
POSITIVE ALEXANDER DUALITY FOR PURSUIT AND EVASION

ROBERT GHRIST AND SANJEEVI KRISHNAN

Abstract. Considered is a class of pursuit-evasion games, in which an evader tries to
avoid detection. Such games can be formulated as the search for sections to the com-

plement of a coverage region in a Euclidean space over a timeline. Prior results give
homological criteria for evasion in the general case that are not necessary and sufficient.

This paper provides a necessary and sufficient positive cohomological criterion for evasion

in a general case. The principal tools are (1) a refinement of the Čech cohomology of a
coverage region with a positive cone encoding spatial orientation, (2) a refinement of the

Borel-Moore homology of the coverage gaps with a positive cone encoding time orienta-

tion, and (3) a positive variant of Alexander Duality. Positive cohomology decomposes
as the global sections of a sheaf of local positive cohomology over the time axis; we show

how this decomposition makes positive cohomology computable as a linear program.

1. Introduction

The motivation for this paper comes from a type of pursuit-evasion game. In such games,
two classes of agents, pursuers and evaders move in a fixed geometric domain over time.
The goal of a pursuer is to capture an evader (by, e.g., physical proximity or line-of-sight).
The goal of an evader is to move in such a manner so as to avoid capture by any pursuer.
This paper solves a feasibility problem of whether an evader can win in a particular setting
under certain constraints.

We specialize to the setting of pursuers-as-sensors, in which, at each time, a certain
region of space is “sensed” and any evader in this region is considered captured. Evasion,
the successful evasion of all pursuers by an evader, corresponds to gaps in the sensed region
over time. We formalize this setting in the form of a coverage pair (E,C) over the time-axis
R: one has, for each time t, the ambient space Et ∼= Rn and a sensed or covered region
Ct ⊂ Et. The ambient space and covered regions at each point in time are bundled into an
ambient space-time E ∼= Rn × R and a covered subspace C ⊂ E. The goal of the evader is
to construct an evasion path, a section to the restriction E−C → R of the projection map
E → R.

This is not necessarily a topological problem. However, epistemic restrictions on C are
natural in real-world settings. For example, a distributed sensor network may not directly
perceive its geometric coverage region C but can often infer its (co)homology from local
computations. The present paper focuses on the feasibility of evasion:

Problem. Is there an “evasion criterion” for the existence of a section to the complement

E−C → R,

based on a coordinate-free description of C?
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Work of Adams and Carlsson gives a geometric criterion for the plane (n = 2, see below);
there is no other known sharp criterion. The problem is one of topological duality. While
the (timewise) unstable homotopy theory of E−C determines the existence of an evasion
path, currently only the less informative (timewise) stable homotopy theory of E−C admits
a duality with the (timewise) stable homotopy theory of the input space C.

1.1. Background. Different formulations of pursuit-evasion games suggest different meth-
ods of analysis. Combinatorial descriptions of the domain suggest methods from the theory
of graphs [18] and cellular automata [4, 6]. Geometric descriptions of agent behavior suggest
methods from differential equations and differential game theory [15], computational geome-
try [13, 19], probability theory [14, 21], and Alexandrov geometry [2, 3]. Coordinate-free de-
scriptions of pursuer behavior model the data available to ad-hoc networks of non-localized
sensors, to which coordinate geometry is unavailable; such descriptions suggest methods
from topology [1, 9, 10].

The first topological criterion for evasion is based on the homologies of the fibers Ct
relative their topological boundaries in Et [9]. Assume for convenience that coverage gaps
are uniformly bounded in the sense that there is a sufficiently large, closed ball B ⊂ Rn
such that Rn−B ⊂ Ct at each time t ∈ R. The topological boundary F of this ball B in
Rn encircles all potential losses of coverage like a fence; this fence naturally determines a
homology class [F ] in Hn−1C. The homological criterion says that if there is an evasion
path, then [F ] 6= 0. This criterion for evasion, while necessary, is not sufficient [Figure 1].

Figure 1. Three coverage pairs over R, all planar examples (n = 2). Eva-
sion is possible in the first case only [left]. The simple homological criterion
rules out evasion in the second [middle], but not third [right], case.

Another topological criterion for evasion follows from Alexander Duality (classical or
parametrized [16]), a duality between the cohomology of the fiberwise coverage regions Ct
and the homology of the complementary coverage gaps Et−Ct [1]. One such criterion states
that if there is an evasion path, then there exists a persistent barcode in the zigzag persistent
homology [7] of C. This criterion for evasion, while necessary, is not sufficient [Figure 1,
right]. The main problem, as observed in [1], is that the fiberwise homotopy type of C fails
to detect enough information about the embedding C ↪→ E, and hence E−C, to deduce
evasion: see Figures 5 and 6.

A necessary and sufficient refinement of the previous criterion exists for the special case
where n = 2 and Ct is a connected union of balls at all times t that only changes topology
at finitely many points t in time [1]. In this case, an algorithm iteratively constructs an
evasion path at each time t of topology change (via a Reeb graph) based on the affine and
orientation structures Ct inherits from Rn. An open question in that paper is whether there
is a generalization that does not require information about affine structure.
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1.2. Contributions. We give a necessary, sufficient, and tractable cohomological criterion
for evasion that affirmatively answers this open question in a general case and arbitrary
dimension. The (co)homology theories of parametrized spaces used in this paper, at least in
the cases considered in the main results, are equivalent to real Borel-Moore homology having
proper supports and real Čech cohomology. A positive cone +HqP inside the homology HqP
of a space P over Rq, reminiscent and sometimes a special case of cones in the homology of
a directed space [12], encodes some information about the parametrization. A positive cone
+HkP inside the cohomology HkP of a space P over Rq, whose fibers are endowed with
the additional structure of pro-objects in a category of oriented k-manifolds, encodes some
information about those orientations. The main result is the following positive variant of
Alexander Duality.

Theorem 4.1. For coverage pair (E,C) over Rq with dimE > 2 and 0 6 q 6 dimE − 2,

+HdimE−q−1C ∼= +Hq(E−C)

Along the way, we investigate properties of positive (co)homology. We show that pos-
itive homology: (1) preserves certain limits [Lemma 2.7] and colimits [Lemma 2.8] and
(2) characterizes the existence of sections [Lemmas 2.9, 2.10] in degree 1. We define pos-
itive cohomology in stages, for: (1) oriented manifolds-with-compact-boundaries; then (2)
pro-objects thereof; and finally (3) parametrized spaces whose fibers have the additional
structure of pro-objects of oriented manifolds-with-compact-boundaries. Consequently, we
conclude a complete criterion for evasion by considering Positive Alexander Duality in ho-
mological degree q = 1.

Corollary 4.2. For a coverage pair (E,C) over R with dimE > 2,

(1) +HdimE−2C 6= ∅

if and only if the restriction E−C → R of the projection E → R admits a section.

This complete criterion for evasion assumes a minimum of information about the coverage
region. Unlike [1], we neither assume that our coverage region has the homotopy type
of a CW complex, nor restrict the ambient spatial dimension of the region to dimEt =
dimE−1 = 2, nor restrict the manner in which the topology of our coverage region changes
in time. In addition, the criterion is only based on the Čech cohomology and orientation
data of the coverage region.

Moreover, this evasion criterion is efficiently computable. The positive cohomology of
a coverage region over R decomposes as the global sections of a sheaf of local positive
cohomology cones.

Corollary 5.2. For coverage pair (E,C) over R and collection O of open subsets of R,

+HdimE−2C = lim
U∈O

+HdimE−2CU .

Abstractly, the global sections of a cellular sheaf of finitely generated, positive cones over
a finitely stratified space is computable as a linear programming problem. We can therefore
demonstrate the tractability of the evasion criterion with a prototypical pair of examples in
§6.

We use the language of sheaf theory throughout, as part of a broader goal in introduc-
ing sheaf-theoretic methods in applied and computational topology. Below we fix some
conventions in notation and terminology regarding sheaves, spaces, and cones.
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1.2.1. Topology. Let X denote a space. We write clo(X) and com(X) for the respective sets
of closed and compact subsets of X. We write π0X for the set of path-components natural
in X. For B ⊂ X and a collection Ψ of subsets of X, we write Ψ|B and Ψ ∩B for

Ψ|B = {A ∈ Ψ | A ⊂ B}, Ψ ∩B = {A ∩B | A ∈ Ψ}

A manifold-with-compact-boundary is a manifold-with-boundary whose boundary is com-
pact. Let Mn denote the category of non-compact, connected, oriented manifolds-with-
compact boundary and oriented embeddings ψ : M → N between such oriented manifolds
with ψ(M) ⊂ N−∂N .

A space over X is a space P equipped with a map τP : P → X. A section to a space P
over X is a section to τP . For in inclusion ι : U ↪→ V of spaces and a space P over V , we
write PU for the space over U defined by the pullback square

PU //

τPU

��
J

P

τP

��
U

ι
// V

A pair of spaces over X is a pair (P,Q) of spaces over X with Q a subspace of P and τQ the
pullback of τP along inclusion Q ↪→ P . A space P over X is proper if τP is proper. A cube
complex over Rq is a locally finite union P of isothetic (axis-aligned) compact hyperrectangles
in Rn+q with τP projection onto the last q coordinates. For a space P over X, let secP denote
the sheaf on X sending each open U ⊂ X to the set of sections to PU .

1.2.2. Sheaves. Fix a space X and a collection Ψ of closed subsets of X closed under inter-
section. Let ConstX;V denote the constant sheaf on X taking values in an object V . Let
F(A) denote the pullback of a sheaf F on X to A ⊂ X. Let ΓF denote the global sections
of a sheaf F .

We fix some constructions and notation for Abelian sheaf theory; refer to [5] for details.
Consider a sheaf F of real vector spaces on X. Let ΓΨF denote the global sections of F
whose supports lie in the collection Ψ of subsets of the base space. For an injective resolution
I• of F , we write HΨ

• and H•Ψ for

HΨ
• F = H•ΓΨ(U 7→ (Γcom|UI•)∗)

H•ΨF = H•ΓΨI•,

For simplicity, we do not define relative sheaf (co)homology and instead restrict our
attention to pairs (X,A) on which the relative theory reduces to an absolute theory. Fix
closed A ⊂ X and suppose Ψ is a collection of paracompact subsets of X which each admit
a neighborhood in X which is an element in Ψ. There exists a long exact sequence

(2) · · · → H•ΨF → H•Ψ∩AF(A)
∂•−→ H•+1

Ψ|X−AF(X−A) = H•+1
Ψ|X−AF → · · · ,

[5, Proposition 12.3]. If additionally X has finite cohomological dimension (in the sense
that the compactly supported cohomology of open subsets of X vanishes for large enough
degrees [5]), then there exists a long exact sequence

(3) · · · → HΨ
• F → H

Ψ∩(X−A)
• F(X−A) = H

Ψ∩(X−A)
• F ∂•−1−−−→ H

Ψ|A
•−1F(A) → · · ·

[5, (95),§13.2]. In both exact sequences, the unlabelled arrows are evident inclusions and
restrictions.
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For X an oriented n-manifold in Ψ, we write ∆ for Poincaré Duality

∆ : Hn−p
Ψ F = HΨ

p F , q = 0, 1, . . . , n

1.2.3. Cones. In this paper, a cone is a subset of a real vector space V closed under vector
addition and closed under scalar multiplication by R+, the positive real numbers. A cone
K in V is positive if K ∩ −K = ∅. Let Cones denote the category whose objects are cones
and whose morphisms are functions between cones that are restrictions and corestrictions
of linear maps between vector spaces generated by the cones.

Example 1.1. For real vector spaces V and W ,

Cones(V,W )

is the set of linear maps V → W and hence can be regarded itself as a real vector space
with vector addition and scalar multiplication defined point-wise.

For cones V +,W+ in real vector spaces V,W with V generated by V +, we regard

(4) Cones(V +,W+) ⊂ Cones(V,W )

as a cone inside the vector space Cones(V,W ) under the injection Cones(V +,W+) →
Cones(V,W ) sending a cone map to its unique linear extension.

1.3. The Formal Problem. The setting for pursuit-evasion in this paper is a coverage
pair.

Definition 1.2. A coverage pair over a space T is a pair (E,C) of spaces over T such that:

(1) E is a real vector bundle over T ; and
(2) C is a closed and connected subspace of E; and
(3) The closure of E−C in E is proper.

We make some immediate remarks on the definition. Firstly, we stress the connectedness
implicit in the definition of a coverage pair: as noted in [1], this is a necessary condition for
evasion criteria. Secondly, the ambient space E of a coverage pair (E,C) over a contractible
space T is homeomorphic to Rn×T ; for the case T = Rq, we always take E to be an oriented
manifold. Thirdly, the motivating example of T is T = R — the setting for temporal evasion
problems. To the extent possible, we develop our machinery for more general base spaces
with an eye towards future uses in evasion-type problems over directed or partially-directed
parameter spaces or state spaces.

We wish to regard the fibers of C as oriented. Hence we generalize orientations for general
spaces as the structure of pro-objects in a category of oriented manifolds. We identify each
fiber Ct of a coverage region C in a coverage pair (E,C) over T with the pro-object in
MdimEt

represented by the inverse system of closed neighborhoods of Ct in Et which are
objects in MdimEt

.

2. Homology

In this section, let P denote a space with finite cohomological dimension over another
space such that each proper subspace of P is paracompact and admits a proper neighborhood
in P . A motivating example of P is the complement E−C of the coverage region in the
ambient space of a coverage pair (E,C) over Euclidean space. For each such P , let prop(P )
denote the collection of proper subspaces of P and define

H•P = H
prop(P )
• (ConstP ;R).

(This variant of homology differ subtly from the usual singular and Borel-Moore theories.)
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Example 2.1. For a cube complex P over R and real numbers x < y,

H•P(x,y) = Hsing
• (P[x,y], P{x, y}),

where Hsing
• denotes real singular homology.

The construction H• is contravariant in maps of the form PU ↪→ P , for U an open
subspace of the codomain of τP , and covariant in maps of the form PA ↪→ P , for A a closed
subspace of the codomain of τP . For U an open subspace of the space to which P maps,
the long exact sequence (3) specializes to the following long exact sequence, in which the
unlabelled arrows are induced from inclusions and restrictions.

· · · → HkPU
∂k−→ Hk−1(P−PU )

Hk−1(P−PU ↪→P )−−−−−−−−−−−→ Hk−1P → · · ·

+

+

Figure 2. Non-Positive Homology Class The path at the core of the
solid tube P over R represents an element in H1P that does not lie in the
positive cone +H1P because the path intersects a fiber negatively.

2.1. Positive homology definition. Our goal is to define a positive homology that re-
members directedness: see Figure 2. To that end, we observe the following convoluted
reinterpretation of ordinary H0 of a space X over a point:

H0X = colimcom K⊂XCones(Γ(ConstK;R),R).

This points to a simple modification for definition positive homology in degree zero:

Definition 2.2. Define +H0P to be the cone

+H0P = colimcom K⊂PCones(Γ(ConstK;R+),R+)

natural in spaces P (over R0).

Recall that we can regard +H0P to be a cone inside H0P by (4).

Example 2.3. For a CW complex P over a point, +H0P is the positive cone generated by

π0P ⊂ R[π0P ] = H0P.

and hence remembers unstable homotopical information about P inside the stable homo-
topical invariant H0P .

We may then define positive homology in arbitrary degree over more general base spaces
(open subsets of a directed Rq) inductively, using pullback squares. Given a space P over
an open U ⊂ Rq, we write Pt for the space over Rq−1 such that τPt

is the composite

P{t}×Rq → {t} × Rq−1 → Rq−1
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of a restriction and corestriction of τP with projection {t} × Rq−1 → Rq−1 onto the last
q − 1 factors and P(−∞,t) for PU∩((−∞,t)×Rq−1).

Definition 2.4. For positive integers q, define +HqP by the pullback square

(5) +HqP //

��
J

∏
t

+Hq−1Pt

��
HqP ∏

tHqP
Hq(P(−∞,t)⊂P )

−−−−−−−−−−→HqP(−∞,t)

∂q−→Hq−1Pt

// ∏
tHq−1Pt,

where t denotes an element in R such that {t} × Rq−1 ∩ U 6= ∅, natural in spaces P over
open U ⊂ Rq, in Cones.

Example 2.5. We are particularly interested in +H1. In this case, (5) is easy to interpret for
P an open subspace of a vector bundle over R: a positive homology class is represented by a
locally finite singular 1-cycle, whose 1-chains are oriented in the sense that their composites
with τP are non-decreasing maps I→ R. Figure 3 illustrates four examples of +H1 of a 1-d
space over R.

(a)

(b)

(c)

(d)

Figure 3. Positive 1-homology cones: Four simple examples of 1-d
spaces over R. (a) H1

∼= R and +H1
∼= R+. (b) Here, also, H1

∼= R, but,
as there is a reversal in the path, +H1 = ∅. (c) With the wedged circle,
H1
∼= R × R and +H1

∼= R+ × R. (d) In this last example, there are four
distinct sections over the base space and +H1 is a cone with four vectors
as a basis. However, H1

∼= R3, since only three are linearly independent.
Thus +H1 is a cone in R3 generated by four vectors.

Example 2.6. For the space B over Rq such that τB = 1Rq , +HqB = R+.

A homology cone is always positive. Hence we call +H•P the positive homology of P .
Positive homology inherits from H• a covariance in closed inclusions of spaces over R and
contravariance in inclusions of the form PU ↪→ PV for spaces P over R and open U ⊂ V ⊂ R.
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2.2. Positive homology limits and colimits. In the most relevant case of degree one
homology of spaces over R, +H1 defines a sheaf over R.

Lemma 2.7. For a space P over R and collection O of open subsets of R,

+H1P = lim
U∈O

+H1PU

Proof. Let +H0,H0,
+H1,H1 be the presheaves on R naturally defined by

+H0(U) =
∏
x∈U

+H0Px,
+H1(U) = +H1PU ,

H0(U) =
∏
x∈U

H0Px, H1(U) = H1PU .

Let ∂ denote the sheaf map H1 → H0 such that

∂U =
∏
x∈R

(H1PU∩(−∞,x)
∂1−→ H0Px) ◦H1(PU∩(−∞,x) ⊂ P ).

There exists an isomorphism of presheaves

(6) H1 ×∂ +H0
∼= +H1.

The presheaves +H0 and H0 are sheaves because products commute with limits. The
presheaf H1 is a sheaf by an application of the First Fundamental Theorem of Sheaves [5,
Theorem IV.2.1]. Hence the left side of (6), and hence also the right side of (6), is a sheaf
because section-wise limits of sheaves are sheaves. �

Lemma 2.8. Consider an open subspace P of a vector bundle over R. Then

(7) +H1P = colimK
+H1K,

where the colimit is taken over all proper cube complexes K ⊂ P over R.

Proof. We take P to be an open subspace of Rn+1, with τP projection onto the last coor-
dinate, without loss of generality by the triviality of all bundles over R. We conflate H•
with real singular homology on locally contractible subspaces of P , and in particular write
H1(Px,Kx) to denote the relative real singular homology of the pair (Px,Kx) for K a cube
complex.

Consider a proper cube complex L ⊂ P over R. It suffices to construct a proper cube
complex M ⊂ P over R containing L such that for each x ∈ R, the restriction of (Mx ⊂
Px)∗ : H0Mx → H0Px to the image of (Lx ⊂ Mx)∗ : H0Lx → H0Mx is injective. For then
the top horizontal arrow in (5) (for the case U = R) restricts and corestricts to a dotted
arrow making the diagram

+H1P //

��
J

colimproper K⊂P
∏
x∈R

+H0Kx

��
colimproper K⊂PH1K // colimproper K⊂P

∏
x∈U H0Kx,

whose vertical arrows are inclusions and whose bottom horizontal arrow is a corestriction
of the bottom horizontal arrow in (5) (for the case U = R), commute and hence define
a pullback square, because proper cube complexes inside P are cofinal among all proper
subspaces of P . The lemma would then follow because pullbacks commute with filtered
colimits in Cones.
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Consider x ∈ R. The image of ∂1 : H1(Px, Lx) → H0Lx is finitely generated by Lx
compact and hence the image of relative 1-homology classes supported on a compact set
of the form Fx × {x} ⊂ Px, which we can take to 1) contain Lx by Lx compact and 2)
be a finite union of isothetic, compact hyperrectangles because such hyperrectangles form
a neighborhood basis of each point in Px. There exist a compact neighborhood Ix of x in
R such that Fx × Ix ⊂ P by each point in P admitting a neighborhood basis of compact
hyperrectangles.

Each closed cell c ⊂ R admits a finite cover by sets of the form Ix for x ∈ c by c compact.
A union M of sets of the form Ix × Fx, over the sets Ix in all such finite covers over all
closed cells in R, defines a proper cube complex containing L. Inside

(8) H1(Px, Lx)
∂1 // H0Lx

H0(Lx⊂Mx)

��

(Lx↪→Px)∗ // H0Px

H1(Mx, Lx)
H0(Lx↪→Mx)◦∂1

//

H1((Px,Lx)⊂(Px,Mx))

OO

H0Lx
H0(Mx⊂Px)

// H0Mx

OO

the left vertical arrow is surjective by our choice of Mx and hence the image of the top
left horizontal arrow coincides with the image of the bottom left horizontal arrow, hence
the kernel of the top right horizontal arrow coincides with the kernel of the bottom right
horizontal arrow. Hence the restriction of the rightmost vertical arrow to the image of the
bottom right arrow is injective. �

2.3. Detecting sections. Sections to a space P over Rq determine positive elements in
HqP .

Lemma 2.9. For a space P over Rq admitting a section, +HqP 6= ∅.

Proof. A section to P defines a closed inclusion B → P of spaces over Rq, with B the space
over Rq defined by τB = 1Rq , and hence induces a cone map +HqB → +HqP with domain
isomorphic to R+ and hence non-empty. �

A converse holds for homological degree 1, under some point-set conditions.

Lemma 2.10. An open subspace P of a vector bundle over R admits a section if +H1P 6= ∅.

Proof. We take P to be an open subspace of the bundle Rn+1 over R, whose bundle map is
projection onto the last factor, without loss of generality by the triviality of vector bundles
over R.

Suppose +H1P 6= ∅. There exists a proper cube complex K ⊂ P such that +H0K 6= ∅
[Lemma 2.8]. We can endow R with the structure of a CW complex such that Ke is the
product of a compact hyperrectangle with e, for each open edge e ⊂ R, by K a cube complex.
Let σt be the composite linear map

H1K
H1(K(−∞,t)⊂K)
−−−−−−−−−−−→ H1K(−∞,t)

∂1−→ H0Kt.

Commutative squares of the following form, where c denotes a closed cell in R having
a point tc in the associated open cell, define the dotted arrows inside of them because the



10 ROBERT GHRIST AND SANJEEVI KRISHNAN

right vertical arrows are isomorphisms by our choice of CW structre on R.

+H0Ktc R+[π0Ktc ]

+H1K

σtc

OO

// R+[π0secK(c)],

R+[π0(s7→s(tc))]

OO

These dotted arrows define the components of a cone +H1K → R+[π0secK(−)] to the
functor R+[π0secK(−)] from the poset of closed cells in R, reverse ordered by inclusion,
to Cones. Hence limR+[π0secK(−)] 6= ∅, hence limπ0secK(−) 6= ∅ because R+[−] is a
subfunctor of a limit-preserving functor, and hence ΓsecK 6= ∅ [Lemma A.1]. �

3. Cohomology

For each paracompact space X, take H•X to mean the sheaf cohomology

H•X = H•clo(X)(ConstX;R).

Example 3.1. The construction H• is equivalently real Čech cohomology.

The construction H•X is contravariant in spaces X. For a paracompact space X and
closed A ⊂ X, the long exact sequence (2) specializes to the following long exact sequence,
in which the unlabelled arrows are induced from inclusions and restrictions.

(9) · · · → H•X → H•(X−A)
∂•−→ H•+1A→ · · · ,

For each cofiltered system Xi of paracompact spaces and embeddings between them,

colimiH
n−1Xi = Hn−1 lim iXi

where the limit above is taken in the category of spaces and maps between them [5, Theorem
10.6].

Positive cones on the cohomologies of oriented manifolds-with-compact-boundary encode
information about those orientations as follows.

Definition 3.2. Define +Hn−1M by the pullback square

+Hn−1M //

��
J

+H0∂M

��
Hn−1M

∆◦Hn−1(∂M⊂M)

// H0∂M,

where the right vertical arrow is inclusion, natural in non-compact, connected, oriented
n-manifolds-with-compact-boundary.

It is straightforward to check that +Hn−1 is contravariant in morphisms in Mn. Moreover,
+Hn−1 sends cofiltered limits in Mn to colimits in Cones. Thus the following extension of
+Hn−1 is well-defined.

Definition 3.3. Define +Hn−1M as the following colimit natural in pro-objects M in Mn.

+Hn−1M = colimi
+Hn−1Mi.

We thus extend the definition of positive cohomology one final time as follows.
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Definition 3.4. Define +Hn−1P by the pullback square

+Hn−1P //

��
J

∏
x∈T

+Hn−1Px

��
Hn−1P ∏

x∈T H
n−1(Px⊂P )

// ∏
x∈T H

n−1Px,

where the right vertical arrow is inclusion, natural in spaces P over T whose fibers have the
extra structure of decompositions, in the category of spaces, as limits of pro-objects in Mn.

The cone +Hn−1P inside Hn−1 limi Pi is always positive. Hence we call +Hn−1P the
positive cohomology of P .

Figure 4. Cohomological counterparts to +H0,
+H1: In the manifold-

with-boundary M , left, a compactly supported 1-cohomology class is posi-
tive if and only if its restriction to the boundary is a positive multiple of the
orientation class of that boundary. In the space P over R shown [middle],
a 1-cohomology class is positive if its restriction to each fiber is positive
[right].

4. Alexander Duality

Alexander Duality AD is an isomorphism defined by the commutative diagrams

HdimE−q−1C
AD //

∂n−1

��

Hq(E−C)

HdimE−q(E−C)
∆

// Hq(E−C)

of isomorphisms, for q = 0, 1, 2, . . . ,dimE − 2, natural in coverage pairs (E,C). Alexander
Duality restricts and corestricts to an isomorphism of positive cones.
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Theorem 4.1. For coverage pair (E,C) over Rq with dimE > 2 and 0 6 q 6 dimE − 2,

+HdimE−q−1C ∼= +Hq(E−C)

along a restriction and corestriction of Alexander Duality.

Proof. We induct on q.
Consider the base case q = 0. It suffices to consider the subcase q = and C is an

oriented dimEt-submanifold-with-compact-boundary. The more general case q = 0 follows
from taking the colimit, over neighborhoods M of C in E that fall under the aforemntioned
special case, of positive Alexander Dualities of the form +HdimE−1M ∼= +H0(E−M) by
definition of +HdimE−1C and H0 compactly supported.

Consider the following commutative diagram of solid arrows, in which the top left square
is a pullback square and ιX denotes inclusion +H0X ↪→ H0X.

(10) +HdimE−1C
α+

//

��

+H0∂C
β+

//

∆−1◦ι∂C

��

+H0(E−C)

ιE−C

��
HdimE−1C

HdimE−1(∂C⊂C)

//

∂dimE−1

��

HdimE−1∂C

∂dimE−1

��

β // H0(E−C)

HdimE(E−C) HdimE(E−C)
∆

// H0(E−C),

The composite of the middle row is Alexander Duality by definition. Hence Hn−1(∂C ⊂
C) is injective. Moreover, the sequence

Hn−1C
Hn−1(∂C⊂C)−−−−−−−−−→ Hn−1∂C

∂n−1

−−−→ Hn
clo(C)|C−∂CConstC−∂C;R

is exact and its last term is trivial by the equalities

Hn
clo(C)|C−∂CConstC−∂C;R = H

clo(C)|C−∂C
0 ConstC−∂C;R = 0,

the first from Poincaré Duality and the second from C − ∂C a filtered union of elements in
clo(C)|(C−∂C) on which H0 is trivial [5, Exercise 26]. Then Hn−1(∂C ⊂ C), and hence
also α+, are isomorphisms.

The arrow β, whose composite with the isomorphism Hn−1(∂C ⊂ C) is an isomorphism
AD : Hn−1C → H0(E−C), is an isomorphism. Moreover, β sends an orientation class on a
connected component represented by x to the path-component in E−C whose closure in E
contains x. Hence β∆−1ιC restricts and corestricts to the bijection

π0∂C ∼= π0(E−C),

and hence the isomorphism β+ in (10). Hence β+α+, a restriction and corestriction of AD,
is an isomorphism.

Fix positive integer Q. Inductively assume the theorem holds for the case q = Q. Now
consider the case q = Q+ 1.
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Consider the following commutative diagram

(11) +Hn−1C //

��

##

∏
x

+Hn−1Cx

∼=

&&

��
Hn−1C

AD

##

∏
xH

n−1(Cx⊂C)

// ∏
xH

n−1Cx

&&

+Hq(E−C) //

��

∏
x

+Hq−1(Ex − Cx)

��
Hq(E−C) // ∏

xHq−1(Ex − Cx)

of solid arrows, where the front and back squares are pullback squares, the vertical arrows are
inclusions, and the right arrow in the bottom square is defined by Alexander Dualities. There
exists a dotted isomorphism making the side square commute by the inductive assumption.
The bottom square in (11) commutes by a diagram chase and suitably compatible choices
of orientations on E and its fibers. Hence there exists the desired dotted isomorphism in
(11) by universal properties of pullbacks. �

The tools are now assembled to infer the complete criterion for evasion. The main theorem
of this paper states that the positive cohomology +Hn−1C is the complete obstruction to
evader capture – that an evasion path exists if and only if this cohomology is non-empty.

Corollary 4.2. For a coverage pair (E,C) over R with dimE > 2,

(12) +HdimE−2C 6= ∅

if and only if the restriction E−C → R of the projection E → R admits a section.

Proof. Observe that

+HdimE−2C 6= ∅ ⇐⇒ +H1(E−C) 6= ∅ Theorem 4.1

⇐⇒ E−C admits a section Lemmas 2.10, 2.9

�

5. Computation

We decompose the requisite calculation of positive cohomology in the criterion as a limit
of local positive cohomology cones. Such a limit is naturally described as the global sections
of a cellular sheaf. A cellular sheaf of cones on R is a functor from the poset of cells in
a stratification of R, into vertices and edges, to Cones. We notate the global sections of a
cellular sheaf H of cones on R as ΓH; formally

ΓH = lim
c
H(c),

where the limit, indexed over all vertices and edges of R, is taken in Cones. Cellular sheaves
are well-suited to applications involving computation, such as the cellular complexes used
to compute ordinary homology; see, e.g., [8, 11, 20].
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Example 5.1. For a fiberwise oriented space P over R equipped with a stratification,

+HnPst(−)

defines a cellular sheaf of cones on R, sending each cell c in R to the positive cohomology
+HnPst(c) of the fiberwise oriented space Pst(c) over the open star of c in R and sending each
inclusion v 6 e of vertex into edge to an appropriate restriction map of cohomologies.

The criterion for evasion decomposes as the global sections of a cellular sheaf of local
positive cohomologies.

Corollary 5.2. For coverage pair (E,C) over R and collection O of open subsets of R,

+HdimE−2C⋃
O = lim

U∈O

+HdimE−2CU .

Proof. There exist natural isomorphisms

+Hn−1C ∼= +Hn−1(E−C) Theorem 4.1

∼= lim
U

+H1(EU−CU ) Lemma 2.7

∼= lim
U

+Hn−1CU , Theorem 4.1.

�

Formulated in the language of sheaves,

+Hn−1C = Γ+Hn−1Cst(−).

Corollary 5.2 is the starting point for local-to-global calculations of the positive cohomo-
logical criterion. This allows us to break down +Hn−1C into three calculations.

(1) the cohomology cellular sheaf Hn−1Cst(−)

(2) the positive cohomology cellular subsheaf +Hn−1Cst(−)

(3) the global sections Γ+Hn−1Cst(−)

The first calculation is purely classical. The second calculation involves checking which
local sections in Hn−1(U) restrict to orientation classes on connected components of ∂Ct
for all open stars U in a stratification of R and all t ∈ U with Ct a connected manifold-
with-compact-boundary. The third calculation is nontrivial. In this section, we show how
to reduce it to a simple linear program.

Proposition 5.3. For a cellular sheaf H of cones on R equipped with a stratification,

(13) ΓH =
∏
v

H(v)∩ ker

(∏
v

H(v)±
(φv)v 7→(H±(e−6e)(φe− )−H±(e+6e)(φe+

))e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∏
e

H(e)±

)
,

where v ranges over all vertices and e ranges over all precompact edges in R, and e−, e+

denote the vertices of a precompact edge in R having boundaries e− < e+.

Otherwise said, global sections (H0) consist of positive local sections (data over v) which
agree when restricted to data over incident edges, using the kernel to measure agreement.
This is a linear-algebraic view of why the evasion criterion of this paper works whereas
others do not: the positive cohomology sheaf +Hn−1C, instead of computing an Abelian
kernel (as in ordinary cohomology), computes the positive kernel of a difference of two maps
on positive cones.
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This prompts an algorithmic approach to computation in the cellular setting. Let H be a
sheaf of positive, polyhedral cones in finite dimensional real vector spaces and maps between
such cones. Fixing positive bases for the stalks of H± over vertices and edges, the map

(14)
∏
v

H±(v)→
∏
e

H±(e),

in (13) yields a real matrix (a cellular coboundary matrix). The entries of this matrix are
differences, and thus may be positive or negative. However, to contribute to H0, the kernel
must have nontrivial intersection with

∏
vH(v), meaning that one must compute the kernel

subject to a sequence of inequalities.
Computing ΓH is therefore reduced to the question of whether a known subspace of a

real vector space (the kernel of (14)) intersects a positive cone in that vector space. By
normalizing the cone to, say, unit `1 distance to the origin, finding a nonzero element of
ΓH is expressible as a simple linear programming problem. Assuming a fixed bound on
the complexity of the cones (the number of constraints), the solution to this problem via
standard methods is linear in the number of variables [17], in this case, the sum of the
number of generators of H(vi) over all i.

6. Planar examples

We give a computation of the criterion for examples in the planar case (n = 2). The two
principal examples from [1] alluded to in §1 are the simplest examples with which to show
how +H1 determines evasion. Consider the coverage regions C over R illustrated in Figures
5 and 6. Stratify R as shown in a manner compatible with the projection map of C to R:
this decomposition has four vertices {vi}41 and five edges {ej}51 with e1 and e5 extending to
±∞.

v
1

v
2

e
2

e
1

e
3

e
4

e
5v

4
v
3

Figure 5. A simple planar case in which an evasion path exists. Shown
is a parameterized space of (unbounded, shaded) sensed regions, Ct and
(bounded) evasion sets as a function of time.

With this subdivision of R, the associated sheaves are cellular, with stalks computed in
terms of local sections. (Specifically, the stalk over a vertex vi equals the value of the sheaf
on the open star st(vi).) In both cases, the dimension of the stalks of +H1 are given as
follows:

• There is one generator over e1 and e5; two over e2 and e4; and three over e3.
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v
1

v
2

e
2

e
1

e
3

e
4

e
5v

4
v
3

Figure 6. The analogue of Figure 5 for which no evasion path exists.

• There is one generator over v1 and v4; and three over v2 and v3.

Label all these generators by the cells in the time axis, with superscripts where ”t” connotes
a generator associated to the top hole, ”b” the bottom, and ”m” the middle. In all cases,
the cones determined by +H1 are positive orthants in Rk for k the number of generators of
the stalk.

All the induced maps from stalks over vi to stalks over ei and ei+1 are either trivial
inclusions or projections given by correspondence of generators, and it is in this regard
that the sheaves for Figures 5 and 6 differ. The global criterion Γ +H1 is computed via
Equation (13) using these restriction maps with the appropriate signs. Note that, since we
are computing cellular cohomology, we must zero-out all the maps to e1 and e5, since these
have noncompact closure in R, as per the discussion above. We present this data in the
form of a matrix with entries of the form a+

ij − a
−
ij , so as to see the explicit dependence on

whether the term comes from the left or right in time. For the system of Figure 5, this
matrix is:

(15)
∏
v

+H1(δ+
v )−+H1(δ−v ) =

vt1 vt2 vm2 vb2 vt3 vm3 vb3 vb4
et2 0−1 1−0 1−0 0−0 0−0 0−0 0−0 0−0
eb2 0−0 0−0 0−0 1−0 0−0 0−0 0−0 0−0
et3 0−0 0−1 0−0 0−0 1−0 0−0 0−0 0−0
em3 0−0 0−0 0−1 0−0 0−0 1−0 0−0 0−0
eb3 0−0 0−0 0−0 0−1 0−0 0−0 1−0 0−0
et4 0−0 0−0 0−0 0−0 0−1 0−0 0−0 0−0
eb4 0−0 0−0 0−0 0−0 0−0 0−1 0−1 1−0

One computes that +H1C 6= ∅ as follows. The kernel of (15) is one-dimensional with a
positive generator given by the sum of generators vt1 + vm2 + vm3 + vb4. These generators, of
course, correspond to the dual evasion path sequence easily observed from Figure 5. The co-
homology +H1C is thus isomorphic to an open ray. In this example, one can observe directly
that the kernel intersects the positive orthant, and no linear programming is necessary. A
larger, more opaque example would lead to more complex computation.
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For Figure 6, the positive-negative coboundary matrix on the sheaf +H1 is:

(16)
∏
v

+H1(δ+
v )−+H1(δ−v ) =

vt1 vt2 vm2 vb2 vt3 vm3 vb3 vb4
et2 0−1 1−0 0−0 0−0 0−0 0−0 0−0 0−0
eb2 0−0 0−0 1−0 1−0 0−0 0−0 0−0 0−0
et3 0−0 0−1 0−0 0−0 1−0 0−0 0−0 0−0
em3 0−0 0−0 0−1 0−0 0−0 1−0 0−0 0−0
eb3 0−0 0−0 0−0 0−1 0−0 0−0 1−0 0−0
et4 0−0 0−0 0−0 0−0 0−1 0−1 0−0 0−0
eb4 0−0 0−0 0−0 0−0 0−0 0−0 0−1 1−0

One computes that this matrix has, as before, one-dimensional kernel; however, the
generator of this kernel is

vt1 + vt2 + vt3 − vm3 − vm2 + vb2 + vb3 + v4
b ,

which has both positive and negative terms. The intersection of this kernel with the open
positive orthant is empty; therefore, +H1C = ∅, and there is no evasion path.

7. Concluding remarks

(1) For genuine applications to pursuit problems, much of the structure here introduced
is adaptable. For example, the presence of obstacles in the free space (an important
consideration in practice) is admissible by including the obstacle regions within the
coverage domain. The use of a sensor network to determine the coverage region
(by means of, say, a Vietoris-Rips complex) may be likewise permissible, if the
relevant cohomology and orientation data are discernible. This is an interesting
open problem.

(2) This work has considered only the connectivity data about the evasion paths. The
full space of evasion paths may have interesting topological features beyond connec-
tivity alone. There would appear also to be virtue in augmenting π0 with additional
data about evaders: number, identity, team-membership, or other features, much in
the same way that feature vectors are used in target tracking. It is to be suspected
that sheaf constructions permit a great deal of such information to be encoded.

(3) The use of linear programming to compute the positive cohomology in this paper is
perhaps the beginnings of a broader set of techniques in computational equalizers
and what we would call homological programming.

(4) Finally, the utility of directed co/homology appears to be relevant to other applica-
tions in which directedness is crucial, including Bayesian belief networks.

Appendix A. Existence of sections

We give homotopical criteria for open subspaces of vector bundles over R to admit sec-
tions.

Lemma A.1. Consider the following data.

(1) a CW structure on R; and
(2) an open subspace P of a Euclidean space over R

The natural function secP (R) → limc π0secP (c), where c denotes a closed cell in R, is
surjective.
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Proof. Fix a natural number n. We take P to be an open subspace of Rn+1 such that τP
is the projection onto the last coordinate. Let ξ be projection P → Rn onto the first n
coordinates. We take the vertices of R to be the integers without loss of generality.

Let i denote an integer, and consider si ∈ secP ([i, i+ 1]) for each i and path γi : si−1(i) ;
si(i) for each i. It suffices to construct s ∈ secP (R) with s|(i,i+1) ∼ si for each i.

Fix i.
The subspace im γi ⊂ P admits an open cover O consisting of open hyperrectangles

because Rn, and hence also its open subspace P , admit open bases consisting of open
hyperrectangles. We can take O to be finite by [i, i + 1] and hence im γi compact. Hence⋂
U∈O τP (U) is an open neighborhood in R of i, and hence contains a subset of the form

[i, i+ 2εi] for 0 < εi < 1/2. Hence

P ⊃
⋃

O ⊃
⋃
V ∈O

ξ(V )× τP (V ) ⊃
⋃
V ∈O

ξ(V )×
⋂
U∈O

τPU ⊃ ξ(im γi)× [i, i+ 2εi]

Hence we can define a section s : R→ P to P by

s(x) =


(ξ(γi((x−i)/εi), x), x ∈ [i, i+ εi]

(ξ(si(2x− 2εi − i)), x), x ∈ [i+ εi, i+ 2εi]

si(x) x ∈ [i+ 2εi, i+ 1]

For each i ∈ Z, s|[i,i+1] ∼ si along the homotopy hi defined by

hi(x, t) =


(ξ(γi(1− t+ (x−i)/εi), x), x ∈ [i, i+ tεi]

(ξ(si(2x− 2tεi − i)), x), x ∈ [i+ tεi, i+ 2tεi]

si(x) x ∈ [i+ 2tεi, i+ 1]

�
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