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Abstract. Suppose that ball-shaped sensors wander in a bounded domain. A sensor
doesn’t know its location but does know when it overlaps a nearby sensor. We say that
an evasion path exists in this sensor network if a moving intruder can avoid detection. In
Coordinate-free coverage in sensor networks with controlled boundaries via homology, Vin
de Silva and Robert Ghrist give a necessary condition, depending only on the time-varying
connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent ho-
mology, we provide an equivalent condition that moreover can be computed in a streaming
fashion. However, no method with time-varying connectivity data as input can give neces-
sary and sufficient conditions for the existence of an evasion path. Indeed, we show that
the existence of an evasion path depends not only on the fibrewise homotopy type of the
region covered by sensors but also on its embedding in spacetime. For planar sensors that
also measure weak rotation and distance information, we provide necessary and sufficient
conditions for the existence of an evasion path.

Keywords. Mobile sensor networks, coverage, pursuit-evasion, homology, zigzag persis-
tence, fibrewise embeddings

1. Introduction

In minimal sensor network problems, one is given only local data measured by many weak
sensors but tries to answer a global question [ECPS02, GG12]. Tools from topology can be
useful for this passage from local to global. For example, [BG09] combines redundant local
counts of targets to obtain an accurate global count using integration with respect to Euler
characteristic. Coverage problems are another class of problems in minimal sensing: when
sensors are scattered throughout a domain, can we determine if the entire domain is covered?
See [AKJ05, FJ10, GD08, Wan11] for surveys of coverage problems, and see [dG06, dG07]
for topological approaches.

We are interested in the following mobile sensor network coverage problem from [dG06].
Suppose that ball-shaped sensors wander in a bounded domain. A sensor can’t measure its
location but does know when it overlaps a nearby sensor. We say that an evasion path exists
if a moving intruder can avoid being detected by the sensors. Can we determine if an evasion
path exists? We refer to this question as the evasion problem. The evasion problem can also
be described as a pursuit-evasion problem in which the domain is continuous and bounded,
there are multiple sensors searching for intruders, and an intruder moves continuously and
with arbitrary speed. We do not control the motions of the sensors; the sensors wander
continuously but otherwise arbitrarily. We cannot measure the locations of the sensors but
instead know only their time-varying connectivity data. Using this information, we would
like to determine whether it is possible for an intruder to avoid the sensors. See [CHI11] for

Published in International Journal of Robotics Research 34 (2014), 90–104. Published version available
at http://ijr.sagepub.com/content/34/1/90.

1

http://ijr.sagepub.com/content/34/1/90


a survey of related pursuit-evasion problems, and see [LBD+05, CDH+10] for scenarios in
which the motion of the sensors or intruders can be controlled.

After introducing the evasion problem in [dG06], de Silva and Ghrist give a necessary
homological condition for an evasion path to exist. Using zigzag persistent homology, we
provide an equivalent condition that moreover can be computed in a streaming fashion.
However, it turns out that homology alone is not sufficient for the evasion problem. Indeed,
neither the fibrewise homotopy type of the sensor network nor any invariants thereof deter-
mine if an evasion path exists; we show that the fibrewise embedding of the sensor network
into spacetime also matters. Knowing this, we provide necessary and sufficient conditions
for the existence of an evasion path for planar sensors that can also measure weak rotation
and distance data.

In Section 2 we provide background material on fibrewise spaces. We define the evasion
problem in Section 3, and in Section 4 we describe the work of de Silva and Ghrist. We
introduce zigzag persistence in Section 5 and apply it to the evasion problem in Section 6.
However, zigzag persistence does not give a complete solution to the evasion problem. Indeed,
in Section 7 we show the existence of an evasion path depends not only on the fibrewise
homotopy type of the sensor network but also on the ambient isotopy class of its embedding
in spacetime. In Section 8 we restrict attention to planar sensors measuring cyclic orderings
and provide an if-and-only-if result. We conclude in Section 9 and describe possible directions
for future work.

2. Fibrewise Spaces

Since we are studying mobile sensors, both the region covered by the sensors and the
uncovered region change with time. In this section we encode the notion of time-varying
spaces using the language of fibrewise spaces. We also consider fibrewise maps between
fibrewise spaces, what it means for two fibrewise maps to be fibrewise homotopic, and what
it means for two fibrewise spaces to be fibrewise homotopy equivalent. See [CJ98] for more
information on fibrewise homotopy theory.

Y

p
I

#
Figure 1. A fibrewise space p : Y → I.

A fibrewise space is a space equipped with a notion of time. More precisely, let I = [0, 1]
be the closed unit interval. A fibrewise space is a topological space Y equipped with a
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continuous map p : Y → I to time; see Figure 1 for an example. For any point y ∈ Y one
can think of p(y) as the time coordinate associated to this point. Given two fibrewise spaces
p : Y → I and p′ : W → I, a continuous map f : Y → W is said to be fibrewise if p′ ◦ f = p.
In other words, a fibrewise map is time-preserving. A section for a fibrewise space p : Y → I
is a fibrewise map s : I → Y , that is, a continuous map s : I → Y with p(s(t)) = t for all
t ∈ I.

Roughly speaking, two fibrewise maps are fibrewise homotopic when one can be deformed
to the other in a time-preserving manner. More precisely, two fibrewise maps f0, f1 : Y → W
are fibrewise homotopic if there is a homotopy F : Y × I → W with F ( , 0) = f0, with
F ( , 1) = f1, and with each F ( , t) a fibrewise map. The homotopy F gives a continuous
and time-preserving deformation from f0 to f1. Two fibrewise spaces are fibrewise homotopy
equivalent when they are homotopy equivalent in a time-preserving manner. More explicitly,
a fibrewise map f : Y → W is a fibrewise homotopy equivalence if there is a fibrewise map
f ′ : W → Y with compositions f ′◦f and f ◦f ′ each fibrewise homotopic to the corresponding
identity map; in this case we say that fibrewise spaces Y and W are fibrewise homotopy
equivalent.

3. The Evasion Problem

The evasion problem we consider is introduced in [dG06], and we present it here with a few
minor changes. Let D ⊂ Rd be a bounded domain homeomorphic to a d-dimensional ball,
where d ≥ 2. Suppose that a finite set S of sensor nodes moves inside this domain over the
time interval I = [0, 1], with each sensor v ∈ S a continuous path v : I → D. We assume that
two distinct sensors never occupy the same location: for sensors v 6= ṽ we have v(t) 6= ṽ(t)
for all t. Let Bv(t) = {y ∈ D | ‖v(t)− y‖ ≤ 1} be the unit ball covered by sensor v at time t.
The sensors can’t measure their locations but two sensors do know when they overlap. This
allows us to measure the time-varying connectivity graph of the sensors. The connectivity
graph at time t has the set of sensors S as its vertex set and has an edge between sensors
v and ṽ when Bv(t) ∩ Bṽ(t) 6= ∅; see Figure 2(B). We assume there is an immobile subset of
fence sensors whose union of balls contains the boundary ∂D and is homotopy equivalent to
∂D.
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Figure 2. (A) A sensor network at a fixed point in time, (B) its connectivity

graph, and (C) its C̆ech complex.
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The union of the balls X(t) = ∪v∈SBv(t) is the region covered by the sensors at time t,
and its complement X(t)c = D \X(t) is the uncovered region at time t. Let

X = ∪t∈IX(t)× {t} ⊂ D × I
be the subset of spacetime covered by sensors, and let Xc = (D × I) \X be the uncovered
region in spacetime. Both X and Xc are fibrewise spaces, that is, spaces equipped with
projection maps X → I and Xc → I to time. See Figure 3 for two examples.

D
X

I

D
X

I
Figure 3. We have drawn two planar sensor networks with domain D ⊂ R2

on the vertical axis and with time I on the horizontal axis. The region X in
spacetime covered by the sensors is drawn in gray, and the uncovered region
Xc is drawn in white. The network on the left contains an evasion path. The
network on the right does not contain an evasion path because an intruder
must move continuously and cannot teleport locations.

Potentially there are also intruders moving continuously in this domain. The intruders
would like to avoid being detected by the sensors, but an intruder is detected at time t if it
lies in the covered region X(t). We say that an evasion path exists when it is possible for a
moving intruder to avoid being seen by the sensors.

Definition 1. An evasion path in a sensor network is a section s : I → Xc of the projection
map p : Xc → I. Equivalently, an evasion path is a continuous map s : I → D such that
s(t) /∈ X(t) for all t.

Given a sensor network, we would like to determine whether or not an evasion path
exists. However, connectivity graphs alone cannot determine the existence of an evasion
path. Consider the two sensor networks in Figure 4, and suppose that in each case all three
sensors are immobile over the entire time interval. Then the two networks have the same
connectivity graphs at each point in time, but the sensor network on the left contains an
evasion path while the network on the right does not.

Since connectivity graphs alone are insufficient, we consider C̆ech simplicial complexes
encoding higher connectivity information. The C̆ech simplicial complex C(t) of the sensors
is the nerve of the unit balls {Bv(t)}v∈S [EH10]. This means that the vertex set of C(t) is
the set of sensors S, and we have a k-simplex when the intersection of the corresponding
(k + 1)-balls is nonempty. That is, simplex [v0v1 . . . vk] is in C(t) when

Bv0(t) ∩Bv1(t) ∩ . . . ∩Bvk(t) 6= ∅.
4
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Figure 4. Let (A) and (B) be two different sensor networks. Imagine that no
sensor moves over the entire time interval. Then network (A) has an evasion
path while network (B) does not, even though the two networks have the same
connectivity graph at each point in time.

See Figure 2(C) for an example. Note that the 1-skeleton of C(t) is the connectivity graph

at time t. An important property is that the C̆ech complex C(t) is homotopy equivalent to
the union of the balls X(t) by the nerve lemma [Hat02, Corollary 4G.3]. We are now ready
to state the evasion problem.

The Evasion Problem. Given the time-varying C̆ech complex C(t) of a sensor network
over all times t ∈ I, can one determine if an evasion path exists?

Remark 1. One can recover the fibrewise homotopy type of the covered region X of a sensor
network from the time-varying C̆ech complex.

Remark 2. In the static setting in which the sensors do not move, one can use the C̆ech
complex to determine whether or not the sensors cover the entire domain D. The evasion
problem asks whether an analogous statement is true in the setting of mobile sensors.

In applications it is generally unreasonable to assume that our sensors can measure C̆ech
complexes. This would require the task of detecting k-fold intersections, which is not possible
under many models of minimal sensing. However, we can approximate the C̆ech complex
from either above or below using the Vietoris–Rips complex [Vie27]. The Vietoris–Rips
complex is the maximal simplicial complex built on top of the connectivity graph, and hence
can be recovered by sensors measuring only two-fold overlaps. This approximation allows us
to take results based on C̆ech complexes and produce analogous approximate results using
only Vietoris–Rips complexes; see Appendix A for more details. For example, the results in
[dG06] are stated in terms of Vietoris–Rips complexes. We avoid such approximations and

instead use C̆ech complexes.
We make the simplifying assumption that each sensor covers a unit ball. With the excep-

tion of Section 8 on alpha complexes and the Appendix, all of our results also hold in the
more general setting where each sensor covers an arbitrary convex set. In this setting the
C̆ech complex becomes the nerve of the convex sets.

5



4. Work of de Silva and Ghrist

In order to explain de Silva and Ghrist’s work on the evasion problem, we first define the
stacked C̆ech complex. The stacked C̆ech complex is a single cell complex encoding the C̆ech
simplicial complexes C(t) for all times t ∈ I. We assume there are only a finite number of
times

0 < t1 < . . . < tn < 1

when the C̆ech complex changes. Hence for t and t′ in either (ti, ti+1), [0, t1), or (tn, 1], we
have C(t) = C(t′). Moreover, we assume that at each time ti simplices are either added to

or removed from the C̆ech complex but not both. Since the sensor balls are closed, a simplex
σ is

• added at time ti if σ ∈ C(ti) but σ /∈ C(t) for t ∈ (ti−1, ti), and
• removed at time ti if σ ∈ C(ti) but σ /∈ C(t) for t ∈ (ti, ti+1).

Choose interleaving times

0 = s0 < t1 < s1 < . . . < tn < sn = 1.

Figure 5. The stacked C̆ech complex for three sensor nodes. The top row
shows how the C̆ech complex changes: initially the C̆ech complex consists of
an edge and a vertex, and as the sensors move closer together two more edges
and a 2-simplex are added. The bottom row shows the stacked C̆ech complex,
obtained by adding prism cells.

Definition 2. The stacked C̆ech complex p : SC → I is the fibrewise space obtained from
the disjoint union qn

i=0C(si)× [ti, ti+1], where t0 = 0 and tn+1 = 1, by identifying

• C(si−1)× {ti} as a subset of C(si)× {ti} if simplices are added at ti, and
• C(si)× {ti} as a subset of C(si−1)× {ti} if simplices are removed at ti.

Map p : SC → I is the projection onto the second coordinate, and note that p−1(t) = C(t).
6



This definition is similar to the definition of the stacked Vietoris–Rips complex in [dG06].
See Figure 5 for a small example.

De Silva and Ghrist give a partial answer to the evasion problem in Theorem 7 of [dG06].

We state their result using the stacked C̆ech complex instead of the stacked Vietoris–Rips
complex, and for D ⊂ Rd with dimension d arbitrary. Recall that a subset of immobile fence
sensors covers the boundary ∂D, and let F × [0, 1] be the subcomplex of the stacked C̆ech
complex SC consisting of only these fence sensors.

Theorem 7 of [dG06], reformulated. If there exists some [α] ∈ Hd(SC, F × [0, 1]) with
0 6= [∂α] ∈ Hd−1(F × [0, 1]), then there is no evasion path in the sensor network.

↵

(a) (b)

(c)

Figure 6. (A) A relative 2-cycle α from Theorem 7 of [dG06]. (B) Theorem 7
of [dG06] proves that there is no evasion path in this sensor network. (C)
Although there is no evasion path in this network, Theorem 7 of [dG06] does
not apply.

We explain the picture behind this theorem. Suppose there is some

[α] ∈ Hd(SC, F × [0, 1])

with 0 6= [∂α]. Let α be a relative d-cycle in SC that represents the homology class [α]. The
condition 0 6= [∂α] means that the boundary of α wraps a nontrivial number of times around
F × [0, 1]. We think of α as a “sheet” in the region of spacetime covered by the sensors that
separates time zero from time one; see Figure 6(A). If there is such a relative cycle α then
no evasion path can exist. For example, Theorem 7 of [dG06] proves there is no evasion path
in the sensor network in Figure 6(B).

Theorem 7 of [dG06] is equivalent to the following statement: if there is an evasion path in
the sensor network, then every [α] ∈ Hd(SC, F × [0, 1]) satisfies 0 = [∂α]. This homological
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criterion is necessary but not sufficient for the existence of an evasion path. The insufficiency
is demonstrated by the sensor network in Figure 6(C): every [α] ∈ Hd(SC, F × [0, 1]) satisfies
0 = [∂α], but there is no evasion path since an intruder cannot move backwards in time.
Can we sharpen this theorem to get necessary and sufficient conditions?

5. Zigzag Persistence

We introduce zigzag persistence in this section before applying it to the evasion problem
in the following section. Zigzag persistence [Cd10] is a generalization of persistent homology
[ELZ02, ZC05] in which the maps can go in either direction, and zigzag persistence is also
the specific case of quiver theory [Gab72, DW05] when the underlying quiver is a Dynkin
diagram of type An.

A zigzag diagram is a directed graph with n vertices and n− 1 arrows

•1 ←→ •2 ←→ •3 ←→ . . .←→ •n−1 ←→ •n,
where each arrow points either to the left or to the right. Fix a field k. A zigzag module V
is a diagram

V1
q1←−→ V2

q2←−→ . . .
qn−2←−−→ Vn−1

qn−1←−−→ Vn,

where each Vi is a finite vector space over k and each qi is a linear map pointing either to
the left or to the right. A morphism f between two zigzag modules V and W is a diagram

V1 V2 . . . Vn−1 Vn

W1 W2 . . . Wn−1 Wn

f1 f2 fn−1 fn

in which all of the squares commute. If each fi is an isomorphism of vector spaces, then f is
an isomorphism of zigzag modules. In the language of category theory, a zigzag module is a
functor from the free category generated by a zigzag diagram to the category of finite vector
spaces, and a morphism between two zigzag modules is a natural transformation [Mac98].

The direct sum of two zigzag modules V and V ′ is given by (V ⊕ V ′)i = Vi ⊕ V ′i , with
connecting linear maps of the form qi ⊕ q′i. For birth and death indices 1 ≤ b ≤ d ≤ n, the
interval module I(b, d) is defined by

I(b, d)i =

{
k if b ≤ i ≤ d

0 otherwise.

The connecting linear maps of I(b, d) are identity maps 1 between adjacent copies of the
field k, and zero maps otherwise. So I(b, d) looks like

0←→ . . .←→ 0←→ k
1←→ . . .

1←→ k ←→ 0←→ . . .←→ 0,

where the first k is in slot b and the last k is in slot d. As in persistent homology, a zigzag
module is described up to isomorphism by its barcode decomposition [Gab72, Cd10].

Theorem 1 (Gabriel). A zigzag module V can be decomposed as

V ∼= ⊕N
l=1I(bl, dl),

where the factors in the decomposition are unique up to reordering.
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A barcode is a multiset of intervals of the form [b, d], and the barcode for a zigzag module
V ∼= ⊕N

l=1I(bl, dl) is
{

[b1, d1], [b2, d2, ], . . . , [bN , dN ]
}

.
Given a fibrewise space p : Y → I and a choice of discretization

0 = s0 < s1 < . . . < sn = 1,

we build a zigzag module that models how the homology of fibrewise space Y changes with
time. Let Yi = p−1(si) and let Y i+1

i = p−1([si, si+1]). We have the zigzag diagram

(1) Y0 ↪→ Y 1
0 ←↩ Y1 ↪→ . . .←↩ Yn−1 ↪→ Y n

n−1 ←↩ Yn
of topological spaces and inclusion maps [CdM09]. See Figure 7 for an example. We assume

�
� ��

�
� ��
�
� ����
�
�

Figure 7. A zigzag diagram built from the fibrewise space in Figure 1.

that each Yi and Y i+1
i have finite-dimensional homology and cohomology, each taken with

coefficients in a field k. Applying the j-dimensional homology functor Hj to (1) gives the
zigzag module

Hj(Y0)→ Hj(Y
1
0 )← Hj(Y1)→ . . .← Hj(Yn−1)→ Hj(Y

n
n−1)← Hj(Yn).

We denote this zigzag module ZHj(Y ), leaving implicit the choice of discretization and the
choice of coefficient field. Applying the j-dimensional cohomology functor Hj to (1) gives
the zigzag module

Hj(Y0)← Hj(Y 1
0 )→ Hj(Y1)← . . .→ Hj(Yn−1)← Hj(Y n

n−1)→ Hj(Yn),

which we denote ZHj(Y ). Note the directions of the arrows have been reversed because
cohomology is contravariant.

The following lemmas will be useful in the proof of Theorem 2. The first lemma states that
zigzag persistent homology and cohomology are invariants of fibrewise homotopy type, and
the second lemma states that the barcodes for zigzag persistent homology and cohomology
are identical.
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Lemma 1. If Y and W are fibrewise homotopy equivalent then ZHj(Y ) ∼= ZHj(W ) and
ZHj(Y ) ∼= ZHj(W ).

Proof. Let f : Y → W be a fibrewise homotopy equivalence. This induces the commutative
diagram

Y0 Y 1
0 Y1 . . . Yn−1 Y n

n−1 Yn

W0 W 1
0 W1 . . . Wn−1 W n

n−1 Wn

f0 f1
0 f1 fn−1 fn

n−1 fn

where each map fi or f i+1
i is defined via restriction and is a homotopy equivalence. Since

homology is a homotopy invariant, applying Hj gives the commutative diagram

Hj(Y0) Hj(Y
1
0 ) Hj(Y1) . . . Hj(Yn−1) Hj(Y

n
n−1) Hj(Yn)

Hj(W0) Hj(W
1
0 ) Hj(W1) . . . Hj(Wn−1) Hj(W

n
n−1) Hj(Wn)

in which each vertical map is an isomorphism. Hence ZHj(Y ) ∼= ZHj(W ). The proof for
cohomology is analogous. �

Lemma 2. The barcodes for ZHj(Y ) and ZHj(Y ) are equal as multisets of intervals.

Proof. The version of this lemma with persistent homology instead of zigzag persistence is
given in Proposition 2.3 of [dMVJ11], and our proof is analogous. Because their arrows point
in different directions, the zigzag modules ZHj(Y ) and ZHj(Y ) live in different categories
and cannot be isomorphic. However, consider the decomposition

ZHj(Y ) ∼= ⊕N
l=1I(bl, dl)

from Theorem 1. Applying the contravariant functor Hom( ; k) produces the decomposition

Hom(ZHj(Y ); k) ∼= ⊕N
l=1I(bl, dl),

where the directions of the arrows in the zigzag modules have been reversed. Naturality
of the Universal Coefficient Theorem [Hat02, Theorem 3.2] with coefficients in a field gives
ZHj(Y ) ∼= Hom(ZHj(Y ); k), and hence the barcodes for ZHj(Y ) and ZHj(Y ) are equal as
multisets of intervals. �

6. Applying Zigzag Persistence to the Evasion Problem

We began studying the evasion problem with the goal of finding an if-and-only-if criterion
for the existence of an evasion path using zigzag persistence, which in this setting describes
how the homology of the region covered by sensors changes with time.

Consider the times 0 < t1 < . . . < tn < 1 when the C̆ech complex changes and choose
interleaving times

0 = s0 < t1 < s1 < . . . < tn < sn = 1.
10
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Figure 8. The zigzag diagram for the stacked C̆ech complex from the three
sensor nodes in Figure 5.

We saw in Section 5 that the discretization 0 = s0 < s1 < . . . < sn = 1 produces a zigzag
diagram of spaces from any fibrewise space, and we will consider the fibrewise spaces X, Xc,
and SC. Figure 8 depicts the zigzag diagram built from a stacked C̆ech complex SC.

Lemma 3. For X the region of spacetime covered by sensors and SC the stacked C̆ech
complex, we have ZHj(X) ∼= ZHj(SC).

Proof. By the nerve lemma we have the following commutative diagram with each vertical
arrow a homotopy equivalence.

SC0 SC1
0 SC1 . . . SCn−1 SCn

n−1 SCn

X0 X1
0 X1 . . . Xn−1 Xn

n−1 Xn

The remainder of the proof is identical to the proof of Lemma 1. �

Our initial hypothesis was that an evasion path would exist in a sensor network if and only
if there were a full-length interval [1, 2n + 1] in the barcode for ZHd−1(SC). For example,
network (A) in Figure 9 has both an evasion path and a full-length interval, and network
(B) has neither. Only one direction of this hypothesis is true.

Theorem 2. If there is an evasion path in a sensor network, then there is a full-length
interval [1, 2n+ 1] in the zigzag barcode for ZHd−1(SC).

Proof. An evasion path is a section s : I → Xc, that is, a commutative diagram

I Xc I
s p

1
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(a) (b)

Figure 9. Two planar sensor networks and their barcode decompositions for
ZH1(X).

with 1 the identity map. Applying zigzag homology ZH0 gives the following commutative
diagram.

ZH0(I) ZH0(X
c) ZH0(I)

ZH0(s) ZH0(p)

1

Since the identity map on ZH0(I) ∼= I(1, 2n + 1) factors through ZH0(X
c), the splitting

lemma [Hat02, Section 2.2] implies that the barcode decomposition for ZH0(X
c) contains a

summand isomorphic to I(1, 2n + 1). Hence there is a full-length interval [1, 2n + 1] in the
barcode for ZH0(X

c). Next we need a version of Alexander Duality [Hat02, Theorem 3.44].
We apply Theorem 3.11 of [Kal13], which uses the Diamond Principle of [Cd10] and our
Lemma 2, to obtain a full-length interval in ZHd−1(X). Since ZHd−1(X) ∼= ZHd−1(SC) by
Lemma 3, the proof is complete. �

Remark 3. This theorem is as discerning as the reformulated version of Theorem 7 of
[dG06]. That is, one theorem can be used to prove that no evasion path exists in a sensor
network if and only if the other theorem can be used. However, suppose that the sensors
move for a long period of time. In this case the amalgamated complex used in Corollary 3
of [dG06] to compute their homological criterion may become quite large. By contrast, the
algorithm for computing zigzag persistence runs in a streaming fashion that does not require
storing the sensor network across all times simultaneously. This streaming algorithm is given
in Section 4 of [CdM09]. Hence computing our Theorem 2 may be more feasible for sensors
moving over a long period of time.

Interestingly, the converse to Theorem 2 is false. This is demonstrated by the sensor
network in Figure 10(A). It is tempting to guess that the barcode for this network consists
of the intervals drawn on top in black, but they are crossed out because they are incorrect.
The correct barcode beneath contains a full-length interval [1, 2n + 1] even though there is
no evasion path. We explain this counterintuitive barcode in Figure 10(B), and we give a
second explanation in Section 7.
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(a)

(b)

Figure 10. (A) It is tempting to guess that the barcode for ZH1(X) consists
of the crossed-out intervals on top in black, but instead the correct barcode is
drawn beneath in blue, green, and purple. Note there is a full-length interval
[1, 2n+1] even though there is no evasion path in this network. (B) A coarsened
version of the zigzag diagram for X. The cycles drawn in blue, green, and
purple are generators for the three intervals in ZH1(X).

Caution 2.9 from [Cd10] explains that although every submodule isomorphic to an interval
in a persistent homology module corresponds to a direct summand, the same is not true for
zigzag modules. The sensor networks in Figures 9(B) and 10(A) are good examples of this
caution. The zigzag modules for both sensor networks have a submodule isomorphic to the
full-length interval module I(1, 2n+1), but Figure 10(A) contains I(1, 2n+1) as a summand
whereas Figure 9(B) does not.

7. Dependence on the Embedding

It turns out that the answer to the evasion problem is no: in general, neither the time-
varying C̆ech complex C(t) of a sensor network nor the fibrewise homotopy type of covered
region X determine if an evasion path exists. The ambient isotopy class of the fibrewise
embedding of X into spacetime D × I also matters.

We demonstrate this impossibility result using the planar sensor networks (A) and (B) in
Figure 11. Let us describe network (A). Initially, the bottom half of domain D is covered
by sensors. These sensors retreat to the boundary, leaving a horizontal line of sensors. Two

13
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Figure 11. Each subfigure is a sensor network represented both as seven se-
quential C̆ech complexes and as a covered region X in spacetime D × I. At
each time t ∈ I the C̆ech complexes C(t) in (A) and (B) are identical. More-
over, the two covered regions are fibrewise homotopy equivalent. Nevertheless,
network (A) contains an evasion path, but network (B) does not because the
intruder cannot travel backwards in time.

sensors on this line jut out towards the top of D, forming three sides of a square. These two
sensors move closer together, completing the square. The bottom two sensors in this square
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move apart, breaking the bottom edge of the square. The curvy line of sensors straightens
out. Finally, sensors flood from the boundary to cover the top half of D. Network (B) is
identical to (A) except that the square opens towards the bottom of D.

The time-varying C̆ech complexes C(t) for the two networks are identical, but network
(A) has an evasion path while network (B) does not. Furthermore, the covered regions for

these two networks are fibrewise homotopy equivalent, and the stacked C̆ech complexes are
fibrewise homeomorphic. However, the uncovered regions for the networks are not fibrewise
homotopy equivalent, and in particular (A) has a section while (B) does not. Thus the
existence of an evasion path depends not only on the fibrewise homotopy type of the sensor
network but also on how the sensor network is fibrewise embedded in spacetime D × I.
Morover, in domain D ⊂ Rd for any d ≥ 2 there exists a pair of analogous sensor networks1.

Remark 4. In the static setting in which the sensors do not move, one can use the C̆ech
complex to determine if the sensors cover the entire domain D. However, in the setting of
mobile sensors, the time-varying C̆ech complex does not in general determine if there exists
an evasion path or not.

In Section 6 we promised a second explanation for the counterintuitive zigzag barcode
in Figure 10(A), which we give now. The sensor network in Figure 10(A) is the same as
the network in Figure 11(B), whose covered region is fibrewise homotopy equivalent to the
covered region for the network in Figure 11(A). Hence by Lemma 1 their zigzag barcodes must
be equal, and the zigzag barcodes for the network in Figure 11(A) are shown in Figure 9(A).

Embeddings are a central theme in topology. For topological spaces X and Y , an embed-
ding f : X ↪→ Y maps X injectively and homeomorphically onto its image. A typical goal
is to classify the space of embeddings up to some notion of equivalence, such as isotopy or
ambient isotopy, and the difficulty of this task depends heavily on the spaces X and Y . Knot
theory considers the case when X is the circle and Y = R3, and higher dimensional analogues
are even more complicated. However, for some choices of manifolds X and Y , homotopy
based classifications for the space of embeddings do exist [Whi44, Hae61, Ada93]. For the
evasion problem (and also its natural extension in which one would like to describe not only
whether an evasion path exists but also the entire space of evasion paths), it would be useful
to have extensions of embedding theory both to the setting of non-manifold spaces and to
the setting of fibrewise spaces. One possibility is to try to adapt the tools of embedding
calculus [Wei99] to a fibrewise setting.

8. Sensors Measuring Cyclic Orderings

Since neither the time-varying C̆ech complex nor the fibrewise homotopy type of covered
region X are sufficient to determine if an evasion path exists, what minimal sensing capabil-
ities might we add? In this section we assume the sensors live in a planar domain D ⊂ R2

and that each sensor measures the cyclic ordering of its neighbors, as in [GLPS08]. It is not
uncommon for sensors to measure this weak angular data, for example by performing circular
radar sweeps. In Theorem 3 we give necessary and sufficient conditions for the existence of
an evasion path based on this rotation information.

Theorem 3 relies on the alpha complex of the sensors. Let Vv(t) be the Voronoi cell

Vv(t) = {y ∈ D | ‖v(t)− y‖ ≤ ‖ṽ(t)− y‖ for all ṽ ∈ S}
1Analogous examples in D ⊂ R1 require the sensors to turn off and then back on.
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of all points in D closest to sensor v at time t. The alpha complex A(t) is the nerve of the

convex sets {Bv(t) ∩ Vv(t)}v∈S [EM94, EH10]. It is a subcomplex of both the C̆ech complex

and of the Delaunay triangulation, and is homotopy equivalent to the C̆ech complex and
to the union of the sensor balls. For points in general position the 1-skeleton of the alpha
complex is embedded in the plane, though the 1-skeleton of the C̆ech complex need not be.
Recovering the alpha complex instead of the C̆ech complex requires significantly stronger
sensors. However, if each sensor measures the local distances to its overlapping neighbors,
which may be approximated by time-of-flight, then this data determines the alpha complex
[FM09].
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Figure 12. The alpha complex is a homotopy equivalent subcomplex of the
C̆ech complex. For points in general position the 1-skeleton of the alpha com-
plex is embedded in the plane, but the 1-skeleton of the C̆ech complex need
not be.

We assume there are only a finite number of times 0 < t1 < . . . < tn < 1 when the alpha
complex changes. Hence for t and t′ in (ti, ti+1), [0, t1), or (tn, 1] we have identical alpha
complexes A(t) = A(t′). Moreover, we assume that at each ti one of the following changes
to the alpha complex occurs.

(1) A single edge is added or removed.
(2) A single 2-simplex is added or removed.
(3) A free pair consisting of a 2-simplex and a face edge with no other cofaces is added

or removed.
(4) A Delaunay edge flip occurs.

We assume that each sensor measures the clockwise cyclic ordering of its neighbors in the
alpha complex. This cyclic ordering data is necessarily fixed in each interval (ti, ti+1), [0, t1),
or (tn, 1].

Theorem 3. Suppose we have a planar sensor network with covered region X(t) connected
at each time t ∈ I. Then from the time-varying alpha complex and the time-varying cyclic
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orderings of the neighbors about each sensor, we can determine whether or not an evasion
path exists.

Proof. Let A1(t) be the 1-skeleton of the alpha complex at time t. For each vertex v we
have a cyclic permutation πv acting on the incident edges, where πv(e) is the successor of
edge e in the clockwise ordering around v. This gives A1(t) the structure of a rotation
system [MT01], also called a fat graph or ribbon graph [Igu02]. A rotation system partitions
the directed edges of A1(t) into sets of boundary cycles. Each boundary cycle is a loop of
directed edges (e1e2 . . . ek) constructed so that if vi is the target vertex of directed edge ei,
then πvi(ei) = ei+1, where ek+1 = e1. See Figure 13 for an example, and note that this cyclic
ordering data distinguishes the two sensor networks in Figure 11.

Figure 13. An example rotation system. The cyclic orderings are drawn on
the left in gray, and the four boundary cycles are drawn on the right in red,
green, blue, and yellow.

The boundary cycles of A1(t) are in bijective correspondence with the connected com-
ponents of R2 \ A1(t). Removing the boundary cycles of length three that are filled by
2-simplices (and also the boundary cycle corresponding to the outside of ∂D) produces a bi-
jection with the connected components of the uncovered region X(t)c. Hence by tracking the
boundary cycles of A1(t) we can measure how the connected components of the uncovered
region merge, split, appear, and disappear. In other words, we can reconstruct the Reeb
graph of Xc → I [Ree46].

We will maintain labels on the boundary cycles of A1(t) so that a boundary cycle is labeled
true if the corresponding connected component of R2 \ A1(t) may contain an intruder and
false if not. At time t = 0 we label the boundary cycles of length three filled by 2-simplices
in A1(0) (and also the boundary cycle corresponding to the outside of ∂D) as false. All other
boundary cycles are labeled true. When we pass a time ti when the alpha complex changes,
we update the labels as follows.

(1) If a single edge is added, then a single boundary cycle splits in two since X(t) is
connected. Each new boundary cycle maintains the original label. If a single edge
is removed, then two boundary cycles merge since X(t) remains connected, and the
new cycle is labeled true if either of the original two cycles were labeled true.
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(2) If a single 2-simplex is added, then the label on the corresponding boundary cycle of
length three is set to false. If a single 2-simplex is removed, then the label on the
corresponding boundary cycle of length three remains false.

(3) If a free pair consisting of a 2-simplex and a face edge is added, then a boundary
cycle splits into two with one label unchanged. The other label corresponding to the
added 2-simplex is set to false. If a free pair is removed, then the boundary cycle of
length three corresponding to the 2-simplex is removed and the label on the other
modified boundary cycle remains unchanged.

(4) If a Delaunay edge flip occurs, then two boundary cycles labeled false are replaced
by two different boundary cycles also labeled false.

An evasion path exists in the sensor network if and only if there is a boundary cycle in A1(1)
labeled true. Such a boundary cycle corresponds to a connected component of the uncovered
region X(1)c at time one which could contain an intruder. �
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Figure 14. Each subfigure is a sensor network represented by seven sequen-
tial C̆ech complexes. At each time the C̆ech complexes, alpha complexes, and
cyclic ordering information are identical. Nevertheless, network (A) contains
an evasion path but network (B) does not. Hence it is necessary in Theorem 3
to assume that each X(t) is connected.

Figure 14 shows that the connectedness assumption in Theorem 3 is necessary. It is an
open question if the cyclic ordering information along with the time-varying C̆ech complex
(instead of the time-varying alpha complex) suffice.
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Open Question. Suppose we have a planar sensor network with X(t) connected at each

time t. Using only the time-varying C̆ech complex and the time-varying cyclic orderings of
the neighbors about each sensor, is it possible to determine if an evasion path exists?

An answer to this open question would fill the gap between Theorem 7 of [dG06] or
equivalently our Theorem 2, which use only minimal sensor capabilities but are not sharp,
and our Theorem 3, which is sharp but requires more advanced sensors measuring alpha
complexes. One difficulty in working with the C̆ech complex is that its 1-skeleton need not
be embedded in the plane; see Figure 12(A).

9. Conclusions

This paper addresses an evasion problem for mobile sensor networks in which the sensors
don’t know their locations and instead measure only local connectivity data. In [dG06],
de Silva and Ghrist provide a homological criterion depending on this limited input which
rules out the existence of an evasion path in many sensor networks. We use zigzag persistence
to produce a criterion of equivalent discriminatory power that also allows for streaming
computation, which is an important feature for sensor networks moving over a long period
of time.

It turns out that no method relying on connectivity data alone can determine in all cases
if an evasion path exists. Indeed, we provide examples showing that the fibrewise homotopy
type of the sensor network does not determine the existence of an evasion path; the em-
bedding of the sensor network in spacetime also matters. We therefore consider a stronger
model for planar sensors which measure cyclic orderings and alpha complexes, and given this
model we provide necessary and sufficient conditions for the existence of an evasion path.

We end with two possible directions for future research. First, we are interested in the
open question from Section 8: can one determine the existence of an evasion path using
only C̆ech complexes and the cyclic ordering data? An answer to this question would fill
the gap between Theorem 7 of [dG06] (or equivalently our Theorem 2) and our Theorem 3.
Second, the evasion problem motivates a natural extension discussed in [Ada13]: can we
describe the entire space of evasion paths? Knowledge about the space of evasion paths may
be helpful in determining how to best patch a sensor network that contains an evasion path.
Alternatively, we may want to find the evasion path that maintains the largest separation
between the intruder and the sensors, that requires an intruder to move the shortest distance,
or that requires an intruder to move at the lowest top speed. Knowledge about the space of
sections may be helpful for such problems.

Funding. This work was supported by the National Science Foundation [DMS 0905823,
DMS 0964242]; the Air Force Office of Scientific Research [FA9550-09-1-643, FA9550-09-1-
0531]; and the National Institutes of Health [I-U54-ca49145-01]. H. Adams was supported
by a Ric Weiland Graduate Fellowship at Stanford University, and by the Institute for
Mathematics and its Applications.

Appendix A. C̆ech Complex Approximations

In this appendix we explain the Vietoris–Rips approximation to the C̆ech complex. We
still assume that each sensor covers a ball of radius one, but we now consider different
communication distances between the sensors. Two sensors no longer detect when they
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overlap, but instead when their centers are within communication distance 2ε. Hence the
sensors measure a time-varying communication graph which at time t has an edge between
sensors v and ṽ if ‖v(t)− ṽ(t)‖ ≤ 2ε.

The Vietoris–Rips complex VR(t, ε) is the maximal simplicial complex built on top of the
connectivity graph with communication distance 2ε at time t. Equivalently, a simplex is
in VR(t, ε) when its diameter is at most 2ε [Vie27]. Note a simplex is included in VR(t, ε)
when all its edges are in the connectivity graph, and so the Vietoris–Rips complex can be
constructed from the connectivity graph. See Figure 15 for an example.
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(b) Vietoris–Rips complex for ε = 1

Figure 15. Note the 2-simplex that is absent from the C̆ech complex but is
present in the Vietoris–Rips complex.

By changing the communication distance of the sensors, we can approximate the C̆ech
complex from either direction using a Vietoris–Rips complex. Jung’s Theorem [Jun01] im-
plies

VR

(
t,

√
d+ 1

2d

)
⊂ C(t) ⊂ VR(t, 1).

Let p : VR(t, ε)→ Rd be the projection of the Vietoris–Rips complex into Rd, mapping each
simplex affinely to the convex hull of its vertices in Rd. It follows from Jung’s Theorem that

if every continuous map s : I → D satisfies s(t) ∈ p
(

VR
(
t,
√

d+1
2d

))
for some t, then there

is no evasion path. Similarly, if there is a continuous map s : I → D with s(t) /∈ p(VR(t, 1))
for all t, then there is an evasion path. Hence we can use the time-varying Vietoris–Rips
complex to prove one-sided results about the existence of an evasion path. For example,

when d = 2 the bound VR
(
t,
√

d+1
2d

)
⊂ C(t) is closely related to Lemma 1 of [dG06], and is

used to provide necessary conditions for the existence of an evasion path.
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