we

¢ &’

assume at least that ¢ is numerable (i.e. that there is a partition of unity
subordinate to an open covering over each set of which ¢ is trivial), then
the structure group of‘ ¢ can be reduced, essentially uniquely, to the
orthogonal grouy. We then define the Thom space of ¢, denoted by Tf’ by

taking the subspace A5 of E% of all vectors of length < 1, and

identifying to a point (denoted w) the set A§ of vectors of length 1. We

note that if B. 4is a C.W. complex, sa is Tg;\ if <B§ fs a speotk manifold,
S
we can give & the structure of smooth vector bundle, and E, and T§ - {oo}

¢

then also acquire the structure of smooth manifolds. If B, is compact, We

¢

caen give an alternative description of T, as the one-point compactification

¢
of E§:‘ the equivalence of this with the above follows from the observation
that E§ is homeomorphic to the subbundle of vectors of length < 1,

Now let M' be a submanifold of the compact manifold (perhaps with
boundary) Vm+q’ ¢ the normal bundle., Then we can find an imbedding
h: A§-+ V defining a tubular neighbourhood of ¥ in V (I, Theorem 3.5).
If we now take V, and shrink to a point the complement of Int h(Af)’ we

obtain a space, and h defines a homeomorphism of T ontn that space: thus

¢
we have an induced map V — Tf' This is a preliminary version of the Thom
construction.

Next, let B(G) be a classifying space for G, where G is a
topological group of orthogonal operators on jﬁq, let w(G) : E(G) —» B(G)
be the universal bundle with fibre IRq, having subbundles A{G) with fibre
p? end A(G) with fibre Sq_l. We denote the Thom space by T(G). In the
sequel, we wish to be able to consider B(G) as a smooth manifold, hence
must weaken the requirement to being N-classifving, for some large enough
integer N. Thus we can first replace the original B(G) (given - say - by
Milnor's construction) by the (¥ + 1)-skeleton of its singular complex; next
provided the homotopy groups of HG) (or equivalently of G) are countable,
by a countable (N + 1)-dimensional simplicial complex; then by a locally
finite one, and finally imbed this last properly in Puclidean (2N + 3)-space
and take an open neighbourhood of which it is a deformation retract. liore

simply, if G is a compact Lie group (the only case of importance in the sequel),
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we use the orbit space under the diagonal action of G on the join of
(n + 1) copies of itself.

Finally, given a pair (Vm+q, ") of compact manifolds, and a
reduction to G of the group of the normal bundle ¢, we can find a
bundle map ¢ — w(G), which induces a map (4., AE)-% (a(e), A(G)) and

hence T§-+ T(¢). Ve say that the composite map Vo % - T, » T(G) is

¢
obtained by the Thom construyction,

The first significant result in cobordisu theory is that the
construction can, in a sense, be reversed.

Theoren 4.1 Let G have countable homotopy groups. Then the Thom

construction induces a bijective map of the set of cobordism classes of

pairs (Vm+q’ o), with V fixed and G as structure group of the normal

bundle, onto the set of homotopy classes [V : T(G)], If V 4is a sphere,

the map is a group isomorphism.

Proof We must first show that the map is well-defined. Let (Vx I, Nm+l)

be a cobordism of the appropriate kind, and suppose the consitruction already
performed on the pairs (V x O, a_N) and (Vx 1, a%N). It follows easily from
the tubular neighbourhood theorem (I, 5.4) that the chosen tubular neighbourhoods
of a_N and a+N can be extended to one of N in V x I, from which we ocan
construct a map Vx I->T, (v the normal bundle of N in V x I) extending
the given maps on Vx 0 and Vx 1. Again, by the homotopy extension
theorem, we can £find a bundle mep v — w(G¢) extending the chosen maps over
dN. The composite Vx I— Ty>ﬁ T(&¢) 4is now a homotopy between the given
maps V-~ T(&). HencefWe have a well-defined mapping of the cobordism set into
the homotopy set.

‘Te next prove the map onto, 8ince G has countable homotopy groups,
we can suppose B(G) a smooth manifold, and hence also T(G) - {o}. We
identify B(G) with the zero cross-section in E(G), and hence with a smooth
suhmanifold, closed in T(G). Observe that when we perform the Thom construction
on (Vm+q, M@) to obtain a map f : V- T(G), we have ffl(B(G)) = Mm, since
the cbnstruction is induced from a bundle map Aé-* 4(G). How, conversely,
suppose”given amep £ : V- T(6)s By (II, 4.2.1), we can approximate f by
g: V> T(G), transverse to the submanifold B(G): the fact that ® is a
singular point of T(G) is irrelevant, since we can take g =f in a

neighbourhood of fdl(w), by (II, 4.3), If the approximation is close enough, g = f.



Since g is transverse, by (II, 4.0), " = g-l(B(G)) is a submanifold of
Vm+q‘ Also, by the definition of transversality, g induces a bundle map
of the normal bundle & to M in V to the normal bundle of B(G) in
T(G¢) which, by definitisn, is none other than «(G). Thus the pair
(Vm+q, Mm) defines a cchordisia class ¢ the right kind. Finally, we show
that this cobordism class maps to thc homotopy class oi' g, We have already
said that g induces a bundle map ¢ — w(G): if we use this map in the Thom
construction, then the resulting h : N T(¢) agrces with g, together
with its derivaetives, on ', After o small homotopy, then, we can suppose
g = h on a neighbourhood of M., But the couplewent of such & neighbourhood
is mapped, both by g and by h, to T(&) - B(G), which is contractible. It
foiloﬁs that h = g, as asserted.

We must now prove that the map is injective., But this follows by
almost exactly the same arguments., Suppose given L% cVx 0, M1 CcCVx1l
giving fise by the Thom construction to maps fo, £ : Vo> 7(G), and a

1

homotopy F : Vx I - T(G) between fo and fl. By (II, 5.1), we can replace

F by a homotopy F' of £ to £ which is transverse to B(G). Let

o 1’
N = F'—l(B(G)). Then N is 2 submenifcld of V x I, and provides a cobordism
of %D to Ml' Also, the normal bundle of N is induced from &, and so
adwits structure group G. Finally, this redustion to G induces the given

reductions of the normul bundles of Mb, Ml (since F' extends. fo and fl).

If V is & syhere Sm+g

, (2.2) shows that we can use connected sum to
define addition: we neol not connect the submanifolds K as well, since we
have not supposed them connected. Thus we use discs aisjoint from the
neighbourhood of i to define addition: these discs are mavped to « by the
Thom construction. If we then remove discs, and glue two spheres together, we
obtain the usual sws of homotopy classes.

This completes the proof of the theorem. Although the result is already
extremely useful, we will go on to some important generalisations. However,
these contain little extra in concept beyond the original result. The concept
may perhaps best be stated in terms of cobarcism itself (we have already
observed that homotopy is a spesial case of cobordism): it is that the extra
structure defined by & submanifold whose normal bundle has group G is
equivalent to the extra structure consisting of a map to T(G) (at least,

for cobordism theory).



Corollary 4.l.1 Let G be a stable group. Then we have an isomorphism
o = 1 o (2(c)).
I Mo n+N N
Proof By definition, ~csession of a G-structure is equivalent to having

R MES: .
a normal Gy-structure in 8 P for some N. If we fix N, +then (by the

theorem) we obtain the group LA (T(GN)).' We claim that the desired group
is the direct limit of thece under the obvious injection meps: this again is
essentially by definition,
If G satisfies (8), +then it is easily seen that LA (W)
is independent of N for N large enough (we leave to the reader as zn
exercise to ascertain the precise value), so no limiting process is necessary.,
A case of particular simplicity is G = {1]: eaoh Gy oonsists only
of the unit element. TFor eash bundle occurring, then, an isomorphism with =2
trivial bupdle is specified. BSuch an isomofphism we call a framing (it aﬁounts
to specifying a basis for each fibre IRN), and we call the bundle framed. In
this ocase, we take a point for B(GN); " then T(GN) = SN, and |

{11

Corollery 4.1.2 We have Qn

n

ﬁ%g ﬂn+N(SN); i.e., framed oobordismv

groups are isomorphic to stable homotopy grcups of spheres,

This (due to Pontrjagin) was the first theorem in the subject.

We next discuss multiplicative structure.’ Let‘ G, H be gfouﬁs of orthoéonal
operators on RY,IR°. Then B(2) x B(H) is a classifying spacs for ‘G % H,
and «(G) x @w(d) is a universal bundle. 4s to the Thom space (and tﬁis is a
general remark for product bundles), the identifications to be made to A(G x H),
which is homeomorphic to A(G) x A(H), to obtain T(G x H), inglude strictly
thﬁse necessary to form T(G) x T(H): in faot, in this further space, we must
jdentify T(G) x » U o x T(H) to a point. If we use ® as base point in

T(G), this gives the "smash product”, so we have
T(¢ x H) = T(G) n T(H).
However, we enly need the existenco ef a map T(C) x T(H) - T(G x H) in order
te define an ex£ernal product
[v:1@)] < [w: 2#)] - [V=xW: 2(6) x T(H)];

the induced map to [V A W : T(G) A T(F)] is useful only in the case when
V and W are spheres. This oase provides

. G
Corollary k1.2, Suppose that G satisfies (M), then products in 0




correspond to the pairings in homotopy groups induced by the maps

M+N) ‘

We now observe that these results can all be generalised to bordism

T(GM) A T(GN) - (G

groups.

Theorem 4.2 If G is a stable group with countable homotopy groups,

the Thom construction induces isomorphisms

Q(;I (xX) = ST e (T(GN)xX/ woxX)

Proof Let M° be a submanifold of Sm+N whose normal bundle, &, has

group GN. Now we had a map Aé-% A(GN): we also have a projection Af-a M.

If we have a map M— X, soc that M defines a bordism class of X, we have

a composite map A, = M—> X and so, taking products, a map A, — A(GN) x X,

¢ ¢
This induces Aé-% A(G) x X, Now shrink A, to a point, We obtain maps
A A(G )xX T(G. )xX
Sm+N_’ Té - é/Aé N N /A(G’N)XX — N /wxX.

Precigsely as in Theorem 4,1, we see that this construction defines a map
G 0 . I3 -
Qm(X)'* Wm+N(T(GN) %X / wxX). To check that the map is surjective, we start with

m+ N
f:s‘ aT(GN)xx/mxx,

and let K be the inverse image of = x X. Then f defines a map of

m+N

S - K to (T(GN) - {»}) x X. We alter the first component on a compact

subset of ST _ K by aamall homotopy, to make it transverse to B(GN).
This defines also a homotopy of f, say to f', DNecw set MF = f'—l(B(GN) X X);
then f' induces a map W - X, and as before the normal bundle of M" has
group reduced to GN. It follrws, as before, that the bordism class defined by
M maps to the homotopy class of f. Again, injectivity follows by a similar
but simpler argument, and the proof that the bijection preserves groups
structure is the same as before. The passage to the limit works as before,

Let us write Xp for the disjoint union of X and a point %, which

we take as base point. Then

(6y) A X -

T(GN)XX v, T(GN) X*/T(GN) wx U oxX

1

T(GN) x X /o % X.
Thus the above result ean be written more compactly as an isomorphism

Qi(}{) = (e A ),
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Note that XX A ¥ = (X x Y)O. We now see, as in 4,1.2, that

Corollary 4,2,1 Under the zbove isomorphism, external products

G G G
X -
Qm( ) x Qn(Y) - Q. (X x Y)

correspond to the homotopy pairings induced by

(6,) A XA T(ey) A 0 = 2o, ) A x TP,

M+N

A similar argument to that of Theorem 4.2, but replacing Sm+N

. m+N
by a diso D l, shows

Lemma L .3 With the assumptions of (4.2), have isomorphisms

QS (x, 1) = 7 @(E) A, 2(e) AP)  for N large.



Chapter 5 Bordism as a homology theor;z.

We shall suppose throughout this chapter that G is a stable group.

Then the inclusions i : G =G . induce bundle maps w(Gn) e l- w(Gn+1)’

and hence maps of Thom spaces. Recalling that the Thom space of a Cartesian
product is the smash product of the Thom spaces, we have

1 .
T = = 8T th of T(G ). Thus we have maps
lw(Gn)eJi' Tw(Gn) A S S.L(Gn), e suspension ( n) D

S‘I’(Gn) S T(Gn+1)' The sequence {T(Gn), i'n} is a spectrum we will denote

it by ®G). If G satisfies (M) and (&), the products b Gy % Gn—> G

s

n n .
T(er) A T(Gn) - T(am+n), and these associate up

+n

similarly induce maps ¢! :
m,n

to homotopy. This provides ‘A“(G) with the structure of a ring spectrum.

Now any spectrum &= {An, in} gives rise to a homology theory on

defining

H_(X; &) limg ow o (A A x°)

o

1

It

B (X, ¥; &)
n

(& A X, A A °)

im. g
Fo0 N+l

= e T (An AX, A A Y),

and clearly if & is a ring spectrum we obtain associative external products.
Hence the results of Chapter 4 ocan be summarised by

Theorem 5.1 The Thom construction induces a natural equivalence between

the functor Q(_; znd homology theory with coefficients in the spectrum T(G);
ae sumotor M Licies

this respects products in the mulviplicative case.

It follows from this that Q:r defines a homology theory; however, we

prefer to present also a direct proof of this fact.

Theoren 5.2 The grouss OE(X)L QE(X!, Y) satisfy the axioms for a homology
theory. '
Proof We must first define the bowwdery homomorphism. If £ : (M, au) - (X,

gives a bordism class of (X, Y), then f|aM gives a bordism class of Y.
If F: (W, acW) —+ (X, Y) 4is 2 cobordism, then F|'EO’;V is a cobordism between
the boundary maps of F|o 7 and Fla;ﬁ: thus restriction induces a map
a_ Qi (%, Y)_ - Qi_l(Y) which is compatible with disjoint union and hence a
homomorwvhi s, | |

Also, we have not yet made explicit the functorial dependence of
QE(X‘) on X« If f : M- X represents a class, eand ¢ : X—- Y 4is a map,
then ¢ of : M- Y determines a bordism class of Y. Again, it is clear that
this construction defines a homomorphism 3, - QE(X) - QE:(Y). We can proceed

similarly for pairs.



The first two axioms (that Qi is a funtor), and the third (that 2
is a natural transformation) are trivial. The fifth axiom states that
q,'>o e q,'>l : X—» Y implies xpm = ¢l*' Indeed, if f : M— X represents an
element of Qg(x), and ¢ : X x I > Y 4is the given homotopy, then
30 (F x lI) provides the required cobordism.

The fourth axiom states that if 1 : Y- X amd j: (X, ¢) - (X, Y)
are inclusions, the sequence

~

G e Geoy Jx. G 9 G
Qm(Y) >Q{A§X5 £ Qm(X, Y) > 0

is exact: we next verify this. It is our first illustration of (2.3).
Exactness at QE(Y) is formal: a cobordism to the zero class in X ocan
be identified with a representative of a class in Qi(X, ¥), and vice-versa.
Since 2Jj# takes a representative g : M— Y to the empty class, it is zero;
conversely, if the class of £ : (M, 9i4) » (X, Y) 4is ananihilated by 9,
there is a G-manifold N with boundary 8l such that f£|3M extends to a
map e: No Y, Form ' by glueing N to M along dii; then e and
define f' : M— X, representing a class in QE(X). We say that the image of
this under j¢ is the class of (M, £). Indeed, F' x 1 X x IX
provides the required cobordism, if we introduce a cérner along éM x 0, and
agree that o (il' x I) =1 x 0, ac(N x I) = Nx0 and a+(;-q' x I) = L' x 1,
Similarly, if g : M — Y determines a class in Qi(Y), we can regard g X lI
as a cobordisu of Jig to zero in QE(X, Y). Finaliy, given an element of
Fer j+ and a cobordism W of the js-image of a representative to zero, we
have a+W =¢, AN=¢, and f : (7, acW)-+ (X, ). But we now reinterpret
T' =W butwith o W' =29 W, a+W’ = aOW: then W' is a ocobordism of the
given representative of Xer j# to f : a;N'-a Y, which is clearly in the
image of i*.

He must now checi the excision axiom: that if U c X has its closure
in the interior of Y, then inclusion induces an isomorphism
Qi’(x -U,Y-U)> Q:’(x, Y). To prove surjectivity, we let £ : (M, ai) - (X, Y)
represent an element of Qg(X, Y)., It is convenient first to alter f (if
necessary) by a homotopy on a collar neighbourhood of 8} so that some smaller
neighbourhood is mapped into Y. Then 4 = f_l(X - Y) and B = gM U f-l(U)
have disjoint closures, so we can find s : M— I with s(4) = 0 and s(B) = 1:
in fact, since M 1is a compact metric spéce by (I, p.l.l), we can set
s(P) = p(P, &)/ p(P, &) + p(P, B). We approximate s by a smooth map (as in

-1
0, 2.1.1) and moke it transverse to & by (II, 5.1). Let N=s [0, $]:
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then N 1is a smooth submanifold of i, and f|N determines an element of
QE(X ~U, Y= U). But N and M determine the same class in QE(X, Y):
for a cobordism W, we use f x 1I : Mx I+ X with a corner introduced
at 8N x O and the corner at aM x O rounded (I, 6.5 and I, 6.3) -

since (M - N) C s'l[%,_l], it is disjoint from A4, and f{M - N) C Y,

so we ocan safely adjoin (M - N) x O to aW.

‘ Mox 1

o W_'. , M x I

Nx 0 7 (M=N) x 0

The proof of injectivity is similar, If £ : (W, aCW)-* (%X, ¥) is a
cobordism of fla ¥ : (2 W, AW)-»(X-U, Y-T)- to 6+W = ¢, we first
adjust f so that A4 = f"l(x -Y) and B = 2 J U f'l(U‘) have disjoint
closures. MNext choose a smooth s : (W, &, B) » (I, 0, 1), transverse to 3,
and set V = s_l[O, 4], Then V is a cobordism of 9 V to zero in

Qi(X -U, Y - U): a cobordism of 2 V to 3 M is obtained exactly as above.
This completes the proof of the theorem.

Various standard properties of homology now follow,

Corollary 5.2.1 i (%, X) is a C,7, neir, or more generally if it has

thelpmotopy cextension sroperty, Q?KX, Y) 3 QE(X/§, pt) = 5E(X/&).

X/Y

For - then has the hémotopy tipe of X with a cone on Y attached;

by exoision, this modulo the cone has the same grouys as X modulo Y.

Corollary §,2.2 If ¥ is the cone on Y, 5?(2)7: ), and
%

G N e S
3 s Qm(X, Y) = Qm_l(_t)_.

The first assertion follows from the homotopy axiom, the second from the exact
sequence,

Corollary 5.2.3 If X5YD>Z is a triple, we have an exact seguence

Gy Gy [ G (v
e 00 B G B 2 0,0 ) e (2

The proof is a standard exercise in diagram chasing.

\ ~G, P G
Corollary 5.2.4 Q8= .
I m—p

Follows by induction from the preceding two.

Definition Let X=¥ VU, 2=Y NY,. Wecall (X;Y¥,Y¥) a proper

triad if inclusion induces isomorphisms

G e
Q*(Yi, Z) = Q’_’(x, Y. ).

1-i
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(By Corollary 5.2.1, this holds if all pairs (X, Yi) and (Yi, 7) have the

homotopy extension property.)

Corollary 5.2.5 Ir (Xi~¥1’-§2) is a proper triad, we have exact
seguences

Qg(Z) - Qi(yl) @ QLGH(YZ) - Q[(i(X) - Qg_l(z)

¢ G Gy G ¢
nm(z) - nm(x) - Qm(X, Yl) @ nm(x, Yz) - Qm_l(z)

These follow by another standard argument (the same for both).

n

Corollary 5.2.6 Qf(x U Y) Q:’(x) & Q:’(Y) for disjoint union,

14

'ﬁf(x v Y) 5_(:’(1() ® BE(Y) if (X v Y; X, Y) is proper.

Applv the previous corollary, If Z = ¢, we certainly have a proper triad.

Corollary 5.2.7 r (X, ¥) is a C,¥. pair,

G ).

¢ -1
nm(xp uY, £ Uy) = cp(x, G

X
By (5.2.1), Qi(xp vy, 1 uy) s QE(XP/XP_I u(x® N Y). But X/l (£ NY)
Vis a wedge of p-spheres; now apply (5.2.4) and (5.2.6).
These corollaries all illustrate how we czn begin to calculate the
groups QS(X, Y) in terus of the Qg (the calculation of these is postponed
to Pert VB)., 4ifter (5.2.7), we can formalise this process as a spectral
sequence.,

Theores 5.3 Let (X, Y) be a C,¥. pair., Then there is a first quadrant

G
Q*—module spectral seguence, converging strongly to QE(X, Y), which starts

2 G
with E =H (X, Y; Q7).
Proof If r < g<p we have, by (5.2.3), the exact bordism sequence of the

triple (Xp VY, x? Uy, X U ¥): =211 the maps are induced by inclusions and
boundary homomorphisms, so all expected diagrams coumute, But such a collection
of exact sequences always defines a spectral sequence, We write X = X,

X" = ¢: then the end term is certainly Qf(x, ¥). The module strusture is
induced by natural products Qi X

_m
if 1 is a closed manifold, and f : (N, aw) = { Uy, X2 UY), then we

G /P . . 4. G P v .
o Fur, uy)-a (Fuy, 2 U Y):

use the menifold M x N (with induced G-structure) and the map induced by first
projecting on N.

The El term is simply

ot G (4P p-1 G

E =0 X Y, X Uy)y=G6 (X, Y; Q by 207)
e = L (E VY v) =0 (% ¥ a0 by (5.2.7)
1

The boundary d~ is induced by taking the boundary of a manifold: we should



next verif'y that this coincides with the usual boundary in the chain complex
of (%, Y), as it then follows that Eiq = HP(X, Y Qi) and hence that we
have a first guadrant spectral sequence (evidently Qi =0 for q< 0). We
omit the verification, which is a standard argument in homotopy theory.

As to convergence, we note that

QE(X“W vY) = Qi(xp UY) forall p< 0
Qi(Xp UY) = Qi(i” UY) for all p > n,

v the cellular

v

the first since X~ = ¢ = X° and the second since (b

approximation theorem) ony mep of an n-manifold into X is homotopic to a

map into Xn. These two isomorphisms imply strong convergence of the sequence.
We shall defer explicit calculations till Part VB. However, one

useful retinterpretation mcy be noted here, which reduces yet further the

problem of computing cobordism groups of pairs. Let G be as above, and

Hq a topological group of orthogonel operators on Ry, Then Lemma 3.2

produces the remerk thut setting (G x Hq)n = G x Hq defines o steble

n-q
group G x H , which satisfies (8) if G does.
: GxH G
- o kit . Q o 7 a
Lemma 5.4 ¥e have Qn Qn+q(E£Hq))’ and more generally
Gt G 0
q ~
gn..‘__g_.)_.—__nnq-q(EHq)L}{_) .
Proof’ By Theorem 4.2, we have
Gt B . .
Q ex) = g (16 x B ) A )
= s (e H ) A X
= Yo wn+N(T(GN;q) A T(Hq) A 1)
G
= (T(Hq) A X°).
Remark Under favourable conditions, we also have a 'Thom isomorphism!

of the last-mentioned group with QE(ESHq) % X).

We have developed so far only the homology theory associated with the
spectrum “P(G) and so with the stoble group G. There is also an associated
cohomology theory, defined by

Ny . T(GN+n)].

Ny .. L.

0, (%) = BY(X; (6)) = Jam [
Since we are not particularly concerned with general theory here, we only méntion
the gecuetrjc content of the czbove definition., This arises again by Theorem L.2;

. : N, -
this time we note that S X is not a menifold, even if X is, but (if we take
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the reduced suspension) has only one 'bad pcint', whose complement is ]RN x X.
As we will always map the Bad point to o, +this does not matter., Then by
(4.2), [SNX : T(C-N+n)] corresponds bijectively to cobordism classes of

submanifolds of ]RN x X whose normel bundles have group reduced to G .

N+n
Theorem 5.5 Let G satisfy (), (4) and {(8). Let i’ have a wealk
. - b WY & © s
G-structure. Then QG_(L"L) = Qm_n(lu, M)
Proof In this case,: JRN x M also has a weak G-structure. By Lemma 3.1,

a GI\Hn—stnuoture on the normal bundle of V% in IRN X M"  then induces a
weak G-structure on the tangent bundle of V, and conversely if G dis large
gnough. Combining this with the remark preceding the lemma, we have a bijective
correspondence between QE(IV) and cobordism classes of manifolds V. = with
weak G-structure and an imbedding in IRN % i , for large enough N. But if

N is large, any map to IRN % i is homotopic to an imbedding, and homotopio
imbeddings are cobordant, by (II, 5.3). Hence specifying an imbedding in

]RN X nyn is equivalent to specifiying a map to ]RN X i - or again, a map to
M': it remains only to note that if M has boundary, 9V is imbedded in

N
IR x 9M, so we must insist that it be mapped to aJN.
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Chapter 6 The classical exact seguences.

The sequences to which the title of this chapter refers were originally
devised to relate QS and Qfo, as a means of calculating the latter., A
more abstract proof was found by Atiyaeh (who invented bordism theory for the
purpose), and we present a generalisation of an improvement due to Conner
and Floyd, who considered the case of QE and QEU. We will then give the
geometrical proofs too,

Let G be a stable group, defined by a sequence

in—l i

. Gn—l —— Gn — Gn+1 cee

where Gn rperates on IRn. Let SGn C Gn be a sequence of normal subgroups,
G

with i (S6 ) € S¢__, and such that i  induces isomorphisms of ?/SG .

n n n+ n n
This last condition could perhaps be weakened to requiring that each homotopy
group wr(Gn/SGn) becomes independent of n, for large n. We will denote
by 2 the quotient group linm Gh/SGn = G/SG, say.

e will also suppose that G satisfies (M), and that the subgroups
SGn are stable under the product maps ¢.

The examples we have particularly in mind are when 2 = O1 (ETZZ) and

1 c

G=G6 or Pin, B8G = 30 resp. Spin or when 2Z = Ui (S) and G = U or Spin ,
SG = SU resp. Spin. The following is also a useful construction. Let H be any

topological group. Then we can replace G by Gx H and SG by S8& x H,

n
where Gh x H operates on IR" wvis its projection on G . Note that
n

1

B(Gn x H) B(Gn) x B(H), T(Gn x H) = T(Gn) A B(H). TIn particular, if X
is any GW complex, the loop space QX is equivalent to a topological group, and
we have

Gx1X .

n ﬁig ﬂn+N (T(Gh+N x X))

= 3 ~G
B2 7 (BE ) A X) =),

o)
I

This allows us to consider only coef'ficient groups of homology theories, and

later to deduce their general values.

Theorenm 6.1 Let G, 86 and Z be as above. Let o be a Gk—bundle over

BZ whose classiflying map induces, via BZ — BGk-+ BG — B(G/SG) = BZ, a

~3G

Qo (Tla)).

n

, . G
homotopy equivalence. Then Qn
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Proof Let X be the classifying map of o. Denote by fN’ the composite
B(se.) x 32 2% p(g) x B(G ) F B(G.. )
N N e i Nk’

These maps are compatible with 1i,, hence there is a limit map

R

f : B(SG) x BZ — BG. We claim that f induces isomorphisms of homotopy

groups, this is clear from the definition of £, the exact sequence
oo T (s¢) - T, @) - A (s¢) ...,

and the fact that (up to an automorphism) X+ sSplits the projection
\
7 (6) = 7_(2).

Now by definition, fN’ is covered by a bundle map of the direct

sum of the universal bundle over B(SGN) and a to the universal bundle

over B(G, . ). Thus we also have a map

Ntk

T(SGN) A T(a) - T(

ey’ GTH&:)'

Since fN ipduoes homotoyy isomorphisms in the limit, so does &y

Fe now have

G‘ _ . mn
Q, = &%g 7Tl\l’+n+1c(f(ul\l+k))

qu;'gol WI\T‘FDH{(T(SGN) A T(a))

4

1l

w2 (1(2).

The next result is a companion to (6.1), but needs less hypotheses.

It is related to the Thom isowmorphism theorem.

Theorem 6.2 Let G be a stable group satisfying (i), P a topological
space, a a Gk—bundle over P, Then QE(P) = ﬁi+k(T(a)).
Proof Let x olassify a, fN' denote the composite

By
Ixy "N,k
e § o LT o
B(GN) x P > B( N) x B(Gk) > B(uN+k),

) x P whose components are f and

and F_  the map B(GN) x P - B(G N

N [N+

of

projection on the second factor, F_ is covered by a bundle map of the direct

N

f d t .
sum of @, end a to w..

i to B(GW+k)’ and we have a commutative exact diagranm
L
’ o
0w (B(Gy)) » 7 (B(G) x P) - 7 (P) —» 0
i, iFDh I

0 - wr(B\GN+k))-+ wr(B(uN+k) x P) - wr(P)-+ 0.

Also, B(GN) is mapped by the natural injection



Thus FN* is an isomorphism in the limit as N - «, Te have an induced map
of Thom spaces

O
T(GN) A T(a) - T(GN+k) A P,

which then also in the limit gives homotopy isomorphisms,
The conclusion of the proof is now as beflore,

Corcllary 6.2.1 With the hypotheses of 6.1, if f is an 86 _-bundle over

BZ, we have an isomorphism:

o%ez) = &S (2(6)).

To obtain exact sequences from these results we need some restriction

on BZ -~ or rather, on Z, We will now assume that either Z = Q EZZQ

1
1
or 7 = Ul ¥ §, Correspondingly, BZ = P (say) is infinite real, resp, complex,
projective space, Let us write d =1 in the first case and d = 2 in the

second,

The following will be useful for.cheCking the hypothesis of (6.1).
Since BZ is an Eilenberg - Maclane space, a map BZ - BZ is a homotopy
equivalence if and only if it induces an automorphism of the homotopy group -
or equivalently, of the lowest homology group.

We will make the further assumption that the standard real or complex
line bundle n over P is a Ga—bundle, inducing a homotopy equivalence (which
must be, up to sign, the identity) P — P. This is easily verified in each of
the oazses mentioned earlier. In the complex case, the conjugate 7 is then
also a Gz—bundle. Ve now take o = (m+l) 7+ mﬁ. Since the first Stiefel-
Whitney (resp. Chern) class of this is a generator, we can apply Theorem 6,1.
To compute Pa, we note that.if ﬁhe structure group is extend to _8m+1’ a
becomes equivalant to (2m+l)n? and so P* is home omorphic to P/sz,
where P2m is the sub-projective space of dimension 2m.

This proves

Corollary 6,1.1 With the above assumptions,
G ~SG P
2, = Qn+(2m+l)d ( /PZm)'

We also apply 6.2.1 with g = 2un, so P = P/sz_l, to obtain

s¢ L aSe P
Corollary 6.2.2 0 (F) = Qn+2md ( /PZm—l)'
SG

n 2

R

Also note that QiG(P)

' G _ ~S6
6.1.1, Q = Qn+d(P)

~SG,._.
Q (P)en and that taking m = 0 in

Putting these together, we have
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G SG _ ~SG
Corollary 6.2.3 Q . ® Q7= (P/PZm_l).

Fe now obtain the exact sequences.

Theorem 6.3 Let G be a stable group satisfying (M), SG a subgroup with

Gn/SGn =0, or U for n>d (d=1 for 0, 2 for Ul), and stable for

¢y, P = PwGR) or Pw(ﬁ). Suppose the standard line bundle 7 over P is a

Gd~1_>_xg1‘d;1§—2_ inducing a map P —p  homotopic to the identity, Then there are

exact sequences (where P2 :—‘__Pz(m) or PZ(“;)_-

. SG G S& G SG
1) ... Q" > 0 = 05 e 0 Q5 ...
.. ~3G G G ~SG
(1) e G5 Bp) > 0 = 0 g > T, (B~
R SG SG SG SG
(i11) ... Q° - ?5n+d (Pz) - QT A o
Proof (i) P, CP is a sphere 5%, The sequence of spaces
Sd - P - P/Pl
SG

has an exact homology sequence for Q . Also, we have

L

iR

86 ody _ ~SG - ~SG
Qn+d(S )= a” by (5.2.4), Qn+d(P)

~36¢ (P _ G SG ) B L .
and 07, ( /Pl) =0 @0 " by (6.2.3) with m = 1. This gives (i).

Qi by (6.1.1) with m = 0,

(ii) Replace P, by P, in the above, and use the fact ((6.1.1) with

~56¢ /P G
m e 1) that Q s ( /PZ) = gn-.za'
(1i1) Here we note that 2/91 is a sphere SZd, and use the exact

ﬁiG'—sequence of SeL - P‘2 - SZd,

We now turr to the geometrical azproech, arnd will give a secoxd complete
proof, at the same tifie giving .a'more precise description of the maps in the
sequences. Ow sccond  proof will illustrate sequence (i) as of the type
described in (2.3); we will give a full discussion of this, and the rest will
then follow . We will also improve several details of the theorem.

Now (2.3) gives us an exact sequence in which the third term is the
cobordism group QE’SG of bounded G-manifolds with an SG—structure on the
boundary, We will evaluate this using the ddiar introduced after (2.3).

Let us agree, in order to avoid unnecessarily complicated notation
below, that the G—struciure of a wanifold i 1is specified by the classifying
map of its stable normal bunile, Vo ¢ i -+ BG: that we have a fibration
BSG - BG KA P; and that an SG-structure of M is determined by a nullhomotopy
of wo Vo which is thus covered by a homotopy of Vi to a map into BSG.

We shall also need the G—-structure on the standard line bundle over P,

classified by P 1 BGd % BG; here we may assume that w02 On is the



identity map of P, lp. We write (-1)P for the negative of the identity;
in the real case, we can take (---l)p = lP, and in the complex case, define

(-l)P by oomplex conjugation. Now P is an H-space, and the diagram

BG x B& §£> BG

Lmr ik

P x P _ P

is homotopy commutative; we shall alter (if necessary) our model of 3G
to make it commutative.

Now if 1" is a G-manifold, we consider the map 7 O wv_ * M- P,
4ltering by a homotopy, if necessary, we may suppose that this maps M
to a finite dimensional projective subspace Pk. By (II, 4.2.1), we can

make this map transverse to the submanifold Pk whose preimage will then

-1?
. - -4 . .

be a smooth submenifold Vm of Mm, with normal bundle induced from 7.

Moreover, if 9M has an SG-structure, =7 © Vo is trivial on 8} {(which has

trivial normal bundle in M), 80 may be assumed to avoid Pk Thus V

-1°
lies in the iﬁterior of M, and is closed.

We now give Vm—d an SG-structure. Indeed, the stable normal bundle
of V is the sum of the bundles induced from Vo and from n; i.e. 1s
induced by

v
v ¢ ¥ -5 B . pe ox P,

We shall give the second summand minus the obvious structure. So the normal

v
bundle ' is now induced by
vl 7 Ixm 1 x-1 1
v -2 Be 2T, B¢ x P > Be x P =2, Be x B¢ H¥5 sz,

The ocomposite 7 O v, is thus induced by

v IV
v 2 BGEPM-)»P_XP.-)P,

and if we fix (onoe for all) a nullhomotopy of the composite map P+ P, we
define one for 7 ¢ v, and hence an SG-structure for V,

Now we showed in Chapter 2 that M was (G, S§)-cobordant to a tubular
neighbourhood of V. This is a bundle over 7V, with fibre Dd, agssociated to
(mo vaV)*n; hence its (¢, 3G)-cobordism class is deterizined by the class

of (7, 7o [V) in ¢

- d(P). The formula which determines it is as follows.

Let 7' be the bundle induced from n. Then v, = v+ F', where the bar
recalls the sign change above., Thus v, + ! = v +n' +n' = Va +2 (e a

trivial Ga—bundle). It is olear from this that given any element of Qzﬁd(P),



- d
represented say by (V, £), we can take the bundle E with fibre D
associated to f*n and give it a G-structure. Moreover, the stable normal

bundle va3E of the boundary 4E 1is the restriction of v But 7 0O v,

E E
is essentially f, by definition, and is covered by a bundle map over

V of E to the disc bundle associated to 7, and hence of 3E to the
corresponding sphere bundle X, But £ 1is contractible, so we have a
well defined nullhomotopy of 9E—+Z — P, and so an SG-structure on JE,
Since all our constructions can — as in Chapter 4 — be carried over for

cobordisms, Wwe have an isomorphism QfsS6 L SE ®).

m m-d

We now wish to use the remark immediately preceding (4.1.1) that the
extra structure provided by a submanifold gives the same cobordism group
as the extra structure provided by a map to its Thom space; and combine this
with the remarl: that P is homeomorphic to the Thom space of 7. The details
resemble those above: e have a map (X& say), of V to P, or more
precisely to Pk-l' We make this transverse to Pk—2’ and write B = X;l(Pk_z).
Then

vy = v B+ (x |B)*n,

and we use this formula to give B a G-structure, Our constructior again
works for cobordisms; since the class of (V, f) determines the cobordism

classes of V and B, we have a homomorphisn

SG SG G
Qm-d (®) - Qm—d ® Qm—2d'

In fact this is an isomorphism, for the class of (V, f) is determined by
that of (V, B, and the map B — P inducing the normal bundle of B in V);
by Corollary (3.2.1) we can separate the two elements of the pair, provided
the stable normal bundle of B is induced by B~ B(SG) x P and finally,
by the proof of (6.1), this latter is homotopy equivalent to B(G).

We have thus obtained sequence (1); to complete the discussion, we
must determine the boundary map

s ¢ SG
Qg & Qo » Yy

As to the first component, we can suppcse B empty and X, trivial, Then

the disc bundle is trivial, and has boundary V x Sd_l. This describes it as a
G-manifold; for the SG—structure we must be more careful. All the construction
it that of a product, hence we obtain multiplication by the class, a say, of

Sd-l with appropriate SG-structure. To deteruine this, we can take V to be



a point and M a disc 'Dd. Recall that V was constructed from M by making

k-1
by this, so Sd = M/bM is mapped to meet Ek—l transversely in just one point.

Trov + M- Pk transverse to P .. DNow 9M = SCL"l was mapped to a point
m .

This ccincides (up to homotopy) with the inclusion of a projective line Pl.
So a is the class of Sd—l, with SG-structure defined by a framing of the

normal bundle, twisted in this way. One can analyse the twisting more in

general, but it is by now easier to remark that when d = 1 we have SO,

and each point has the positive orientation (this twists the standard framing

3G SG .
of oD by changing a sign). Thus in this case the map Q °, ~>Q -, 1s

1
just multiplication by 2. In the case d = 2 we have S, and the twisted
framing differs from the standard cne. Here elementary homotopy theory tells

us that 2a = 0.

G 3¢ | G
Trite (dl’ dz) for the components of the map Qm-* Qm—d Q meZd,

so that the image of the class of M by 4, resp, d2 is deternmined by V,

G —
m-24

1

resp. B. We now construct a map ¢ : Q1 Qg and show that dl o¢p=20

and d2 0 ¢ = id. From this, and the exactness of the sequence

Ko

d, d.) At
¢ (G5 &) o ¢ oY se
a > Qg @ A oy > O

now follows that the second component (c) of the boundary map vanishes.

-2d .
Suppose then that 5" 2 is a G-manifold, form (7 O vB), which we

may take 28 a map B — P1c for appfoPriate ke Then 75 + €2d can be regarded
as a real (resp. complex if d = 2) bundle over Pk; we form the associated

: . W . Vm—d
projective bundle Qk+2’ and let be the induced bundle over B,

d
the subbundle corresgponding to 7 + € , and identify B itself with the

subbundle of V corresponding to 7. It is well known that if to Ty

we add the bundle induced by M — B — Pk from 7, the result is the sum

of a bundle induced by T

5 @end three (real or complex) line buzdles,

d d
corresponding to 7, ¢ , and € ; and all induced from 7, say by maps

£, £, and f_. We give these the F-structures induced by £y, £ and

1’2 2 2

-1l ¢ f2: this defines a G-structure on M, and as the consgtruction applies

to cobordisms and to disjoint unions, we have defined the desired map ¢
Although the G-structure itself is somewhat complicated, it is easy to

see that w o v

- is induced via the bundle map f : M- Q1+2‘ covering the
g 4

original map B— P . We will now write down a mep { : Qo = Pk+2 which

is ftransverse to Pk+1 and Pk, which have preimages the sub~bundles associated

d
to n +.e€ and 7. Since @ dis explicit, it is easy to see that { o B =27 O i
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thus M glves rise to V and B in the usucl way. Hence we have

d2 0 ¢ =1id, To see dl O ¢ = 0, we must find an SG-manifold with

bourdary V: in fact, as V is a Pl(z g2 -)burdle over B, we take the
assooiated diso bundle: such exists sincebthe group of the bundle is not
‘the fuil projective group but onmly 2 (= Sd_l), and is topologically the
product by I of the mapping cylinder of the principal bundle, 3Since the

principal bundle was obtained from 7 O v this has an SG-struoture.

B’
It remcins to construct ¢: for this we follow Atiyah. Let

k=R or € in the cases Z = SG or Sl, and consider the decomposition

kK*B = kK+1 & kz. Then Pk is the projective space of kK+1, and we can

identify the fibre of n + e2d over the line ¢ CZPk with £ @ k2,

and 80 Qg , With the subspace of F x B, of pairs (¢, m) of lines with

mcCiée kz. We take { as projection on Pk+2; so for §—1(P%*1) we need

mncfe ko0 ondfor §_1P¢, m = 4. Both transversalities are clear.

We have established

Theorem 6.k There is an exact sequence
a ) /XC!\
se r oo (G g R
Qn - Qn - Qn—d ® Qn—-2d D Qn—l’ tet

d-
where a 1s the class of S 1 with a twisted framigg.

. G G .
Also, there exists ¢ : Qn—2d<# Qn with (dl, d2) o¢ = (0, 1).
Ri
Corollary 6.4.1 Write QnG = Ker d2. Then there is a split exact sequence.
. d
0 - QI;G 3 Qi §> Qi_Zd - 0.
e’

iforeover, the following sequence is exact:

<
o% 85 R L 6 xa 86
n n n-d n-1

Here, r is the forgetful map and i the inclusioni the first sequence
shows that r factorises as r = is, and the corollary is immediate. Moreover,
on comparing the above with Theorem 6.3, we are led to the identification

RG ~SG
o, = O +d(P2).

R
In fact yet another definition is sometimes more convenient: QmG is the

cobcrdism group of G-manifolds M provided with a homotopy of w7 O Vi M—->P

d
to a map into P1 (=8"). For the corresponding V is then mapped %o Pb and

B to P-l’ so B is empty, so such manifolds lie in Ker 4 Conversely, if

2 L]

M is in Xer d2, an extension of cobordisms argument shows that B may be

supposed empty., But then the image of 7 O T A Py avoids Pk 50 80 is
A 9 =

homotopic (by an obvious projection) to a map to the complementary P1.



Chepter 7 Equivariant Cobordism

The object of this chapter is to give a progra.ume for reducing
the calculation of equivariant cobordism groups to that of the bordism
zroups of certain classifying spaces. It will first be necessary to develop
thoroughly the foundations of the theory of smooth group actions.

Let H be a compact Lie group, Lk a smooth manifold (perhaps with

boundary, or corner) and let
p: Mx H- K
define a smonth action of H on . For each P& M, write
H, = fheH: ¢, h) = Pl.

Then H? is a olosed subgroup, called the isotropy group of P.
1

We have ¢ (2, hl) =¢ (&, h2) <=> &(P, h1h2— ) =P

-1 )
<=3 hth € Hp <=> Hgh) = H@hz.

It follows that ¢ induces a bijeotion ¢ of the space of right cosets

H/HP onto the set of poinmts #(P, h) (h e H) - wanich is called the orbit
of P, It also follows that H, = h—lH . Thus the isotropy grou.s
#(P, B) P 7y grow

at the points of an orbit form a complete conjugate set of closed subgroups
of H. Such sets are called orbit types, and the set containing H? is
the type of the orbit of P.

Lemma 7.1 The orbit of P is a swooth submanifold of 1f, and ¢ is

a diffeomorphism.

Proof (1) Since H/H? is compact and ¢ injective, we know that ¢
is a topological iubedding in 1,

(2) since ¢. is a smooth map, so0 is .

(3) Tt is now swficient to show that-'dwl is everywhére injective,

(4)  Hew -w"is an equivariant map for smooth H-actions: translating by
elements of H;'we see that if d¢ is injective at the unit element, it is
injective evérywhere, and conversely.

Suppose then diy not injective anywhere. By a result of A. Sard
'Images of critical sets', Ann. of Math. 68 (1958) 247-259, if r is the
topological dimension of H/Hb, the Hezusdorff r-dimensional measure of
¢(H/H§), the orbit of P, is zero, By Theorem VII. 3 of W. Hurewicz and
4. Wallman, 'Dimension theory', the dimension of ¢(H/Hp) is < r - 1. This

contradicts the fact that ¢ is an imbedding, and proves the lemma.
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Now let V be the set of points of M with isotropy group H#,

& the set of conjugates of H?, and W‘ the union of the orbits with type o,

so that we have W, _ = ¢ (Vx H). Let N% be the normaliser of H? in H:

then V 48 invariant under the induced action of N?.

Theorem 7.2 V_and W, are smooth submanifolds of M and ¢ induces

a diffeomorphism of V x N H onto W, .

We do not assert that all components of V (or of W,) have the same
dimension.

Proof We first assert that M admits a Riemannian metric which is

invariant under the action of H. Indeed, by we have a metric u ; now
the action of H on M induces an action on the Riemann bundle, and we

¢ h
will use v = dh, where integration is with respect to Ha:r measure

T JH
on the compact group H. Since positive definite symmetric matrices form a
convex set, we obtain a positive definite scalar ~roduct on each tangent
space, an@ the cross—section v 1s clearly smooth,
Now consider the exponential map exw : R%-+ M. Since we have an
H-invariant metric, and Hf C H operates in an induced way on M?, exp 1s

equivariant for the actions of H,4., In particular, the action of h € H? on

P
1 is determined locally at P by the action on MP which is linear - and,
indeed, orthogonal. So the action of HP on M near P is locally

isoworphic to the action on Euclidean space given by an orthogonal
regresentation ¢ of H?. In particular, the set Vi of fixed points of
any subgroup Hi of HP corresponds to 2 linear subspace of MP’ and hence

is a smooth submanifold.

Write 0? for the tangent space at P +to the orbit of P; let SP
be its orthogonal complement, S'? a small enough €-nbd of O in SP’
and S = exp S‘P. Any element of HT leaves OP invariant (it is invariantly
defined), hence also Sp, §'s and S. Now since by (7.1) da 4is onto Qp,
it follows that orbits of S fill up a neighbourhood of P, Also, ¢ induces
a map

: H
xS xHP - M

which, by the above, is a smooth immersion. Since the orbit of P is imbedded,
so (by 0, 2.7.1) is some nbd of it., Thus if ¢ is small enough, x is an

imbedding.,



We deduce first that the orbit types of all points near P- which are
the types of orbits of points @ of S -~ have HQ C HF: ther are the
isotropy groups of the action of Hp on S. Since dim S < dim M we
deduce by induction on dim M that there are only a finite number of orbit
types near P, and hence that the set of points with isotropy group Hl
is an open subset of the set fixed by Hl' So V is swooth., It is immediate
that ¢ induces a bijection of V %, H onto W ; it follows from Lemma 1
that we have a diffeomorphisn.

Now we have laid the foundations of the theory of smooth actions of
compact groups, we can return to our cobordisu problem. Observe that any
point of the doswe of V is fixed under HP' Thus to ensure that V is
a closed submenifold (or equivalently, that W is), it is sufficient to
require that oo is maximal in the orbit types of the given action.

The following special case is easily solved, and will be a pattern
for the general result 7.5. Let 4 = {1] contain the unit subgroup only.
Then the aotiun of Hh on M' must be free, Thus M has the structure of
a principal bundle with group and fibre K, and base Xm_h, szy (the orbit
space of the action): by the results of 7.1 and 7.2, X is also a smooth
manifiold, Let x : X - BH classify the Lundle. Then the bordism class of

0 \
x belongs to Qm_H(BH).

¢, .. <. 0
Lemma 7,3 Im(ﬂ, 1= Qm_h(BH).
Proof If W is a cobordism on which H acts freely, the orbit space

W/H is a cobordism, mapping into BH: +thus the two ends of W determine
the same bordism class in BH, and we huve a well-defined map
Ifl (H; {1)- ni_h (EB).

The map is surjective, for given T : X-# BH, we congider the induced
principal bund_leT over X with groué H: this is a smooth m-manifold on
which H operates freely, so defines an element of Ig (#; {11) which
maps to the bordism class of f. BSimilerly it is injeotive, for if M and
i' are such that M/H, Ml/H define the same bordism oclass, we let
g : W— BH denote a cobordism, and note thaot the induced principal H-bundle

over W gives the required cobordism of M to ',

' Note Since BH can be replaced by a smooth manifold (see $4 above) and f

by a smooth map, we need only consider smooth bundles.
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We continue our investigation of W,: our main aim is the exact -

sequence of (7.4)., We will suppose that the orbit type w. is maximal for

the given action (i.e. that if H_e o, H'P is not strictly contained

P
in any H'Q)' Let N, be an €-nbd of W, in the invariant metric. Then
the usual projection (I, 2.5) which gives N the structure of disc bundle
over W, is an equivariant map. e are thus let to consider the following
objects:

m: N - W, 1is the projection of a smooth disc bundle; we identify
Wo_  with the zero cross-section. The group H acts on Ny and We_ ;
7 is equivariant, and the orbit type of a point of 7_ is w3 at other
points of N, , the orbit type is different (hence is less than w). We
have dim N; = m; the components of Vo may have different dimensions,

For our exact sequence we incorporate one further element of
structure. Let G be a stable group satisfving (1), (&) and (8), and U

have a G-structure (on its stable tangent bundle). Suppose the compact Lie

group H operates smoothly on M. We will say that H respects the G-struchme

if the following condition is satisfied. For some n, we are given an
ection of H on the principal Gn—bundle P which defines the G-structure,

lifting the given action of H on WM. This defines actions of H on the

associated bundles; din particular, on the principal G-n ~bundle, so the

+1
condition is independent of n.

Write I; (H; 4) for the group of cobordism classes of manifolds
1" with G-struccure and an H-action which respects it, and such that each
orbit type belongs to the set &a. We choose a maximal element a_of A4,
and write A' = A4 - {a}.

Arite AG (8; &4, =) for the group of oobordism classes of manifalds

m
. r &L mo.

W with a smooth disc bundle 7 : — W such that N is as above, 7
is equiveriant (where W is identified with the zero cross-section), and
the orbit type at a point of W is a; at other points of N helongs to 4T,

The following illustrates (2.3) and the remark following it.

Theorem 7.k. There is an exact sequence

G a« G 3 .G \ G . a G .,
I, (A S 17 (8 05 a7 (5 AL a) b T (1 A1) S T (5 ).

Proof First we define the maps. Set a the natural map induced by

taking the same representative. Next, if M aduits an action with orbit
types € &, form W, and N, as above to define f. As to V¥, take the

Alaaa Af +ha haivndary AN



(a, 8) is exact Pa = 0, for if the orbit types of M belong to Al

we have Wn_ = ¢. Conversely, let Wy bound X and L be the
porresponding disc bundle over X, so that acL = Ng_ and 3+L is the
sphere bundle over X, Atfaoh L to M x I by glueing aoL to Ny x 1.
The resulting cobordism L' (with corner rounded) clearly admits the
desired structures, and o no longer occurs as orbit type in (1 - Nq) x 1
or in a+L. Thus L' is a cobordism of M to a+L representing a olass
in IS; (H; 4").

(8, v) is exact Starting with M as above we form Ny, then aNa.

But this bounds the complement of N in M, so represents zero in
Ii—l (#; 4'). Conversely, given N with 8N opounmding C, we attach Nt
C along the boundary to obtain a closed manifold M, and the orbit type

o oncurs in M only at the centre of N,

(v, a) is exect Starting with 7 : N—» W, we need only observe that

‘9N bounds N ‘to cheok that aY = 0. The converse is perhaps the most

interesting part of exactness. If V represents an element of the kernel
G G se . . . .
of Im 1 (H; A1) > Im 1 (H; 4), it bounds a manifold M, say. Since o is

not an orbit type of V = 3M, we can perform our construction in the usual
way to obtain W, and N._in M, The complement of N now gives a
cobordism of V to 9N, , as required. The exact sequence is thus established.
To complete our programme, we must give some means of calculation of the
groups Ag (H; &', ), We first observe that given a representative = : N W,
we have for each P £ W an induced orthogonal representation p of HP on the
fibre. 4s all isotropy groups are conjugate, we have an orthogonal
representation of HP def'ined for each P & W. Clearly, these vary eontinuously
with P. But since Hy. is compact, neighbouring representations are conjugate.
Thus each conpeoted component of W corresponds to a single conjugacy class of
representations p of H?.
Now it is clear that p can occur if and only if each isotropy group of
P (E H@ c H) has class belonging to A', except for the isotropy group of the
origin, We call such p (&', ) - allowable.
Since the same decomposition applies to cobordisms, we find that
Ag (H; 4',.) 1is expressed as a direct sum over allowable representations

p of Hy (of rank < m): say



pIvES
G G
Am (H; A, o) = @p Am (H; 4", 0, p)e

Thus we are reduced to calculating the A~group far a fixed allowable
representation p, Here, we follow the method of 7.3.

Let q be the rank of p, Let P be the principal qubundle
associated to #. On P we have the natural action of Oq’ also an
induced action of H which commutes with it, hence an action of H x O .
This action (as is easily seen) has only a single orbit type, with M
(say) as an isotropy grous. We now use a standard method for reducing this
action to a free one, to which we can apply the bundle classification theorenm.
In fact, let Q be the submanifold of F consisting of points with
isotropy group equal (not merely conjugate) to M. Then the normaliser N()
of M in H x oC acts on Q, via a free action of L = N(i)/M.

In the présent case, wé can be even more explicit. Since P is the
set of isometries of W on fibres of 7, eaoh element of P determines
an explicit orthoszonal representation of the stabiliser of the corresponding
fibre. TFix a particular Hb € G.and representation p of HF in the
desired equivalence class, and let §Q Dbe the subset of P inducing the
representation p (no%t merely some conjugate) of the subgroup Hb.
Then i is the set of elemtns {®—l, p(h)) : he ﬂg} in H x Oq’ and
W(M) = {(n, ) : p(n—lhn) I p(h) r for all h e }?} is an extension
of the centraliser Gp of p(H?) in Oq by the subgroup of NF which takes
the representation p of HP into some conjugate (this will in any case
contain the component of the identity in Nf). We write Lp for N{)/M,
and X for Q/Ip. The dimension of Lp will depend on properties of p;
however, se see at once that

x = dim X = dim ¥ - dim H + dim Hy.

Algo, 7 is determined by the closed manifold Xx, and the principal Lp—bundle
over it, which in turn is determined by the classifying map X — BLp.

Thecrem 7.5. Let ¢ be an (4',o )-allowable representation., Write

¢ = dim H -~ dime. Then N (H; A', o, ) xnom o(_zin_)_.

For, as was just gointed out, if the G-structure is ignored, the howotopy
class of X — BLp determines the isomerphism class of W with all its structure.
Since the identical argument applies to bounded manif'olds, we can pass to
cobordism classes.

It is not at present clear how to modify the above to take account of

G—structure.
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4. irtreduction : Trensformation Groups

A (RIGHTITRANSFORMATION GROUP is a set X « o group G + e Function
{or ACTION) ¢ 2 X % G = X such that &=

1. $(%,1) =x

YVzeX, gstheg H

T2, ¢(xsé§h) = ¢(¢(z,8),b)
Such & transformation group will be dencted by ¢ s X x G = X, 1.8, by
the ection, . Ve spsak of G ACTING ON X.

Triting, $(y,2) as y,g, Tl x T2 become ;-

. Yzmeg ¥, gy g G

T2, x{gh) = {x.g)h '

Dencte by c,by 38 G=> X the map g ~» yg, for y € X ; and denots by
g s X-» X the map x ~» x.g for g e (. Note that g : X = X is a bijection,
with lnverse gml ) .

Ths achion ig EFFECTIVE if for eech g € G, g &1, Jx & X s.t x.8 & =

L
o FREE if x.g=x =2 g = 1
@ TRANSITIVE 1f V pairs %,y € X, I 8 & 8.8 ¥ = Xege

Note that the ectlion is free =» the sction is effective.
The set Gx = fg €6 :xz=x%x)is s subzyoup of &, called the
‘ ISCTROPY GROUP OF x,
Define an equivelence relation ~on'L by § X ~ ¥ «==> Jg & G a,%
Xog = ¥. The equivalence classes are ¢slled ORBITS ; the squivalsnce

oless of ¥ € % - the ORBTP THROUGH x=

g
o
o
)
£
)
i

X8 : £ € G}, The set
of squivalence clzzsses, dencted X/G, is called the ORBIT SET. Further

there is a cenonical projection p ¢ X = X/G, x ~» x5

1.1 Propogiticn:

A naotural bilsction 8 G}}\G b TG, G of v Hog
Prcof:

L ==l ,
G og =G h<==rhg g6 <=% I hg  =x <=2 xh = 28,
4 bid bo

QED
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A TOPOLOGICAL GROUP 4is & group G endowed with a topologiocal
space structure such that -

76 1., The map 6 =+ G, g ~> g=19 is continuous,

6 2, Themap G x G =+ &, (g,h)~>gh, i3 continuous,
If G is a topological group, then a subset HC G is e (TOPOLOGICAL)
SUBGROUP of G if H_is an abstract subgroup of the abstract group G, and K,
given the subspsace topology, satiafies TG 1 and TG 2.

A TOPOLOGICAL TRANSFORMATION GROUP (TTG,) is = topolegical
space X + a topolegieal group G + & continuous action ¢ s X x G= X
satiefying Tl and T2, X is called a G - SPACE.

Notice that g ¢ ¥ - X is a homeo,

e @ X x X=X 48 a TIG, then X is Heuasdorff= isotrepy groups ars
closed,
Teke x & Xo ¢.¢ & X 1s the composite chuaxe - X, where

i({g) = (x,8);, and in thersfore comtinuous., X Hausdorf¥ =» %] is clesed =»

) al ch o
. (x) is closed ; amd ¢_ (x) = G0 . S9ED

As remarked above, we have & canonigal projeetion p : X - X/G. We
give X/G the identification topology given by p(ie U is def'ined to be oper
in X/G <=a> p':l(U) is open in X}, X/G with this topolegy, is cslled the

ORBIT SPACE. Further, p la continucus,

do3.  Proposition?

p 2 X - X/G is an open map.

o
°

[E

Let V be open in X, We want %o prove thaet p(V) is open in X/G, le
that pglp(V) 80 open in X, We havs s=

=] f

P i’p(v) = [% € X s p(x) = p(v), for some v & V)
=fxeX:x=vg for ome v eV and some g & CJ
SUVOB

g& G
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1

But sach V.g 1s open since g ¢ ¥ - X 18 a homso=s pcj’p(v) is opam:

@Ec

We have only to show 6 is continuous. We have the commutative

dlagram,
¢x
G = =G o whers Il 3§ G = GX\&% is the prejestlon g ~»> G’rcgo
\ -
n b e

A

@x\(:- hag (by defimition) the identificetion topolegy given by M, Thus

gﬁx is centinuoug =*¢ is eontinuocus.

I G iz a ﬁop@l@gigﬁl group and H a {topological) subgroup, then H
asts continuously on G by right trensleticns, ie ¢ 3 6 = H~ &, (gh)l> gh.
The orbit through g & @ is gH and the orbit Bp&@%/@/}f - the spaee of left
coaets of & by H -~ is called an HOMOGENOUS SPACEo

A LIE GROOP ig e grow G with & smooth manifold strueturs s.b.
I, The map & - §, g%>gwl‘;, is smooth
L2 The mep & x 6 —» @, {ghlesgh, 18 snooth

A DIFFERENITABLE {or LIE) TRANSFORMATION GROUP (DTG) is 2
amooth manifold M + & Lie group & + & smooth ection ¢ 2 M x G -5 i
sabiofying Tl and T2, M is cslled a @ -~ MANTROID o a SMOOTH & - SPACE

Hotice that g ¢ M- N, x~> =g, i & diffe0,

Examploes s-
(1)  Lle growps ¢ R", C° under addition ; - {o}, &, &

under multiplisation ; the clagsical groups
6L ( ), ex (¢), SL, ( z&),,ongsongwngsnm;

dissrete groups, eg ¥



All Lie groups ; Qm under addition,
groups of all homeos X = X, where X is
& sompast topological apace, the group
having the compact onen topeolegy.
(3) Homogenous spaces : Spheres S- 2 on/0n==il.

Stiefel manifolds ¥y = 0 /0

Grasamamn menifolds Gy = 0_/(0 ,x 0 ).
See Chevally : Introdustion te Lie Groups I, for (1) = (3).

(3) Difforentiable iz

X 2 Riemennian manifold, G the group of all isometries

ef X,

I X 48 a compact ampoth manifold and v is a vector
£i61d on X, ther e unique actilon @ : X x R+ X 8.%, for esash x € X,
the tangent at % of the curve ¢  &(x%,%) 38 a(x) - ie 2 p 0 Po (See
Lemg 3 Introduction to Differentisble Manifolds Chapter gv)o

G a topologiscal space, H & subgroup of G, then G acts en
the homogemous space HE\Gby ¢ ¢ B\G x & = H\G, (Hﬁglggé)a@ Hg, &,



e

ological Groups and Topological

Transformation Groups.

201; Proposition

(1) H an ebatract subgroup of a topolegicel group Ga=3 H is a
" (topological) subgroup of G, Further H is normalss> H is normal,

(2) His a normal subgroup of &=>G/H is a topological group.

4

{3
0

|

{1) Demote by 6 3 & x ¢ —+ G the map (xgy)%}, xyglc Take g,89 € &
‘and consider g‘v gc'lo Let U be any neighbourhood of g gmlg then by the
oontinuity of @ (which follows from the definition of a topological
gro&p) 3 meighbourhoods V,V' of g, g raapectively;;soﬁo v Tfl c U
Since g, & €8, IheVNHend k' e V.NHas B B8 (V V) nEe

i

TNHE 1eUNHL ¢, Soglg ef = H is a subgroup.
. Now suppose H is normal, Teke x € H and consider a x aml , wWhere

8 € G, Let Ubs & neighbourhood of a x aol,) then since the map. ¥as

. aal_y a is a homso, a=1 Ua is a neighbourhcod of x, Hence ‘
a2 Us N H £ ¢ which implies a™> (UN H)a # ¢ (since H is normel) =

UNHfgaaze  ef, te, af o c f.

{(2) This is straightforward. QED.

2,2 ' Propesition s

H an open subgroup of &=y § is olosed and G/H is discrete.

:

H open => Hg open, YV g € G=H = ¢ = U 23 is olesed.
g8fFH
Any point im G/H is both open and closed, 9ED,

From now onwerds, a topologiecal gmup will always be egsumsd to bs
To(ie if %,y are two distinot points then either 3 a neighbourhood of X%

oot containing y or 3 e neighbourhood of ¥y net conteining x),



Topological groups are T. (is points are closed),

i

Pgogo

Lot G be s tepelegical group. Let a & {TED a8 # 1,=3 ¥ neigh-

bou:‘rhcods Aof a, AN [i] #¢é, e 1 € A, Sinse G is T, 3 2 neigh-
bourhood B of 1 , such that a € B and henos a %8N Bul - gontradiction.
So ﬁlﬁ = {1}, 3@ [1] 18 olesed=>all points of G are closed { simce for
-axw xeGthemppt 66y 4 Xy, i3 a homeo ), is, G is Ty

Pmositio ]

{1) I? E is & subgroup of the topological subgroup &, then G/H

is Ti

<===y H i& closed in 6.
{2) T, homegenous spuces zre reguler,

Préofs

(1) 6/ hes the idantification topolegy givern by the cancnisal
projeciion p 3 G = G/H, Henco H is clesed in & <ass> {lG/HE is closed
in G/H e==> all peints of G/H are closed <s=> G/H is Ty

{2) Let G/fibe e T, homogenous spase. Let C be clesad in §/H and

Let = € 6/5 - C. Since ¢ 5 & x G/H = G/H - '(gl ,,gég H)@gjl g, H, is

eontinruous, (L,x) hes an open neighbourheod U x ¥ mapped intog /M = C
=]

by ¢{sinee G/H - ¢ is s neighbourhood of =), Thus¥V =~ € apd V are disjoint

X

sets ; V is an opon nelghbourhood of x and we show thet U" ¢ is an epen

neighbourhood ¢f G,
=1 =3 -
The mep &= &) 8~>& , 13 a homec ?,»Uj ig open. 1If ¥ = gh & C;
- =] 3 7
then vt % 1s open in G = U “Ly is ecpen in §/H, simse p 3 G -» G/H 18 open

by Proposition, l.3. 9ED,

2.5. Proposition 3
If H is a subgroup of the topologieal group G, then G/H is

Hausdorff <== H is closed in G,
Proof s
Let g B &, H & &/ st g 4 g, By de 80% g, 521 # H where H is

elosed, The mep & x &= &, (%,¥) ~> =L is contimmous end so taking &

2



neighbourhood W of 8y 5251 Bt WNAH=¢ (which is possible sinse H is
closed), 3 neighbourhoods U of g, V &fg, 8.t ot c W '

Now p(U), P(V) are open neighbourhoods of & H, g, H respectively,
where p 3 G - G/H is the projection, and further p(U) and p(V) are disjoint.

Foripran;!tﬁthenEueU,veVsotuHsvH<=s>uv_15H~

contradicting UVQl CWand WA H s ¢ So G/H is Hausdorff,

G/H is Hausdorff =»> G/H is Tl =» H closed, by Proposition 2,4. QED.

2.6 Corollory
H is closed subgroup of G <==> G/H is T3 (1.8, regular and Hausdorff),
Using Proposition 2.3 and putting H = {1} in 2.6, we have :=

2.7 Corollory s

poological groups &re ‘1‘50
Note 2 2.4, 2.5, 2,6 did not use the fact that G was TGD

Compactness

2.8 Proposition s

Let a topological group G act on a locally compact space X, s.t X/G
is Hausdorff. Then X/G is locally compact and for any compact K' c X/G,

3 a compact K¢ X s.t p(K) = K°, where p s X =+ X/G is the projection,

Broof :
Take xG € X/G. X is locally compact =» x has a compact neighbourhood
A.p open and continucus => p(A) is 2 compact neighbourhood of p(x) =

xG. So X/G is locally compact.

Let K' be compact in X/G, For each y € K'; let Vy be & compact
neighbourhood of some point of p’l(y) in X (=» £(Vy) 1s a compact
neighbourhood of y ). There area finite number of Yy &K st the’
| f(Vyi) cover K',

Let K, be the compact set U Vy, in X, We have XK' © f(Kl) and hence
3

Ks K N fﬁl (K*) is compact (since X/G Hausdorff =» K' is closed =»

KN £ (K°) is closed in Kl) and £(K) = XK',
QED,



We quote the next two results, which can be found in Hewitt amd
Ross ¢ Abstract Harmonic Analysis I @

2,9 Proposition s

(1) TIf H is e subgroup of the topological group G, then H and G/H

are compact (locally compact) =»> G is compact (locally compact).(See p.39)

(2) A locally compact topological group is paracompact, and hence

normal. (See p,76).

Connectednesgs
If G is a topological group, demots by Go the component of G which
contains 1.

2,10 Proposition :

If G is & topological group then Gb is a closed normal subgroup.

Proof:

Gb is closed by definitien, The maps G = G, x => x=1 and x ~» acl X 8,
for some a € G, are homeos leaving 1 fixsd => they map Gb into Gbo The
map ¢ 3 G X G-» G, (x,y) ~> %y is continuous, G connected => G x Gb is
connected =5 f(GD x Gb) is connected; and f(Gb x Gb) contains 1. So G

is a pormal subgroup. OED.

2,11 Proposition

If H is connected subgroup of G end A is a connected subset of G/H,
then p Y(A) is a connected subset of G, p 8 G s G/H being the projection.
Proof:

Suppose pal(A) = PUQ, where P,Q are disjoint and open in p=1(A)o
Sinee each orbit is connected (because H is), each of P,Q is a union of
orbits, P = phl(B)a Q= p"'l‘(c) pay, s> A=BUC , BNGC =¢ and B, C are
cpen in BUC = A, So one of P,Q must be empty. 8ED
2,12 Carollary

If H is a subgroup of the topological group G, then :=

(1) H and G/H are connected =» G is conneoted
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(2) The only connected subsets of G'/G'o are points (in G/H  is
TOTALLY DISCONNECTED). '

2,13 Proposition @

Let G be a connected topological group and U any open subset of G,
Then U generates the abstract gwup G.

Let H be the subgroup generated by U, Then H cqntains a neighbourhood
(in G) of each u € U and hence contains a neighbourhood of sach of its
points, H is thus an open subgroup, By Proposition 2.2, G/H is discrete,
and i1s connected, =» G/H has only one point. QED,

2,14 Proposition :

Let G be & connected topological group and D a disecrete normal subgroup.
Then D is contained in the centre of G.
Proof. :

The map X ~» x"ldx, for some d in G, is & homeo G -+ G, If d € D then
fa} is a neighbourhood of d and so 3 a neighbourhood U of 1 s.t
tHavc fd}, 1.e x2dx =d ¥ x & U, Using 2.13, we see that
yaldyl's d, Vye& G

Proper Actions
For this section, the reader is referred to Bourbaki : General

Topology, Part 1, Chapter I §10 and Chapter III §k.

A continuous map £ ¢ X = Y is PROPER if f is closed and f"l(y) is

compact for each y € Y.

An action ¢ 3 X x G -» X of a TTG is PROPER if (i, ¢) 3

XxG-»XxX, (x,8) ~» (x,xg) is a proper map,

Te will assume the following result (proved in Bourbaki Chapter I

§10,1 and §0.2) :=

Axion ¢

The composite of two proper maps is proper,



Amap £ ¢ X - Y ia proper=> for any compact set Kc U, £(K) is
compact,
Proof 3
DEFERESED

The mep ?._ s £1(K) = K, £, = £]274(K), is proper {true for sy sst
X< Y), and 86 iz the map K - P, where P is a l-point spece {since X ia

' £

sompact), Hence the composite f:l(K) % P is proper e»f 1(1{) is

gompact, QED

2,16, Theorem :

An action ¢ 2 X x G » X of a TTG where X is Heusdorff ia proper
=> ¢ is eclosed and all isotropy grouvs of X ars compact.
Eroel
' The olsssc conditlion on ¢ is obvious,

I ¢ is proper then the map (1, ¢) ¢ X

®

G X x X, {x,8) ~> {%:38)
‘-"1 7 %
i proper s> (1,¢) = (%,7) = {(=,8) & [x] = &

oo

8 X8 =y} = L is

fx} % €, is compact

It

compact ¥ (%,¥) € X x X In perticuler G, o
92

Vx e X=>G 1s compast ¥ x & X. QED

Exan_xgles It ¢ ¢ X x G-+ X is a proper astion of a TIG, and & = W or %,
. B .

Ho

th@aneXQzegl

o
©

i

. Praposition

Let G be a topolegical group acting on & Hausdorff space X and let
'K G be a compaot set. Thenp ¢ X x K= X, (%,8)~>%.8, is propar,
Eoaof
p is the composite X x X 3 X x Kpi?gxg where a{x,g) = (zg,x) and
a s a homeo, XK sompect ® proj ¢ X x K- X is proper, and hance p iB proper.

QED
2,18, Corollory

With the notation of 2,17,

(1) A 48 s closed {compact) subset of X upA.K is a alosed {compact)

subset of X



(2) p 3 £ - X/K is proper.
We alac deduce 3=

23128 Theorem 3

If G i3 a compact topological group acting on a Hausdorff space X,

then the sction is proper. Further, » 2 X - X/G is proper.

2520 Corollory &

If ¢ i3 = compast topological group acting on a Hausdorff space X,
then X/G is compact {locally compact) <s=> X 48 compact {locally compact).
2§ﬂo Theoremn:

' If a topolegical group G acts properly on 2 space X, then X/G is
Hausdorff. Further, X is Hausdorff.

Det ¢ 3 X x & = X be the action, ¢ proper =>{i,$) s X x G X x X iz
proper, and in particular closed. So the set C = {(z,xg) e X x X 3
VvxeX ge 6] is closed in X x Xo But Ca(pxp)wl (A}, whers p % P ¢
X x X %/6 x /6 end 4 is the diagonal in X/G. Hence A = (p x p) (€}
is closed (since X/G has the ldentification topology determined by p)=r L,/G
i8 Hausdorff, _

Since G is T,, themsp 6 ¢ XX x &, x ~>»{x,1), is & homeo onto &
slosed subset of X » & and is therefore proper, Composing & with the
map X x G- X x X, (x,8) ({x,xg), which is proper by hypothesis, we get
& proper map X = X x X, 2 o{x,x)es A(X) is olosed =>X iz Hausdorff, QED
2,22, Proposition 3 |

let G be a compeet topologiocal group coting om a spaes X, and st
I be a G -~ Invarlant subset of X, Then any meighbourhood of I contains
a ¢ = invariant neighbourhoesd of I,

Let V be an open set conssining I, Then W = X = p~ (p(X - ¥)} is
¢ = invariant and WcC V, where p ¢ X - X/G iz the projection, By Theorem
;2‘,199 7P is propeor=3 W is open; further, I C W . QED

The following wesult will be very useful :=



2,23 Theorem :

Let G acf property on X; ¢ ¢ X x G~» X; then the llowing hold :-
(1) Isotrophy groups are compact.

(2) P, 3 G-+ X, g~> Xg, 18 a proper map, for each x &€ X,

(3) Orbits are closed, v

(4) The natural map & 3 Gx/G < X.G, 6.8 ~> X.g, is & homeo, for

each x € X,

Proof :
(1) Apply Theorem 2,21 to Theorem 2,16, _
(2) Iyex ¢ NOPITRLE %g = y} = which was proved to be
compact in the proof of Theorem 2.16.

Theorem 2,21 => X is Hausdorff. Hence, F is closed in G => {x} x F is
closed in X x G => (x, by (F) ) = (1, ¢) (x, F) is closed in X x X aﬁd so in
fx} x X, So by (F) is closed in X. Thus ¢, 1s proper,

(3) {x! x 6 1s closed in X x G => x.G ia closed in X,

(4) We have the commutative disgram :-

7). /o
6 \6

@ has already been shown to be a continuous bijeotion, so it is
sufficient to show that i% is closed, F closed in G /G <==> gt (F) closed

in G => ¢, (wel(F) ) is closed in x.G =» & (F) is closed in xG.
- SED
2.23 Corollory 3

If G acts properly on a compact space X, then X/G and G are compact.
Proof:

p ¢ X X/G is continuous => p(x). = X/G is compact (this is true for any
action). By part (2) to Theorem 2.23, ¢, ¢ G-+ X is proper;by part (3),x¢ is

clésed in X and is therefore compact. G = ¢xml(x(}) and is therefore compact,

QED,



¥'e now quote two useful results; proofs will be found in Bourbaski Chp ITI.
2,25 Theorem 3

Let G be a locally compact group acting on a Hausdorff space X. Then
G acts properly on X. .

<==» for each pair of points x, y € X, and .neighbo.\_&rhooda vxl of x, Vy of
yst{geesVynve # ¢} bas compact closure (see §h.4 Prep.7)

<==> ¥ compact K,L c X,fg ¢ K8 N L # ¢} has compact closurs.

(See § 4.5 Theorem 1)

If G is a loecally compact group acting on a Hausdorff space X, then
xex 18 a8 WANDERING POIﬁT if it has a neighbourhood V, 8.t fgee: V8NV
# ¢} has compact closure, or equivalently, if 3 a compact subset ¢ KRG s.%
gF Ka>V, .8 0NV, = ¢

"It follows that the aotion is proper <==» all points of X are wandering
points. fhe set of all wandering points is clearly open.

An action ¢ § X x G-» X ia called a PRINCIPAL BUNDLE if ¢ 1s free and
proper. Ifip : X x G-+ X is a proper action and G is a dlscrete group, ¢ is

said to be PROPERLY DISCONTINUOUS ( ==> isotropy groups are finite).



[
]

%, G=Veotor Bundles

Lst V be a real (or complex), finite = dimensionsl vector apace, and
let ¢ s Vx G-+Vbea TIG st ¥ gE G, themapg : VoV, v ~> v.g, is
linear (andA hence & linear isomorphism)o The action ¢ is called s LINEAR

ACTION and V is called a REPRESENTATION SPACE OF G (or G=-MODULE).
In the cese s Vx G=+V is a DTG, ¢ is called a SMOOTH LINFAR ACTION

m V is called a SMOOTH REPRESENTATION SPACE OF G,

Let G be a topological group, A G-VECTOR BUNDLE is a real (or complex)
vector bunde p ¢ E=+ X with..finite = dimensional fibre, together with TTG's

¢ sXxGX, ¥ : ExG-»E, such that ="

(1) The following diagram is comhutetive

ExG—2 5 & i.e ¢(p(e), &) = p #(e.g) Ve & E,
: g € G which is written,
pd | L
p(e).g = p(e.g)
I x G ——3———-——) X

p 18 thus a morphism of G-rpaces (or EQUIVARIANT MAP)
(2) The induced action of ¢ on each fibre is linear, i.e. given
xE X, V,WeE p.l(x), then (v + uw) g = A(vog) + u(w.g), Y g G, A pe R
(or C).
' Example
Let ¢ ¢ M x G -» M be a DTG, then we have a canonical action dp ¢ TM x G
- TM given by ((x,v), g) ~» (xs, dgx(v)). It ias easy to see that the
projection # 3 TM —» M together with the DTG's ¢ ¢ M x G ~» M and dp ¢ TH x G
~» TH is a smooth Gevector bundle.
Let p ¢ E = X be a vector bundle, Demote by E g E the set
{(viw) e Ex E ¢ p(v) = p(w)}. In the case X is a topological space,
‘B Xy E is a subspace of E x E; in the case X is a manifold, E x, E is a sub=

X
manifold of E x E (see for instance Lang. )o

A veckor bunde p : E— X, with finite ~ dimensional fibre, is =aid to have
'RIEMANN STRUCTURE if 3 'a continuous map <, > : E x E+ B (v, @) ~> o, Wy,

8.t for each x € X ¢, > [p=t(x) x p=2(x) : p=3(x) x p~i(x) » R
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is an immer product; ths Riemann structure is said to be SMOOTH if
<, >3 Ex, E-» R is smooth, Tote that if X is paracompact (which is
the case if X is & manifold) then any vector bundle ¢ ¢ E-» X has a
Riemann structure (see Husemoller).

One object of this section is to prove that if p : E-» X is &
G-vector bundle with Riemann structure, where G is compact, then 3
a G~invariant Riemann structure on the bundle; that is, 3 a Riemamn
structure <, > s Ex E— IR st V (vow) €EEx E VgEG, <v, W =
<VE.WE>

We need the following result (for the proof see Hewitt and Ross
Abetract Harmonie Analysis I and Chevalley ¢ Theory of Lie Groups I,

Chp. V.)

2o% Agloms .

 (a) If G is a compact topological group, then 3 a linear map IG 8
¢ (6 R) -» R (where C(G, IR) is the space of continuous maps G - R )
such that :- ‘

IL Iff£f: G-»R 1is non-negative, then JG >0

(13

2 1I£ ¢

JGf>o

I3 Iff : G-» R is identically 1, then ij =1

G-+ IR is non-negative and not identically zero, them

I Foreny ge G, £ ec(e, ), fo opg :J'G gJ'f oAg, whers
pg ¢ G =&, A 8t G - G are the right, left translations of G by &.

=1
15 ForanyfeC(&-,]R)J.G aJ.Gf'o.’i.39 where £ ¢ G - Gy, 2~ &

(b) Further, if & is Lie group, then J'G s ¢(G, R) - IR 4s the
usual integral defined on compact, oriented manifolds (recall tha$ all
lie groups are oriented).

3,2 Proposition: _
If G is o compact group, then £ ¢ MxG-» IR continuous (resp.smooth)

==y F§ M- IR, x@J.G f (x, g) dg, is continuous (resp.emooth).
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Procf:
(a} The continuous case. Tor each (x, g) € MxG and € > 0, by the

continuity of f 3 neighbourhcods ¥ g of xin X end U of g in G 5.t

gy 5 g
h)eV x U B = £{x ‘
{y, h) 2 g%, g® [ £(y, h) = £{x, g)] < e.
For a fixed x & X, {Ux g P 8°E G} 1 & cover for G=3 & finite subsoves
. ? k
i . = o2 s oo Y 5 fan 3
Xy glgooo 9 Xy E ? p“g V‘x = ﬂ v © Then ¥ o' VX'E'} 'E"}” o B

k =l x5 gfi
- £lx, g)ggéngEGa

Denote by fy : G- W, the map g~ ¢ (y, g) and let || || be the sup nomm
on C (¢ M) We have &=

o <l "™ N 4 e e e = & = = ¥
y &V = f‘y(_g) = xx\é’:’ fee, ¥gee = fy :

€, 1.8, P is continvcus.

(b) 'The smocoth case. We only have to prove the result in the cass

&)

¥ = U, an open set in some Buclidean space., If (¥, #) is & chart of G
and s UxV-=1IR iz 2 smooth map, then the map B 3 U-» ms‘@“’*’%{,ﬁ S8lu,g)de
= f(&(v) g (u, 'ﬁr‘l(x) Jdx > the usuel Lebesqus infegral, is smooth: for

the proof see Disudonne P.172 (Leibnits’s rule).
Let ﬁ(Viéﬁi) $8i=1...p } be a finite collection of charts of G

8.t the Vi cover G, and let {¥, : 4 =1 ,.. p ibe an essociated smooth

g
partition of unity, The maps U x ¥, = W, (x, 8) ~» ¥y {g) £ (x, 2}, for

1 =1 .., py 87e smooth, and by the result sbove so are ihe waps

U« IR, x ~» fv:i v, {g) £(x, g) g, for 1 = % ... p, = the map U~ K
i)

% y‘ JV ¥ {(g) f {x, g) dg iz smooth. But,
e

1
1<)

B B
> J.Vi v, {g) £z, g) dg = Z Jer, (8) 2(x g) ag =
ix]

=1 L=l
IG i % (g) £(x, &) g = Jo f (x g) dg = F(x)

4

(x, g) dg, is amooth QFD

Hence Fe¢ M- IR, x _ !



Note that the group properties of G were not used in the proof

of this theorem.

The existance of partitions of unity fellows from the parscompectness

of manifolds (See Lang. )

3,5 Propogition:

Let V x G - V be & continuous (resp.smooth) lineex action, whers G is
compact and V is a finite-dimensional, resl vector space. Then 3 a continucus
(remp.mmooth) G-invarient inner product on V.

Procf 3

Let <, >* be an inner product on V. We have a continuous {resp.smovth)
amp VxVxG-rIR, {v, W, 8) ~» <vg, wge®; it follews from Prop.3.2
therafore thatthe map <, » : ¥V x V= IR given by (v,w)as j‘G < vg, WEs¥dL is
continuous {resp.smocth),

We show that <, > is an'i,nner product, Ths bilinearity of <, » follows
from that of <, ># and the linearity of the imtegral; <, » is symmetrds zince

<, > i, Por eny v g V,

P

<V, ¥> ¥ o gm=y J‘G‘zvgg vgewr dg > 0 <==> <vg, vgx* » O for some & &
comy> Y R O <= v £.0
S¢ ¢, » 18 an imner produgt. It is G-invariant simnce for amy v, w 8 ¥,

ke G

< vk, wke» = JG

A

vkg, wkg » dg = er <Volt, wWohew kmldhg where h = kg

JrG <vh, whoe dh = < ¥, W,
QED .

sty

n

5ol Theorems

Lot p: B~ X be & {smooth) ¢ -~ vector bundle, whers G is compact, with
a (smonth) Riemenn structurs; then 3 a (emooth) G-invarient Riemaon

struoture on p: E - X.



Proof':

Lat the given Riemamn siructurs bs <, >¢ 3 E xx E- IR, We Ziava a
continuous (amcoth) mep E #. Ex G- R, (v, W,8) ~» <vg; wgre, Iy
Prop 3.2, the mep <, » : E x E - R, (v, Wy) an f@ <vg, wg> * dg, is
continuous in the continuous case and smooth in the smooth case; by Prop
3,3, for any x € X, <, >Epc'1(x) xpﬁl {x) is a G=inverient imner

product,

Remapiss

Lot ¢ 3 M x & -» Il be & DTG, whero @ is ;vcampacto Then the
canonical projection = ¢ TH — M together with the DIG's ¢ 8 ¥ x & =~ i,
d¢ s T x G TH, is & G-vector bundie; by Thesorem 3.4, we can glve the

9

undle @ 3 T - ¥ 2 G-dnveriant Riemenn structure, It follows that for

ot

ey g8 G, the map & : ¥ = M s 8.t for any ® & ¥, dgx ¢ ¥_ -~ ¥

preserves the Riememn atrusture. Since the exponentisl map depenrds only

on the metric, we have ¥ X € ¥, g € G, the commutative disgram,
i - E3d
x 7 RR
oxpol 1 exp.
M = ¥
4

Using this result we can dedues,

?cé Tl"le()?&m 'g

st d ¢ B x & -» ¥ be a'Dfm‘g where ¢ is compaect, end let p g il he &
stetionary polot (4.8 pef = p, ¥ 8 & ) Then I & { ¢ - invasdant)
naighbouwrhoed U of p in M s.t U 15 isoncrphic sa a Ge-zpacs to en opan
suh in allnear representation spsece of .

e
Broofs

Give ¥ a G~invarient metrie. By Prop 2,22, I o G~invarisnt

neighbourhood U of p,=p ¢ Ux@ : U x &= U is a DTG,
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Asgsume U is small encugh 3.% U is the diffeomorphic image of 2 disze V,

gentre 0, in Mp under oxp. The action of d¢ 2 T M =G < TH restricisd to

Mp X G is s.t({p,v), € ~* (p, dgp (v} ), since P is a stationary poini.

¥ has 2 G-inveriant metric =»d ¢{Mpx & sends V x & onto V ; we then have the

commutative diagram,

exp x 1| = s | exp
TG ———= U
®
dp|M x G: M %G - ¥ is a lineer action and thus ¥ is & linear
Y P » P
representation spase of G; the sbove comrutative diagram QED

agsures the resulb,



L, Local Triviality

Firat we state the Rank Theorem; proofs cen be found in Dieudonne ¢
Foundations of Modern Analysis, end in Flett :; Modern Analysis.

L,1 The Renk Theorem {Vector Spaces) :

Let E bs an m-dimensional, end F an n-dimensional, real vactor spase,
A an open nelghbourhood of a € B, and £ ¢: E+ F a ¢l map s.t ¥V xe€ A, dfx
has rank p, for some fixed integer p. Then 3,
(1) An open neighbourhood UC A of a and & C? = diffeo u s
U - I" (the m = cube).
(2) an cpen neighbourhood V > £ (A) of £ (e) and a c? - aiffeo
viT sV, 8.t £/ = v 010 u, where 1 3 - 1 is the map

(xl, 500 g xm) ~P (ﬁ’ aoa g XP, Oy coo 0)

From L.l we deduce :-=

4.2 The Rank Theorem (Smooth Manifoldaz S

Let M be a smooth m = manifold and N a smooth n = manifold, A an open

neighbourhood of a € i, and £ 3 ¥+ N a amooth map s.t ¥V x € A, dfx hes
rank p, for some fixed integer p. Then 3 a neighbourhood Wof 0 in M and
diffeca u 3 We~ u° (W) ¢ ¥, where u (W) 1s a neighbourhood of &
v g fu (W) ~ afa (W).

such that : dfaﬂw = *ir'Il £ v.:f.I EW
Proof:

We can assume A i8 s.%t (A,$) i & chart of M around a, for some ¢,
and that £(A) c B, where (B,#) 1z a chart of N around f(a) for some @

We heve the commutative diagrem,

A -——E——y B and we can apply 4.1 to ¥ on ¢(4)
¢ T

¢ (A)——> ¢(B)
¥ = yrg™
Hence 3 en cpen neighbourhood U' < ¢(A) of ¢(a) an epan neighbourhood

Vi oF ¢ (4) of £ ¢p(e), and (smooth) diffeos u’ : T’ - =, v g 12 o o

8s%. FJU' = v'0 1 O u', where i ¢ ) ol (xlwq xm) P (x.l, gxp,ooc,O)o



It follows that I open neighbouwrhoods Uch of Aa and VeBof £{a) such

the following commnutbes,

£
>V
ml e 4 T 7
where u, v are diffecs.
I 1"
i

Tence, dfa = dv(iuv(e)) o io dua , where dua : M, = r"

iR am®
. 43
dv (iu(a)r M~ - Nf(&)

=i
Y =&

FRAR
AT

ol y

==p dfa = dv (1u(a)lo v e ltyo a o dua, on the open set (dua) ~ {I7)

ie é?i‘aﬂW s ye L un ﬂ VW, whera W is an open neighbourhood of 0 in Ei{a and

wes W & we (W) » & neighbourhocd of & in ¥
& wep fu v (W) S afa (W)

Let £ : X = X be & continuous map. We say £ is LOCALLY TRIVIAL

for each x € X 3 a set UcC X conteining x s8,t £ | U s U-+2(U) is &

hemsomorphism enteia nelghbourhood of £(x) in Y. U is ecalled LOCAL CROSS
SECTION AT =,
&oé Theorems
ﬁet ¢ s HxG-»HY ba aDTG and et x & ¥ have trivial isoitropy group
(ie G—X = { 1}). Then the map ('%x 8 G- M, g~x.g 3is an immersion,
Let Py G -» & denote the right trenslation of G by g, i.e. pg(h) = hg
¥ he (&, end recall that we derote by g ¢ M -» ¥ the diffec given by % ~»
%¥.8, ¥ x &8 M, We have 3 commuiative dlsgrem, |
Pg
e -] '
3, ¢x which gives rise to the commutative diagram,
x ,V\EA,..) X8
ap i . -
_Z'“‘"‘? 8 ==y rank of d r;Sx g %y the same ¥ g = G
l ] a8
M > B o

if
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4ok Corollary A
‘Let G be a Lie group acting smoothly and properly on the smoo-th

manifold M, and let x & M have trivial igotropy group. Then the map
¢x 8 G-v Bi, £ ~> X.8, 1s an embedding.
Proof:
The action of G on ¥ is proper =» ¢x ¢ G- M is proper, by Theorem 2,23;

in particular ¢x is closed, Theorem 4.3 => gbx is an injective immersiomn,



Hence by the repk theorem, ¢ is locally equivelent to d b1 (ie 3
sultable differs ut , v 8.% ¢x = U dqﬁxlc ¥s on a suitable neighbourhood}

But qu is injective and hence so is a ?ng” Y g é G, ie q&x is an immersicn.

QED.
We now come to the main result of this section :-

45 Theorem:

Tet$ 2 M x G-» M be a DTG, where the sction of ¢ 1s free and proper,
Then p : M =~s» ¥} G, the cenomical projection, is locally trivial.

For each x & M, we have an immersion éx ¢ =¥ {(by Thm.4.3), and so
d qu 1: Gl =5 mx is injective, {in fact, qu is an enibedding by Cor b.h).
Thus M_ = T# ® 4¢ 1 (Gl),, vhera T, is the orthogonal cempliment of
a¢, 1 (el) inM_; note that d ¢, 1 (Gl) is the %angent speae of the orbit
through x, at x. Choose a disc (ie closed ball) stx 8.t D is a
neighbourhood oi‘ 0 in Tx'and 8.t D i3 zo small to be nmepped diffeo-
morphicslly by exp into & chart rnsighbourhcod of x; thus we can assume
exp D is in Euelidean space. N @ that x € exp D,

We claim thet 3 a disc Desc D (D¢ & neighbourhood of O im Tx> 8.t plexp D

maps exp D* homeomorphically onto a nelghbourhood of p{x) in MﬁGp

which will prove the theorem., The action ls pro’per ==> M|G is Hausdorff {vy
Thm, 2,21). Hence sinss D+ is compact, p| exp D* is closed, and it is
therefore sufficlent to prove :=

(1) p) exp D» 15 injective

(2) p (exp D&) is & neighbourkood of  p(x) in ¥ |G .

(1) We shall show that 3 a disc Dvc D 8.t ¢ | (exp.De) x & is injective,
from which it f¢llows that x, G = sz =3 Xy B Kps Y xy %, € exp D&, and

so that p (xl) = p (x2) = X =Xy Y z % € e¥p D¢, That is, we shall
show thet 3 a disc D* D B.t orbits which intersect exp D= only intersect

at single pointe, 1.0, that yg = %, ¥, s Eexp =, g G =>y=25, g= L,
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By Thm., 2,25, ths set XK = {g E G: axp D N{exp D) g 4+ ¢} is compaot;
8o we know thet yg = 2, ¥, 2 € eXp D, ==» g € K. The set

= {(y, z,8) & exp Dx exp D x X 3 y& = 2} is a closed { and therefors
compact) subset of exp D x exp D x K = since it is the inverse image
of ‘the diagonsl in exp D x exp D under the map exp D x exp D x K-» oxp D
x exp D, (¥, 2z, ) ~» (¥g, 5) Further J does not meet fx} x fx} x
(v = {11 ); by the Hausdorff property of M, it follows that § is
disjoint from some neighbourhood W of §x} x fx} x (X={1}) in exp D x
exp D x (K = 1} ) (end thersfore in M x ¥ x X), We ocan assume W =
exp D# x exp D # x L, where D = @ D 1s a small enough disc., Then ¢ ‘J

exp D& x & is injemtivsa.

(2) Sines p is an open map (PI’OPQIOB), it is sufficient to prove

(exp D#) G 1a & neighbourhood of x in M. By taking partisl

differentisls, we have that d ¢ (x, 1) ¢ M, % G, - M_is given by,
ad (x, 1) (8, V) =2+ d g Lv).

So the restriction d ¢(x, 1) ID » x G 8D x G »Dr@dg 1 (Gl) is an
isomorphism, since & éaxl is injective and D lies in the orthogenal
compliment of d ¢, 1 (Gl)., Dxis a neighbourhood of 0 in T_ ==> D* @
d ¢y (Gl) is a neighbourhood of 0 in T _® & § 1 (G—l) =M. So the
rank of & ¢ (x, 1) |D* x Gy is dim K,

a¢ (x, 1) ! Dx x Gy has maximal rankay dg (r.g) | D=2 x Gy has
maximel rank, for (y,g) in some neighbourhood N of (x, 1) in M x &, and
since D®¢ 1is compeot, we can assume (exp D% x UM» where U is some
neighbourhood of 1 in &, By the Renk Theorem, it follows that ¢
(exp.D# x U) is a nelghbourhcod of x ==> (exp. D#) G is a neighbourhood

of %,
9FD
L6 Corollory:

If G 18 2 Lie gmuﬁ and H a closed Lie subgroup, then the
canonical projection p : G -+ G|{H is locally trivial.
The action & x H= G, (g, h}~>gh, is smooth and free. We show

it is preoper; the result then follows from Thecorsm 4.5



The map {1, ¢) ¢ Cx G = G x &, (gl, gg‘)a@ {gl, & 32}" is a homeo and is
therefore proper. H is closed in G =»G x H is closed in ¢ x G ==» (i, @)

] 6xH:GxH-+Gx 6 1is also proper, <==> the action Gx H- G, (g, Bls

gh is proper (by definition),

QED.

N.B If U is a local oross section of p : G- G{H at 1, then HN U = {1} .

Remark : GlH hgs 8 C-manifold strusture.

First, we put s manifold structure on G|{H, For each x & G, Jea
set U, containing x st PiUJC 3 U_p (‘Ui) is @ homeo onio &
neighbourhood of p{x)a Lét {V,5) be a chart of G around xg then (p(V) N
p(ux) t 6 qx) is defined to be a chart of G|H around p(z) whers q, ¢
p(ux) - U_1s (p va).°l and t is & "straightening" map from the relevant
Fuclidean space to itself (recall tha% p is &n open map)., Clearly the set

- of 2ll such cheris forms & smooth atles for GﬂHo
Pinelly, we bhave the commutative diagram,
Gx G _._f__> G

Xl J» VP ghers a (819 82) = 5281

o/G — 2 c/n -
& @ (gH ;s 8y) = gy & H

The menifold structure defined eon G]H ==> p is smooth, =nd in fact, is a
loeoal Jiffeomorphism ==> @ is smooth; and we have already shown in
Seec.l, that e 2 GEH x G = G‘-EH is a trensformation group.

So clf 4s a G-menifold

gg o7 Theorem:

Let ¢ ¢ M x G-+ M be a DTG and let x & M have {closed)isviropy group H.
Then the map § ¢ H|G — M, Hg ~» x,g, iz an immersion,
Proof':

H being a closed subgroup, is thus a Lie subgroup {sce Chevalley:
Introductin to Lie Groups I, Pl38=5). Hence p : G — HlG¢ iz a local

diffen, We have the comutative diagram,
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P BNV
e ' ;
¢$ l p & local diffeo, ¢x smooth ==> & amooth.
M

Let ?[S] HEG——» HHG be the right translation of HHG- by [g] = p (g)

i.e0 o[ ][hj = [hg]op,[é] is e diffeo by the remark sheve. We have the
g .
commitative dlagram,

dpp 1]
(5/6) 1y — By (8/8) ]

de[l]l, l ag(g]
_ £
M . dgx / chs

Hence the renk of d 6 [g Jis the same ¥ [g] & H|G. By the rank thecren.
d@[gj is locelly equivalent to 8 , ¥ (g) € H|G, & injective == d8{g]

injective ¥Y[g] H|¢, so ¢ is an immersion.

SED

L.8 Corolleory:
et ¢ s ¥ x G- ¥ be a DTG, where the action of ¢ is proper, &nd let

x'e M have ilsctropy group Ho Then & s HBG -+ M, Hg *>xg, is an embedding.

2o Slices
Let ¢ ¢ M x G-» M be & DTG, and H & closed subgroup of G, A (SMOOTH)

H - SLICE IN M is a subset S of M s.t 3=
(1) 8 is inveriant under H,
(2) sgNStpe=gzgeH
(3) If U is a locel cross-section at 1 of the projection p : G- Hi G,

then ¢ | 8x U : S x UM is e diffec onto some neighbourhood
in M,

in the case of a I%G, the concept of an H - slice can be defined
enalogously = "diffeomorphism” im (3) being replaced by "homeomcrphism®.

Hote: By(2), s € S ==> G‘B < He
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Purther, if x & M, then a SLICE AT x is a G-x- glice S which contains x,
and s.t., with the notation of (3), ¢| S x U~ ¥ is a diffeomorphism onto

& neighbourhood of x in M (¢ (S x U) automatically contains x).

550 Lemma :

Letf : Vx Z -V bhe a continuous map, where V is a metric space and Z
a topological space. Let K be a compact subset of Z and let v &€ V; then
given € > 0, 38 > 0 s.t dlst (v, w) < §==> dist (f (v, &), f(w,2) ) <

€, ¥ 2 €K,

Proof:

By the continuity of £, 3 8(z) » O and an open neighbourhood N, of z
sot f ¢ Blu, §2) ) x N, -+ B (£ (v, 8) €|2 ), vhere B ( a, A)
denotes the open A= disc centred at a. Note that if 5“ E ﬁz’ then dist

(v, w) < 8(2) ==> dist (#(v, z:°), 2(w, zl) ) < €.

The open sets N, form a cover for K and X compaet ==> 3 a finite
subcover §Nz see N } for XK. Put 8 = min {8 (Zi) ti=1.,.Kkl. Then
1 ;

k
v z'€ K, dist {v, w) < 8 == dist.(f (v, 87), f(w,zl) ) < e QED

5.1 Theorem (Existance of Slices):

et 6.3 ¥ x G- M be a DIG, vwhere the action of ¢ is proper. Then '
3 a smooth slice at sach point of M. |
Proofs,

Teke x € Y and let x have isotropy gmwup H. The action of ¢ Is proper
w=> H is compact ==> we can give ¥ an H-invariant metric. By Theorem L.7,
the map 6 s HlG » ¥, Hg =g, is an imnersion (it is in fact an
embedding by Cor 4.8) ==»> 3 & % : (H|G); - }_is injective. MNote that
a6 ( HfG)l is the tangent space to the orbit of x at x. Let T, be the
orthogonel subspace of d @ 1 (ale), inM_oand take & disc D in T_s.t D is
a neighbourhood of 0O in Tx and 8.t D is s0 small that it is mapped
diffeomorphically by exp. Puk S = exp.D. Wé ghall show that by
restricting D If necessary , S is m slice at x. As in the proof. of
Theorem 4.5, we cen assume S is contained in some chart meighbourhood of %,

is that S is in Fuclidean space,
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(1} Since W hes en H-inveriant metric, for h & H, we bave the

gomautative diagram,

expl 1 exp M =T e a6l (ue),

Recall that the differential of exp is the identity map, from whieh
it follows that exp maps 4 ¢ 1 (HEG}I = the tengent space of %G a%
% = onto %G, Hence, xG is invariant under h ==> 4 @ 1 (HiG)l is
invarient under dhx, Singe ¥ bes an H-invariant metric, T, is therefore
inveriant under dhx ==> dhx (D) = D==> S = exp o dhx (D} = h(S) =

2.h, So S is H~invariant.

(2) We want to show thet SgnS £ ¢ w=» g€ H

Let U be & local crossesection of p ¢t G = HﬂG— at 1, s.t p{U)
open {which exists by Cor 4.6}, Then p=.1 p(U) = HU, and since p(U) is
open in H|G, IU is open in G {sinoce H|G has the identification topology).
HU is thus an open neighbourhood of H; znd G - HU is closed., ¢ is proper
=>¢. ¢ &M is proper and henoe closed. So x (G = HU) is closed in M

and further x & x{G-Hu),

Ths action of ¢ is proper ==» 3 a neighbourhood Vx of x 5.t K=

feet: v.gnv, ¥ ¢ | 1s compact {Theorem 2,25), and we can assume D

is small enough s.% S TV, {(Note that B € K)

Tt follows from Lemma 5.0 that given ¢ » 0, 3 8 » © 8.t dist {x,y)
< 8 ==> dist (=g, v8) c €, ¥ g € K.

Let dist {x, x (G-HU) ) = ¢, then by restricting D if nescesssry we

can essume that the radius of S is <& < €2, whore § is 8.t
dist (x, y) < & ==> dist (xg, yg) < ¢|2, Vg & K.

Suppose S g S+, then I syt £ S, g & K 8.t s.g = £. Now
aist (x, =g) < dlst (x, &) end dist {t, xg) = dist (x, ¢)

+ dist{eg, xg) < g/;? - é/é’? 2 @
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Henc:eg# G - HU, i.ec g€ HU, S8 g =hu, for some he H, ue U, We
have that t = sg.z shu = sl a, wheré sh = 81 € § - since S is H invariant,
Ifu$dl (=>ugH since UNH = {1} =~ see NoB. (2) to Cor.4.6), then
x',‘u-%?; x and so 3 a neighbourhood W of x s,t Wu N W = ¢, Restricting D if
necessary, we can assum SC W=> SuNS =¢, Hence t = sl u, t, al g S,
ug U=us=l, sogsrho

(3) We want to show that if U is e local cross-section of p : G - H|G at 1,

ther: MS x U ¢ SxVU=S,Uis e diffeomorphiam onto a neighbourhcod of x in M.

(2) #[5x U Sx U-»85.0 4is a homeomorphism, Since ¢ 38 continuous and
cloend (since it is proper) we only have it show it is injective. Suppoae
su = tv, where 3, t € 5, u, v &V, then wteH (vy {2) ),, oL = h say.
So v = hy =5 p(u) = p{hv) = p(v) <==> usv since p|U s U~ p(U) is a homeo

=23 8 = t,

(b) ¢|5xTU: 8SxU- S, Uis a homeo onto a neighbourhood of x.,.
Let § ¢ S x p(U) = S.U he the map ﬁqfined by ¢ (s, Hu) = su (which is well-

defined since UNH = {1} ), - ac we have the commutative diagram,

s x p(vU) __L__;.s,nu
ixply T 4
SxTU

¢|S x U is injective => § is injective. ¢ 1a smooth, p[U ¢ U - p(U)

is & diffeomorphism 22> @ is amooth,

Recall that the tangent space to 5 at x is T (since the.
differentisl of exp is the identity) & & (x,1) : T, X p(U)1 ~ W is
given by, 4 ¢ (x, 1) (8, b) =a + d 3: 1 (b), where 3:‘ 2 p(U) =5 SoUo, Hu ~»

e, i.eo § = 6]p(U)
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p(U) c H|G => T, lies in the orthogonal compliment of. d ;5;: 1 (p(U)j_) =y

a ¢ (x, 1) is injective. p(U) a neighbourhood of 1 in H|G => p(u), =
(mle), =>4 8 (x,1) : T, xp(U)y > T, ead, 1 (p(0);) =T e as imjc),
=M. Sod ¢ (x, 1) is surjective, and is therefore an isomorphism.

ad .(yp Hg) is therefore an isomorphism for (y, Hg) in some neighbourhood
N of (%, 1) in S x p(U). The rank theorem => ¢ (N) is a neighbourhood of x

in M =» $ (S x U) = S.U, is a neighbourhood of x in M,

(s) ¢ | 5x U= S.U is an immersion, By (b), 3 a neighbourhood N of (%, 1)
in 8 x p(U) 8.t (y, Hg) € N=> A § (y, Hg) is an isomorphism, S compact
=» we cen take S so mmall s.t S x fi} c N,

We have the commutative diagram,

Ss ® p(U)Hu ﬁ(s,Hu)

o M u
7 P -
. where p,_:p(U) - p(U),
xdg 1 T ~ T dus - 4
By ~» Hvu, and u g U
s x p(0) = 5 M
8 Yoads,n) T

Hence & ¢ (s, Hu) is an isomorphism = and in particular injective -
¥ (s, Hu) in S x p(U). & is thus an immersion =» ¢ is an immersion (by the

commutative diagram of (b) ).
. QFED,

NOBO
(1) In constructing a alice at point x & M, we have thrown away the

original metric om M and replaced it by & Gx -~ inveriant one. Thus the
exponential map used in constructing the slice, will not nascessarily be the
same as the exponentisl map used to construct & slice at another point y when

i has a Gy = inveriant metric.

(2) The slice theorem shows in effect that points with lsofwepy groups of
the same dimension (<==> their orbits have the same dimension) are
locally equivalent, in the sense that they have neighbourbooda diffeomorphic’
to D x U, where D is a disc of dimension = dimMedim (orbit) and U B &
local cross-section of p:G - HlG at 1, of dimension = dim (orbit)

(since plU ¢ U - p(U) is a homeo onto a neighbourhood and 8 s H|G = x @),
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A continuous map £ ¢ X -+ X' between G - spaces X, X' is EQUIVARIANT

ifVxeX, g G, wo have £ (x.g) = £(x) 8.

5.2 Theorem:
Let £ ¢ X~ X' be a continuous (resp.smooth) equivariant map between
G-spaces (resp, G-manifolds) X, X°, and let S° be an H - glice (resp. smooth

.l
=4

H ~ slice) in X', Then S = £ ~ (S) is an H - slice (resp.smcoth H-slice)

in X,

Preof':
' We verify that conditions (1) = (3) for slices, hold for S,
(1) I seS, he Hthen f (sh) = £(s8).,h € S¢, since S5° is H-invarient, s=>

sh e S == S is8 H = invariant,
(2) If s = t.g, whers atef geoe, then £(s8) = £(t)g =w>g & H since

£(s), £(¢) € So. Se Sg N S4 ¢ => g & H,

(3) (2) In the continuoud case, all we have to show is that ¢ = ¢|S x U :

4]

S x U= SU is a homeo onto a neighbourhood of X, where ¢ ¢ X x G - X is
the action of -G on X, and U 48 & local cross-section of p : G- HiG at
1. Let ¢¥ ¢ X' x G - X' be the action of & of Xt,

<1

Note thet S.U, ¢ £~ (S',U). We have the commutative diagram,

S % U—-LE—L; S!' xU
sl = lp']s'xu _ the commutetivity follows from the

=1
£~ (8%.U) ——7 S§'.U equivariance of £,

Cleerly § is onto £ (St U) i.e. S.U = £t (s'0), § is also injective,
since if s,y = 85U, where 85 S, & S, u; u, € U, then s =_32u2u1“"1; Q=
Uy Wy =’1“g % (since UNH = {1} )c==> W = Usand 8y 7= 8., ¢ continuous and
closed ==> ¢ is a homeo. S'U is a neighbourhcod in Xi ==»> gt (s'V) is a
o

neighbourhood in X, and £ - (5%y) = S.U.



d:3x U= 8U is thus a homeo onto & neighbourhood in X.

(b) In the differentisble case we have to show further that § is &

diffeomorphism. 3 is smcoth; we ghow that 3 -1 is smooth, Consider the

two meps
#0280 —> T suapu )
: 3 YseES,uel
and ¢2SSU-—-=-——->S s BlapS
P . proj
So ¢. 1s the composite @ 3.U * S* U 8 X Vo2 u

1
B Ay f(a)u %Y (f(s),u) e u
and is therefore amooth; and 9’:2 is the composite.

Lt ix inv. - ®
oV omm=5 S0 x U oo S Ux{§ =——>s 3§

B.lo ap (8U;, U) ~p (‘au,unl) ay B

and so ¢, is smooth, And & L U S xUis given by su ~p (8u), 4
Euwwz (su), "ﬁl (su) ) == 3'31 is smooth.

QED

Theorem 5,2 is the firast step in extending the glice existance theorem to
the topological case, but before we can contimie we need the following

Lemmas 3=

5.3 Lemma 3
Let G be a compact Lie group and H 2 o¢losed subgroup. Then 3 & linear

representation space, V, of G and an element v & V s.t the isctropy group

df v, Gv’ is equal to H.

For the proof see Borel : Seminsr on Trensformstion Groups, Chp. VIII (by

Pelais), Prop. 2.2.

o4 Lemme ¢
Le.‘b ¢ 2 X x G-+Xbe a TT¢, where G is compact, end let x € ¥o Then 3
an eguivariant map of X into a linear representation space of G, which is
injective on x, G.

Proof’s

By Lemma 5.3 3 a lineer representation spece V of G and su element v = -
? BV gt



v X
[¢)

and squiveriant. Since xoG is a compact subset of X, end X is Hausdorff, we

& =G ; hence the map f 2 xoG vl , X € ~>»vg, is well definsed, continuous
: o

" cen apply Tietze's Extension Theorem to obt8in a coniinuous extension Fy

X -V of f; note that ¥ is injective on xG.

The map G =» V, § ~s? (xg) ggl is continuous (since it is the composite g ~»
(xe, g_l) ~» (¥ (xg) g=1)~_> F (xg) ggl) o & is compact ==> (see Proposition 3.2
the mep F : X - V is continuous, whers, F(x) = J-G ¥ (xg) gml ag.

Ve show that F is equivariant end is injective on x G,

[

(1) ¥ (xh) J'G? (xhg) &~ dg = JfG ¥ (xk) KX h dk, whers k = hg

0

(Jo F () k¥t ak)h =F(x)h, VzeX hek,

i

(33) P(xp) = | . ¥ (x_e) g ag = [, £ (xbe) gt ag = [ £xB) ag

([of(x,) ag) h= ([, vag) h=veh, Yhet

i

==y F is injective on xOG, sin_ce Gv' = G‘xa

QE)

Wie are now in & position to extend 5.1 to the case of topologicel transformation

groups, where the group of the action is a compact Lie group.

5.5 Theorem (Existence of Sliees) ¢

Let ¢ 3 X x G- X be e TTG, where & is a compact Lie Group. Then 3 a slice

et each point of X,
Proofs
Teke ¥ € Xo By Lemme 5.4, 3 an equivariant map F 3 X = V, where V is a linmsar

representétion spece of G, 8.t T is injective oz %5 and s.t G = C?F(x)a V ig

( %
e smooih G-space and so 3 a (smooth) GF(x)- sliee S° at F(x}. By Theorem 5.2,

-1,
g (g? - . .
F (s") isa GF(x) slice at x ; but Gf(x) = Gy QED.

6, Orbit Types and Principal Orbits

Let G be a group. We define an equivalence relation on the subgroups of G by:=
=1

leﬂzg%»lﬂgeﬂ-setﬂlgg Ho8.

The eguivalence classes of this equivalence reletion., (i.e. the conjugacy classes

of the subgroups) are celled ORBIT TYPES
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Let ¢ ¢ X x G-+ X be a TIG, The ORBIT TYPE OF & POINT x £ X is defined

to be the orbit type of the isotropy group of %, Note that if x & X has
isotropy group H, then xg & xG has isotropy group gmjL Hg; sc the points‘ on
a p.articular orbit have the same orbit type. The (ORBIT) TYPE OF AN ORBIT

IN X is the orbit type of any point that lies on the orbit.,

Two orbits, of perhaps different G-spaces, sre celled EQUIVALENT if
3 an equivariant homeomorphism (i.s & continuous equivariant map with

continuous inverse) mapping one orbit onto the other.

6.1 Proposition 3

Two orbits have the same typs PRI they are equivarient.

Proof':

-~

Let T be an orbit in the G-space X, and let I’ be an orbit in the G-aspacs
X', If T, I' have the same orbit type, then 3x e T; x* € I'* sot
Gx = G'x“ o The mepping £ : T =» IV, xg ~>»¥' g, is well dsfined, bijective and
squivariant. It is continuous with & continucus inverse because of the
commutative diagram., -

x x 6 -——-}I =G

e J, ,[, f

x' x G _—__i)x“G

This proves the first part,

Now suppose 3 an squlveriant homeo £: T' = I"ﬁ o Then for each x ¢ T, the fact
that £ : %8 » P£(x)g sssures that G c G'f(x)“ P is an equivariant homeo

==y £~ 18 an equivariant homeo ==> Gf(x) < Gxo Hence Gx = G

f(x) wmsp I IT

have the same orbit typse.
QED.

We now come to our main result for orbit types : =

6,2 Theorem

et ¢ ¢ M x G-» ¥ be a DTG, where the action of ¢ is proper. Then Y
has locally & finite number of orblt types,



In the case M is O-dimensional, for each x & M, {x] is e neighbourhood of x and
{x}, since it contains just the one point, contains just one orbit type. So
the theorem 1s tre in this case,

Now suppose it is trus in the cese M is a k = manifold, ¥ k 8.t ? < k ¢ n. This
impiies that if ¥ is compact, M has a finite number of orbit types ==> if

M= Sk, 0 < k<n, If has a finite number of orbit types. We shall show thet
this last result ==> the theorem is true in the case M is an (n + 1) ~ manifold,

This will prove ths theorem.

Let ¥ be an (n+ 1) = manifold and let x & M. Let H be the isotropy group of

x and give Il an H = invarient metric (recall that the action is proper ==»
isotropy groups are compact). We oan comstruct a slice S at x (as in Theorem
5,1) ==>X has a neighbourhood (s.g S.U where U is a locsl cross-section at 1
of p : G- H|G) 5.t every orbit in the neighbourhood meets S. So it is
sufficient to show that there ere only e finite number of ori:it types in S,
Recall thet 8 € § ==> G, C H, 30 we only have to consider the action of H on S,
i.e we can restrict our attention to the DIG = qb!ﬁ XxH: Hx H= M,

% is & stationary point of H, and further S is H - invarisnt. By Theorem 3.6 we
see:that 3 is ipomorphis, as an H-space, to the disc D = exp QlS, where exp:
u_ - M. Recall that D is a neighbourhood in N, where N_is the mormel

space to %G at x. & leaves 0 & D fixed, ascts linearly and isometricelly on

D; and leaves D in Nx; go H acts orthogonally on D, Clearly, all pointz on
the seme open radius (i.e & redius excluding the centre point) of D have the
same isotropy group, so the different orbit types occur on the boundsry of D
and at 0, The boundary of D is Sk, for some k 8.t 0 s k < n, and the
induotive hypothesis assures that there are only & finite number of orbit
types on Sk ; further, there is just one orbit type at 0 = namely the ome
determined by Ho D hes thus & finite number of orbit types, ==> S has a

finite number of orbit types.
QED.

In order tc introduce the concept of a "pringipal orbit®, we need the

following proposition :-=

6.3 Propositions

Let & be & compact Lie group and let H be & proper Tie svbgroup.




T

Then either (1) dim H < &im G

or (2) dim H = dim ¢, and H has fewer components then G
First note that the compactness of G ==> G has a finite nuwber of componentsz.
Also, HC G ==> dim H < dim G,

Suppose dim H = dim G. Then H contains a neighbourhood of 1 in G == H
oontains Gb’ H is a proper subgroup of G ==» HEG° is a proper subgroup of G[Gc
(recall that G, 15 a closed normal subgroup, by Prop. 2,10). GIG-o is compact
discrete (since Gb is open and closed), and is therefore finite. But the

components of G are ths cosets of Gbo

QED.
Let ¢ 2 M x G- M be a DTG, whers the action of ¢is proper. Since the action
is proper, the isotropy groups are compact., In the class of all isotropy group:
of the action, we can therefors speask of a particular isotropy group H being
"minimal® in the sense that :-

(1) dim H is & s small as possible.

(2) subject to (1) the number of compoments of H is es small as possible.

An orbit of the action is called a PRINCIPAL ORBIT if there is & psint on the
orbit whese isotropy group is minimal in the sense desecribed sbove. Note that
condition (1):implies the dimension of the principal orbit is as large as
possible,

Proposition 6.3 assures that principal orbits always exist.

Notations

If ¢ : Wx G-+ MY is a DTG, where the action of ¢ is proper, the set of points
in ¥ lying on the principal orbits of the action is denoted by P(I%,G).

6.4 Lemma:

let ¢ ¢ ¢ G-» X be a TTC and let S be an H - slice in X. Then the map ¢ 3

SiH- s6l6, sH~y sG, i8 a homeo.

Proof's
We have the following two restrictions of ¢, and their associsted projections

from the corresponding restrictions of X to thelr corresponding orbit spaces :-
¢y ¢ 56 x G- S6; py 86 - SG|G, 38 -3 sG

P22 5xH=S 5 Py : S SiH, 8.y sH



Note that p, (8) = s¢iG

For 8 8, € S, slG = 32(% Ge=sy sl = 323, for some g € G ¢=> 81 = 325 for

i
some g & H {condition {2) for slices) <==> s;H = a,H. 8o @ is injective,

We have the commutative diagrem,

"

seﬂa.g;_—-—s

pli S, P P onto ==> « is onto; plﬂsg Py, open and continuous ==> & is open and

pontinuous, Thus @ SHH =2 SGEG 13 a homeo,

QED.

We now come to the main (and rather surprising) result of this seetion :=

6.5 Theorem !Principal Orbits):

st @ 2 M x & = } be a DTG, where M is connected and the amction of ¢ 1s

proper. Then P(,&) is an open dense set in M, whose iwage in MHG is
conmnected., Further, ell principal crbits are of the seme type.
Proof:

In the case M is 0 -~ dimensional, ¥ has just one element and the theorem
follows trivially, We assums the result is true in the cese M is a connected
k - manifold; ¥ k 8.t O £ k ¢« n, and show that this implies the result ls
true in the case M is a comnected {n + 1) = manifold. This will prova the
theoram.

(1) P{1, G) is open

Take x € P(M,&) and let S be a slice at x. Then SGisa neighbourhood of
end every orbit in SG meets S. For s & 8, €, ¢ G, but & % G becsuse G_ is
minimal, Hence G, =G => s & P(M, 6) ==> SGC P,

(2) P(M, ¢) is dense

Since M is connected, it is snough to sHow that P(M, ¢) is opan. Take

x & PfM,, G¢) and let S be a slice at x. Recall that SG is a nsighbourhood of x
and every orbit of S5G meets S, hence S meets P(M.,7 G) say in y, Put GK = H and

consider the action of H on S. i.e. ¢{S x H: SxH—+ S, for s € §, G, CG, = H

= Gs = Hso Hence s € S 1ies on a principal orbit of the action ¢|SG x G:

G X G = SG <=> 3 lies on a principel orbit of the action qb] Sx He 5, i.e.



s & P{S, H) <==> s € P(SG, G) N S <=> sg € P(36, G) Vg & &
(2) In the case dim s § 0, we bave that § = x = exp ™ (Sex) = (exp™ts) = 0
s 10, 11, for some k 8.t 0 £ k < n, where exps M, ~ M. We heve the

commutative diagram s

(Sk x JosL]) x H > 55 « Jo, 1]

on

gx1 J) ~ ‘@\L q

({ oxp™8) = 0) x H weme> (exp™35) = 0
| 3
exp x 1 \L & » = 1 8Xp

(8§ = %) x H =3 § =x

$

where 3, ¢  are the actions i‘nduc‘ed by ¢, and the mep q, is the homec
(exp8) - 0+ & x Jo, 1]

<As remarked in the proof of Theorem 6.2 H acis orthogom;lly on D, which

ﬁmplies the induced action of H on the cylinder Sk % ]0, 1] is one of rotation
about its axis, i.e. H acts orthogonalls; on Sk but does not act on ]0, 1] .

We are saying in fact that ' .

goo g5, 1) ¢ (55 % 20, D 8 x 10, 11, ((.8) B oy (gr, (s,0)8)
Vae Sk, t e J0, 1] , h & H, for scms orthogonal action ¢ ¢ : K xHe Sk0

The principal orbits of r,ﬁg H Sk x H-s Sk are, by the induciive hypothesie
dense in Sk§ for k £ 0; when k = 0, there is either just the ons orbit or the
ig otropy group of both points of & is H == p(s°, H) = s°, in either ecase,
Honce the principal orbits of ¢ (Sk X jog 1)) x H- §° « 10, 1] ere dense
==> the principal orbits of $l(8-x)xH:(8=x)xH= 8 =~ x are denss

in 8= x and hence in § s==»> P(SG, G) N S is dense in S (by 2bove) ==» P(i, &)

Sommpm—

" S is dense in S, Henmce S < P(M,G) and o S6 ¢ P(M,G)s- Thus P(M,G) iz open.

{(b) In the cese dim S = 0, xG has the same Gimemsion as ¥ (since dim § = O =»
S = {x}=y %6 is & neighbourhood in M ). The map 8: H|G ~» x G < ¥, Hg ~>xg

is & @iffeo (Cor, 4.8) ==> xG is open, by the inverse function thecrem. Sincs
the action of @ is proper, x§ is closed’ {(Theorsm 2,23}, Thua the connsctedness

of M ==» %C = M, =G being the only orbit is thus principal,
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{3) P(d, ¢) ¢ in comected

Suppose  P(¥,6)1¢ = U U V, where U, V are disjoint open sets in P(M,G)|G. Then

?(HgG) = p ml(U) U pgl(V), wHere p: M - M|G is the cenonical prajection.

By (2), ¥ = P(¥,C) = PQI(U) V) pgl(V? =» 1 X E pc'lnfU) Ial p=1(V), since M is
connected. |

Let S be adgice at x . If dim S = 0, 1t follows from (2)(b) thet
P(11,6) \IG is a one point set and i1s thus connected. So we can suppose dim
s¢o0,

From (2}, we have that P(SG,G) N S = P(S,H); and if Py ¢ 56~ sele is the
canonical projection, the relation pl(sg) = pl(@)==sG, YseS, g€t
assures (P(SG,6) N 8) |¢ = P(SG,6)|6G. Applying Lemma 6.4, we have that
P{s, M) =~ (p(se, ¢) ns)le = P(s&, &)]G; in particular P(SC - %G,G){C =
P(8 =x, H)|H and we know that P(S -z, BIE = (P(Sks H) >§ Joo3 ) jus=
(s, H}|H x 10, 1]. The inductive hypothesis implies P(Sk, H){H is comected
which implies P(SC. = %G, G)|G is connected, and sc P(SG,C)|C is comnected.
Since P(SG,G) = P(#,G) N SG and SC and P(M,G) are neighbourhoods in U,
P(56,C) |G is thus & connected neighbourhood of P(x) in M{G. Now p{x) e TNV,
but P(SG,6)]6 c Pl,G)| 6 = UL ¥, so P(SG,6)| & lies entirely in U or entirely

in V ==> either U or V is empty. So P(M, G}|G is connected.

(4) The principal orbits are of the same type.

The proof of (1) ==> each point of p has a neighbourhcod, in M, in which
211 the principal orbits are of the same type. Hence the orbits of & glven
type form sn open set in M end therefore its imege in M]G, and thus in
?(¥, 6)|¢ is open. Taus P(M, G}[G is the disjoint union of open sets, sack
open set being the image in WG of the open set in ¥ consisting of points in
P(m,) of a particular orbit type. P(M,G}!G comnected =>all but one of those

disjoint open sets is empty. So all the principal orbits have the same type..

)

QED
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