ON THE EXISTENCE AND CLASSIFICATION OF DIFFERENTIABLE EMBEDDINGS

ANDRÉ HAEFLIGER and MORRIS W. HIRSCH

(Received 3 January 1963)

§1. INTRODUCTION

LET *M* be a compact *k*-connected differential *n*-manifold without boundary. Our object is to prove, under suitable restrictions on *k* and *n*, an existence theorem for embedding *M* in the Euclidean space R^{2n-k-1} (Theorem (2.3)), and a classification theorem for isotopy classes of embeddings of *M* in R^{2n-k} if *M* is orientable (Theorem (2.4)). This is done by first proving Theorems (2.1) and (2.2) which reduce the embedding problems to questions involving immersions, and then applying the theory of immersions [2].

A particular case of (2.3) is the following:

THEOREM (1.1). If n > 4, M is embeddable in \mathbb{R}^{2n-1} if and only if its normal Stiefel-Whitney class \overline{W}^{n-1} vanishes.

Massey [5, 6, 7] has shown that if $\overline{W}^{n-1} \neq 0$, then M is non-orientable and n is a power of 2. Thus we obtain:

THEOREM (1.2). If n > 4 and M is orientable, M is embeddable in \mathbb{R}^{2n-1} .

This is also true if n = 3; see [4]. The case n = 4 is unsolved, even if M is simply connected. However, Smale has proved (unpublished) that every homotopy 4-sphere is embeddable in \mathbb{R}^5 .

It should be remarked that the existence Theorems (2.1) and (2.3) apply to both orientable and non-orientable manifolds, but the classification Theorems (2.2) and (2.4) apply only to orientable manifolds.

(1.3). DEFINITIONS AND NOTATION. All manifolds considered here are differential. The boundary of a manifold X is ∂X . We put $X - \partial X = \text{int } X$.

An *immersion* of an *n*-manifold X in Euclidean v-space R^v is a differentiable map $f: X \to R^v$ of rank *n* everywhere. An *embedding* is an immersion which is 1-1. If f and g are immersions of X in R^v , a regular homotopy connecting f to g is a differentiable homotopy $F: X \times I \to R^v$ such that $F_0 = f$, $F_1 = g$, and each F_t is an immersion. If in addition each F_t is an embedding, then F is an *isotopy*.

If $F, G: X \times I \to R^{v}$ are regular homotopies, we say that F and G are regularly homotopic if there is a differentiable map $H: X \times I \times I \to R^{v}$ such that for each $t \in I$ the map H_{t} is a regular homotopy, where $H_{t}(x, s) = H(x, s, t)$, and if $H_{0} = F, H_{1} = G$.

An immersion of X in \mathbb{R}^v with a normal vector field is a pair (g, μ) where $g: X \to \mathbb{R}^v$ is an immersion, and $\mu: X \to \mathbb{R}^v$ is a differentiable map such that for each $x \in X$, $\mu(x)$ is a unit vector orthogonal to the image (under the differential of g) of the tangent plane to X at x. Two such pairs (f, v) and (g, μ) are regularly homotopic if there is a regular homotopy h_t connecting f to g, and a homotopy $\lambda_t: M \to \mathbb{R}^v$ connecting v to μ , such that for each t, (f_t, λ_t) is an immersion with normal vector field.

If a cycle *u* bounds, we write $u \sim 0$.

Homology and cohomology groups have integer coefficients unless other coefficients are indicated.

If X is a manifold, the normal Stiefel-Whitney classes of X are denoted by \overline{W}^i . These are *i*-dimensional cohomology classes with coefficients as follows: Z_2 if *i* is even, Z if *i* is odd and X is orientable, twisted integers if *i* is odd and X is non-orientable.

§2. THE MAIN RESULTS

Let M be a compact k-connected differential manifold without boundary. Let M_0 denote M minus a point.

THEOREM (2.1). Assume $0 \le k < \frac{1}{2}(n-4)$. If M_0 can be immersed in \mathbb{R}^{2n-k-1} with a normal vector field, then M can be embedded in \mathbb{R}^{2n-k-1} .

It is easy to prove the converse if M is orientable, without any restriction on k, using (2.3) below.

THEOREM (2.2). Assume $0 \le k \le \frac{1}{2}(n-4)$. If M is orientable there is a 1-1 correspondence between the isotopy classes of embeddings of M in \mathbb{R}^{2n-k} and the regular homotopy classes of immersions of M_0 in \mathbb{R}^{2n-k} with a normal vector field.

The proofs of Theorems (2.1) and (2.2) are postponed until §4.

Let $T_{m,n+1}$ be the bundle associated to the frame bundle of M_0 with fibre the Stiefel manifold $V_{m,n+1}$ of (n + 1)-frames in \mathbb{R}^m , the linear group in *n* variables acting in the natural way on the first *n* vectors of a frame. According to [2], the existence of an immersion of M_0 in \mathbb{R}^m with a normal vector field is equivalent to the existence of a section of $T_{m,n+1}$. Moreover, it is easy to prove, using [2], that the regular homotopy classes of immersions of M_0 in \mathbb{R}^m with a normal vector field are in 1-1 correspondence with the homotopy classes of sections of $T_{m,n+1}$.

If *M* is *k*-connected, the only obstruction to constructing a section of $T_{2n-k-1,n+1}$ is the normal Stiefel-Whitney class \overline{W}^{n-k-1} of M_0 (or *M*). If *M* is orientable, the homotopy classes of sections of $T_{2n-k,n+1}$ are in 1-1 correspondence with the elements of $H^{n-k-1}(M, \pi_{n-k-1}(V_{2n-k,n+1}))$. Therefore we obtain the following corollaries of (2.1) and (2.2).†

[†] J. P. Levine has proved a similar theorem in the orientable case (Not. Amer. Math. Soc. 9 (1962), 220).

THEOREM (2.3). If $0 \le k < \frac{1}{2}(n-4)$, a compact unbounded k-connected n-manifold M can be embedded in \mathbb{R}^{2n-k-1} if and only if its normal Stiefel-Whitney class \overline{W}^{n-k-1} vanishes.

THEOREM (2.4). If $0 \le k \le \frac{1}{2}(n-4)$, the isotopy classes of embeddings of an orientable compact unbounded k-connected manifold M in \mathbb{R}^{2n-k} are in 1-1 correspondence with the elements of $\begin{cases} H_{k+1}(M; Z) & \text{if } n-k \text{ is odd}; \\ H_{k+1}(M; Z_2) & \text{if } n-k \text{ is even.} \end{cases}$

§3. MATERIAL USED

In the proofs of (2.1) and (2.2) we shall use the following two embedding theorems. Recall that $M_0 = M$ minus a point.

THEOREM (3.1). Let M be a k-connected n-manifold

- (a) If $v \ge 2n k 1$, then M_0 can be immersed in \mathbb{R}^v , and any immersion is regularly homotopic to an embedding.
- (b) If v≥ 2n k, any two embeddings f and g of M₀ in R^v are regularly homotopic. If G is a regular homotopy connecting f and g, there is a regular homotopy G_t of G such that G₀ = G, G₁ is an isotopy, and for each t, G_t connects f to g.

Proof. Part (a) is implicit in [3], and (b) can be proved by using the methods of [3]. The idea of the proof is that M_0 is diffeomorphic to a small neighborhood of an (n - k - 1)-complex in M. Smale's theory of handles [8] can be used instead.

THEOREM (3.2). Let X be a v-manifold and E an open n-disk.

- (a) Suppose $2v \ge 3(n + 1)$ and X is (2n v + 1)-connected. Let $g: E \to X$ be a proper map whose restriction to the complement of some compact set is an embedding. Then there is a homotopy, fixed outside of a compact set, which deforms g into an embedding.
- (b) Suppose 2v > 3(n + 1) and X is (2n v + 2)-connected. Let g₀ and g₁: E → X be proper embeddings which are connected by a homotopy fixed outside of a compact set. Then g₀ and g₁ are also connected by an isotopy g₁ fixed outside of a compact set.

Proof. The proof is similar to the proofs of (4.1) and (5.1) of [1]. The only modification needed is to change remark (4.13) of [1] by replacing ∂V with the complement of a suitable compact disk in E.

Let B be the total space of a disk bundle over a manifold N and let $A = \partial B$, so that A is fibered by spheres. Identify N with the zero section of B. The following facts are well known; cf. Thom [9], Whitney [10].

Тнеогем (3.3).

- (a) The first obstruction to constructing a section of A is the cohomology class of N dual to the self-intersection of N in B.
- (b) The corresponding interpretation for the obstruction $d(\sigma_0, \sigma_1)$ to deforming a section σ_0 of A into a section σ_1 of A is the cohomology class of N dual to the intersection in B of N with a homotopy of sections in B connecting σ_0 and σ_1 .

131

§4. PROOFS OF (2.1) and (2.2)

(4.1). Proof of (2.1), M orientable. Let $f: M_0 \to R^{2n-k-1}$ be an immersion with a normal vector field v. By (3.1a), f is regularly homotopic to an embedding; we can suppose therefore that f is an embedding. Let $D_2 \subset M$ be an embedded closed disk of radius 2 with center x_0 , and let D_1 be the concentric disk of radius 1. Let E_2 and E_1 be the interiors of D_2 and D_1 . Put $M_1 = M - E_1$ and $M_2 = M - E_2$. We claim that $f(\partial M_1)$ is an (n-1)-sphere homotopic to zero in $X = R^{2n-k-1} - f(M_2)$. Let ε be a positive number small enough to be the radius of a tubular neighborhood of $f(M_1)$. Let $\lambda: M_1 \to [0, \varepsilon]$ be a differentiable function equal to ε on M_2 and to 0 on ∂M_1 . Then $f(\partial M_1)$ bounds the image of M_1 by the map $x \to f(x) + \lambda(x)v(x)$, so that $f(\partial M_1) \sim 0$ in X. (We have used the orientability of M to have $\partial M_1 \sim 0$ in M_1 .)

Since M is k-connected, Poincaré and Alexander duality shows that $H_i(X) = 0$ for $0 \le i \le n-2$, and a general position argument shows that X is simply connected. Therefore the Hurewicz isomorphism between $\pi_{n-1}(X)$ and $H_{n-1}(X)$ shows that $f(\partial M_1)$ is homotopic to zero in X.

It is now possible to extend the map $f|M_1$ to a map $g: M \to R^{2n-k-1}$ such that $g(M_2) \cap g(E_2) = \emptyset$. Applying (3.2) to $g|E_2: E_2 \to X$ leads to an embedding of E_2 in $X = R^{2n-k-1} - f(M_2)$ which agrees with f outside of a compact neighbourhood of ∂M_1 in E_2 . This embedding and $f|M_2$ thus fit together to form an embedding of M in R^{2n-k-1} .

(4.2). Proof of (2.1), *M* non-orientable. Assume now that k = 0 and that *M* is non-orientable. Keeping the notation of (4.1), we cannot conclude that $f(\partial M_1)$ is a boundary in *X* but only that $f(\partial M_1)$ bounds mod 2. Equivalently, $f(\partial M_1)$ represents an even homology class in *X*.

We shall need an explicit cocycle u_f representing the cohomology class $[u_f] \in H^{n-1}(M_2)$ that corresponds to the homology class of $f(\partial M_1)$ under Alexander duality. Such a cocycle is found in the following way. Let C be an oriented singular disk in R^{2n-1} bounded by $f(\partial M_1)$. For any (n-1)-simplex σ in M_2 put $u_f(\sigma) = C \# f(\sigma) =$ intersection number of C and $f(\sigma)$. As we observed above, $[u_f]$ is an even class; hence there are cochains v and w such that $u_f = 2v + \partial w$.

We shall prove that there is an embedding $g: M_1 \to R^{2n-1}$ such that $u_g = u_f - 2v$. It will follow that $[u_g] = 0$, and the rest of the proof proceeds as in (4.1).

We need the fact that M_1 can be described as a 'thickening' of an (n-1)-complex. This can be proved by using the techniques of [3], or Smale's theory of handles [8]. The interior of the singular disk C will meet $f(M_1)$ only in the handles. It will then be a simple matter to change the embedding on one handle at a time, keeping track of the corresponding change in u_f . The point is that every time a handle pierces C, the boundary of $f(M_1)$ intersects C twice.

For simplicity of notation, we assume that $M \subset \mathbb{R}^{2n-1}$, and that f is the inclusion map. Let D^n be the closed unit *n*-ball. What we need from the theory of handles is that there exist a finite number of embeddings $h_i: D^{n-1} \times D^1 \to M_1$ with the following properties: (1) $h_i(D^{n-1} \times \partial D^1) \subset \partial M_1;$ (2) $C \cap M_1 \subset \bigcup_i f_i((\text{int } D^{n-1}) \times D^1).$

(The 'handles' are the sets $h_i(D^{n-1} \times D^1)$.) The cochain u_f is now defined by the intersection numbers $C # h_i(D^{n-1} \times 0)$.

Let us focus attention on a single handle $h_i(D^{n-1} \times D^1)$. We might as well assume that h_i is the composite of the inclusion maps $D^{n-1} \times D^1 \subset D^{n-1} \times D^n \subset R^{2n-1}$, since we can bring this about by an isotopy of R^{2n-1} . A new embedding $g: M_0 \to R^{2n-1}$ is described as follows. Let $S^{n-1} = \partial D^n$, and let P be the north pole of S^{n-1} , so that the handle $D^{n-1} \times D^1$ meets $D^{n-1} \times (\partial D^n)$ in $(D^{n-1} \times P) \cup (D^{n-1} \times (-P))$. Let $\alpha : (D^{n-1}, \partial D^{n-1}) \to (S^{n-1}, P)$ be a differentiable map, constant near ∂D^{n-1} . Define $g: M_1 \to R^{2n-1}$ by

$$g(x) = \begin{cases} x \text{ if } x \in D^{n-1} \times D^1 \\ (y, t\alpha(y)) \in D^{n-1} \times D^n \text{ if } x = (y, t) \in D^{n-1} \times D^1. \end{cases}$$

If α has degree d, then g twists the handle d times around $D^{n-1} \times 0$. (See Fig. 1 for the case n = 2, d = 1.)

FIG. 1. Images of a handle under f and g

Now ∂M_1 meets $D^{n-1} \times D^n$ in the union of the images of two antipodal sections, ϕ_+ and ϕ_- , of the bundle $D^{n-1} \times \partial D^n \to D^{n-1}$. Likewise, $g(\partial M_1)$ is the union of the images of two antipodal sections ψ_+ and ψ_- , namely, $\psi_+(x) = (x, \alpha(x))$ and $\psi_-(x) = (x, -\alpha(x))$. The obstruction to deforming ϕ_+ into $\psi_+(\operatorname{rel} \partial D^{n-1})$ is the homotopy class $\{\alpha\} \in \pi_{n-1}(S^{n-1})$, and so is the obstruction to deforming ϕ_- into $\psi_-(\operatorname{rel} \partial D^{n-1})$.

To compute u_g , we form a singular disk C' bounded by $g(\partial M_0)$ by adjoining to C the images Y_+ , Y_- of two homotopies in $D^{n-1} \times D^n$ that take ϕ_+ and ϕ_- into ψ_+ and ψ_- respectively. From (3.3) we see that

 $C # (D^{n-1} \times 0) - C' # (D^{n-1} \times 0) = (Y_+ # (D^{n-1} \times 0)) + (Y_- # (D^{n-1} \times 0)) = 2d,$ where d is the degree of α .

Since d is an arbitrary integer, we can choose g so that the homology class $[u_g]$ vanishes (assuming that $[u_f]$ is uneven). This completes the proof of 2.1.

133

(4.3). Proof of (2.2). We keep the notation of (4.1), except as otherwise indicated. Let $f: M \to R^{2n-k}$ be an embedding, and let ε be the radius of a tubular neighborhood of f(M). If v is a normal vector field on $f(M_0)$, let $f_v: M \to R^{2n-k}$ be the map defined by

$$f_{\mathbf{v}}(x) = \begin{cases} f(x) + \lambda(x)\mathbf{v}(x) \text{ if } x \in M_1 \\ f(x) \text{ if } x \in D_1. \end{cases}$$

First of all we have to define the correspondence Φ of Theorem (2.2). We claim that if $f: M \to R^{2n-k}$ is an embedding, there exists a normal vector field v on $f(M_0)$ such that $f_v(M)$ is homologous to zero in $X = R^{2n-k} - f(M_2)$, and any two such normal vector fields are homotopic.

An argument like that in (4.1) shows that X is (n-1)-connected, and $\pi_n(X) \approx H_n(X) \approx H^{n-k-1}(M_2)$. If v, v' are any two vector fields normal to $f(M_2)$, the difference class $d(v, v') \in H^{n-k-1}(M_2)$ corresponds to the homology class $[f_v(M)] - [f_v(M)] \in H_n(X)$, under Alexander duality, according to (3.3). (The orientability of M is used here.) Since the homotopy classes of normal vector fields on $f(M_0)$ are in 1-1 correspondence with $H^{n-k-1}(M_0) \approx H^{n-k-1}(M_2) \approx H_n(X)$, there is one and only one normal vector field v, up to homotopy, such that $f_v(M)$ is homologous to zero in X.

The correspondence associating to f the couple $(f|M_0, v)$ induces a correspondence Φ which to the isotopy class of the embedding $f : M \to R^{2n-k}$ assigns the regular homotopy class of the immersion $f|M_0$ with the normal vector field v.

(a) Φ is injective. Let $f, g: M \to R^{2n-k}$ be two embeddings, and let v, μ be the normal vector fields to $f^0 = f|M_0$ and $g^0 = g|M_0$ associated as before to f and g. Suppose that (f^0, v) and (g^0, μ) are regularly homotopic. By (3.1) we can assume they are isotopic.

Let $h_t: M_0 \to R^{2n-k}$ be an isotopy such that $h_0 = f^0$ and $h_1 = g^0$, and let λ_t be a normal vector field on $h_t(M_0)$ with $\lambda_0 = v$ and $\lambda_1 = \mu$

We may thus assume that f and g agree on M_1 , and that $v = \mu$, because an isotopy of $h_0(M_0)$ can be extended to an isotopy of R^{2n-k} ; cf. [11], [12]. Since $f_v(M)$ and $g_{\mu}(M)$ are homologous to zero in $X = R^{2n-k} - f(M_2) = R^{2n-k} - g(M_2)$, we see that $f_v(M) - g_{\mu}(M) \sim 0$ and hence $f(D_1) - g(D_1) \sim 0$. Thus $f|D_1$ and $g|D_1$ are homotopic (rel ∂D_1) in X. By (3.2) they are isotopic in X by an isotopy fixed on a neighborhood of ∂D_2 . Hence f and g are isotopic.

(b) Φ is surjective. Let $f^0: M_0 \to R^{2n-k}$ be an immersion with a normal vector field vAs in (4.1), we can assume (by 2.1) that f^0 is an embedding. Put $X = R^{2n-k} - f^0(M_2)$.

Since $\pi_n(X) \approx H_n(X)$, the map $x \to f^0(x) + \lambda(x)\nu(x)$ of M_1 in \mathbb{R}^{2n-k} can be extended to a map $f_v: M \to X$ such that $f_v(M) \sim 0$ in X. Let $g: D_2 \to X$ be defined by

$$g(x) = \begin{cases} f^0(x) \text{ if } x \in D_2 - D_1 \\ f_v(x) \text{ if } x \in D_1 \end{cases}$$

As in (4.1), it follows from (3.2) that we can obtain an embedding $f : M \to R^{2n-k}$ such that $f_{x}(M) \sim 0$ in X.

REFERENCES

- 1. A. HAEFLIGER: Plongements différentiables de variétés dans variétés, Comment. Math. Helvet. 36 (1961), 47-82.
- 2. M. W. HIRSCH: Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
- 3. M. W. HIRSCH: On imbedding differentiable manifolds in euclidean space, Ann. Math., Princeton 73 (1961), 567-571.
- 4. M. W. HIRSCH: The imbedding of bounding manifolds in euclidean space. Ann. Math., Princeton 74 (1961), 494-497.
- 5. W. S. MASSEY: On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92-102.
- 6. W. S. MASSEY: Stiefel-Whitney classes of a non-orientable manifold, Not. Amer. Math. Soc. 9 (1962), 219.
- 7. W. S. MASSEY: On the Stiefel-Whitney classes of a manifold---II, Proc. Amer. Math. Soc., to be published.
- 8. S. SMALE: Generalized Poincaré's conjecture in dimensions greater than four, Ann. Math., Princeton 74 (1961), 391-406.
- 9. R. THOM: Espaces fibrés en spheres et carrés de Steenrod, Ann. Sci. Éc. Norm. Sup., Paris 69 (1952), 109-181.
- 10. H. WHITNEY: On the topology of differentiable manifolds, *Lectures in Topology* (Ed. WILDER and AYRES), University of Michigan, 1941.
- 11. R. S. PALAIS: Local triviality of the restriction map for embeddings, *Comment. Math. Helvet.* 34 (1960), 305-312.
- 12. R. THOM: La classification des immersions, Seminaire Bourbaki, 1957.

University of Geneva, Switzerland;

University of California, Berkeley, Calif., U.S.A.