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sl. INTRODUCTION 

LET A4 be a compact /c-connected differential n-manifold without boundary. Our object is 

to prove, under suitable restrictions on k and II, an existence theorem for embedding IV in 

the Euclidean space R’“-“-’ (Theorem (2.3)), and a classification theorem for isotopy classes 

of embeddings of 1M in R *“-’ if 1M is orientable (Theorem (2.4)). This is done by first proving 

Theorems (2.1) and (2.2) which reduce the embedding problems to questions involving 

immersions, and then applying the theory of immersions [2]. 

A particular case of (2.3) is the following: 

THEOREM (I. 1). If n > 4, M is embeddable in R 2n- 1 if and only if its normal Stiefel- 

Whitney class p- ’ vanishes. 

Massey [5, 6, 71 has shown that if P-l # 0, then M is non-orientable and ?I is a 

power of 2. Thus we obtain: 

TIIEOREM (I .2). If n > 4 and A4 is orientable, M is embedable in R2”-‘. 

This is also true if n = 3; see [4]. The case n = 4 is unsolved, even if M is simply 

connected. However, Smale has proved (unpublished) that every homotopy 4-sphere is 

embeddable in R5. 

It should be remarked that the existence Theorems (2.1) and (2.3) apply to both 

orientable and non-orientable manifolds, but the classification Theorems (2.2) and (2.4) 

apply only to orientable manifolds. 

(1.3). DEFINITIONS AND NOTATION. All manifolds considered here are differential. The 

boundary of a manifold X is 2X. We put X - IYX = int X. 

An immersion of an n-manifold X in Euclidean r-space R” is a differentiable map 

f: A’-+ R” of rank n everywhere. An embedding is an immersion which is l- 1. If f and g 

are immersions of X in X”, a regular homotopy connectingfto g is a differentiable homotopy 

F: X x I+ R” such that F, = f, F, = g, and each F, is an immersion. If in addition each 

F, is an embedding, then F is an isotopy. 
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If F, G : X x I + R” are regular homotopies, we say that F and G are regularly homotopic 

if there is a differentiable map H: X x I x I + fi” such that for each t E I the map H, is a 

regular homotopy, where H,(x, s) = H(x, s, t), and if H, = F, H, = G. 

An immersion of X in R” with a normal rector field is a pair (g, ~1) where g : X --* R’ is 

an immersion, and ,U : X-+ R” is a differentiable map such that for each .Y E X, ,u(s) is a 

unit vector orthogonal to the image (under the differential of g) of the tangent plane to 

X at x. Two such pairs (f, v) and (g, p) are regularly homotopic if there is a regular homo- 

topy h, connecting f to g, and a homotopy i., : M-+ R” connecting v to /l, such that for 

each t, (f;, A,) is an immersion with normal vector field. 

If a cycle u bounds, we write u _ 0. 

Homology and cohomology groups have integer coefficients unless other coefficients 
are indicated. 

If X is a manifold, the normal Stiefel-Whitney classes of X are denoted by IV’. These 

are i-dimensional cohomology classes with coefficients as follows: Z, if i is even, Z if i is 

odd and X is orientable, twisted integers if i is odd and X is non-orientable. 

42. THE MAIN RESULTS 

Let M be a compact k-connected differential manifold without boundary. Let M,, 

denote M minus a point. 

THEOREM (2.1). Assume 0 I k < +(n - 4). If M, can be immersed in R2”-t-1 with a 

normal cector field, then M can be embedded in RZnmk- I. 

It is easy to prove the converse if M is orientable, without any restriction on k, using 

(2.3) below. 

THEOREM (2.2). Assume 0 I k < -$(n - 4). If M is orientable there is a 1-l corre- 

spondence between the isotopy classes of embeddings of M in R2”-’ and the regular homotopy 

classes of immersions of MO in RZnmk with a normal rector field. 

The proofs of Theorems (2.1) and (2.2) are postponed until $4. 

Let T,,,+t be the bundle associated to the frame bundle of Icr, with fibre the Stiefel 

manifold V,“.“+ 1 of (n + I)-frames in R”, the linear group in n variables acting in the 

natural way on the first n vectors of a frame. According to [2], the existence of an immersion 

of M, in R” with a normal vector field is equivalent to the existence of a section of T,,,,,,+i. 

Moreover, it is easy to prove, using [2], that the regular homotopy classes of immersions 

of M, in R” with a normal vector field are in l- 1 correspondence with the homotopy 

classes of sections of Tm,n+l. 

If M is k-connected, the only obstruction to constructing a section of T2n_k_l,n+1 

is the normal Stiefel-Whitney class w”-k-’ of M, (or M). If M is orientable, the homo- 

topy classes of sections of TZn_k,n+l are in l- 1 correspondence with the elements of 

H”-‘-‘(M, n,_,_,(v,,- k,n+l)). Therefore we obtain the following corollaries of (2.1) and 

(2.2).7 

7 J. P. Levine has proved a similar theorem in the orientable case (Nor. Amer. Mufh. Sot. 9 (1963, 
220). 
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THEOREM (2.3). If 0 I k -C +(n - 4), a compact unbounded k-connected n-manifold M 

can be embedded in R2n-k- ’ . rf and only tf its normal Stiefel- Whitney class p-‘-l vanishes. 

THEOREM (2.4). If 0 I k < +(n - 4), the isotopy classes of embeddings of an orientable 

compact unbounded k-connected mamfold M in R2”-k are in I- I correspondence with the 

( Hk+l t”; z> 
e1ements Of \ Hkfl (M; Z,) 

if n - k is odd; 

ifn - k is ecen. 

$3. MATERIAL USED 

In the proofs of (2.1) and (2.2) we shall use the following two embedding theorems. 

Recall that M, = M minus a point. 

THEOREM (3.1). Let M be a k-connected n-manifold 

(a) If 1’2 2n - k - 1, then M, can be immersed in R”, and any immersion is regularly 

homotopic to an embedding. 

(b) If v> 2n - k, any two embeddings f and g of Mo in R” are regularly homotopic. 

If G is a regular homotopy connecting f and g, there is a regular homotopy G, of G 

such that G,, = G, G, is an isotopy, andfor each t, G, connects f to g. 

Proof. Part (a) is implicit in [3], and (b) can be proved by using the methods of [3]. 

The idea of the proof is that Ma is diffeomorphic to a small neighborhood of an (n - k - I)- 

complex in M. Smale’s theory of handles [8] can be used instead. 

THEOREM (3.2). Let X be a b-manifold and E an open n-disk. 

(a) Suppose 2v 2 3(n + 1) and X is (2n - v + 1)-connected. Let g : E-+ X be aproper 

map whose restriction to the complement ofsome compact set is an embedding. Then 

there is a homotopy,jixed outside of a compact set, which deformsg intoanembedding. 

(b) Suppose 2v > 3(n + 1) and X is (2n - v + 2)-connected. Let go and g1 : E + X be 

proper embeddings which are connected by a homotopyfixed outside of a compact 

set. Then go andg, are also connected by an isotopy g,jxed outside of a compact set. 

Proof. The proof is similar to the proofs of (4. i) and (5.1) of [ 11. The only modification 

needed is to change remark (4.13) of [1] by replacing dV with the complement of a suitable 

compact disk in E. 

Let B be the total space of a disk bundle over a manifold N and let A = dB, so that A 

is fibered by spheres. Identify N with the zero section of B. The following facts are well 

known; cf. Thorn [9], Whitney [IO]. 

THEOREM (3.3). 

(a) The first obstruction to constructing a section of A is the cohomology class of N 

dual to the self-intersection ofN in B. 

(b) The corresponding interpretation for the obstruction d(o,, al) to deforming a section 

a,, of A into a section a1 of A is the cohomology class of N dual to the intersection 

in B of N with a homotopy of sections in B connecting a0 and a1. 
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$4. PROOFS OF (2.1) and (2.2) 

(4.1). Pro0fof(2.1), M orientable. Letf’: M, --f R2”-‘-l be an immersion with a normal 

vector field v. By (3.la),fis regularly homotopic to an embedding; we can suppose there- 

fore that f is an embedding. Let D, c M be an embedded closed disk of radius 2 with 

center _r,,, and let D, be the concentric disk of radius 1. Let E, and El be the interiors of 

D2 and D,. Put M, = A4 - El and MZ = M - Ez. We claim that f(aM,) is an (n - I)- 

sphere homotopic to zero in X = Rtn-‘-i -f(M2). Let E be a positive number small 

enough to be the radius of a tubular neighborhood of f’(Mr). Let i. : M1 -+ [0, E] be a 

differentiable function equal to E on MZ and to 0 on aM,. Thenf(aM,) bounds the image 

of M1 by the map x -f(x) + J.(x)v(.T), so that f‘(aM,) - 0 in X. (We have used the orient- 

ability of M to have 8M, - 0 in M,.) 

Since M is k-connected, Poincart and Alexander duality shows that H,(X) = 0 for 

0 2 i I n - 2, and a general position argument shows that X is simply connected. There- 

fore the Hurewicz isomorphism between n,_,(X) and H,_,(X) shows thatf(aMi) is homo- 

topic to zero in X. 

It is now possible to extend the map f/M1 to a map g : h-f-+ R2n-k-1 such that 

g(M,) ng(E,) = @. Applying (3.2) to glE2 : E2 --f X leads to an embedding of E2 in 

X = R2”-‘-i -f(M2) which agrees with f outside of a compact neighbourhood of aM, 

in E,. This embedding and f ]M2 thus fit together to form an embedding of M in RZnmk-‘. 

(4.2). Proof of (2.1), M non-orientable. Assume now that k = 0 and that M is non- 

orientable. Keeping the notation of (4.1), we cannot conclude that f(aM,) is a boundary 

in X but only that f (dA4,) bounds mod 2. Equivalently, f (dM,) represents an even homology 

class in X. 

We shall need an explicit cocycle uJ representing the cohomology class [u/l E H”-‘(M,) 

that corresponds to the homology class off (aMi) under Alexander duality. Such a cocycle 

is found in the following way. Let C be an oriented singular disk in R”‘-l bounded by 

f(aM,). For any (n - I)-simplex (T in M2 put ~/(a) = C #f(c) = intersection number of 

C and f(o). As we observed above, [uJ] is an even class; hence there are cochains L’ and ~7 

such that U/ = 20 + aw. 

We shall prove that there is an embedding g : M, -+ R2”-’ such that us = us - 217. It 

will follow that [u,] = 0, and the rest of the proof proceeds as in (4.1). 

We need the fact that Mi can be described as a ‘thickening’ of an (n - l)-complex. 

This can be proved by using the techniques of [3], or Smale’s theory of handles [S]. The 

interior of the singular disk C will meetf(Mi) only in the handles. It will then be a simple 

matter to change the embedding on one handle at a time, keeping track of the corresponding 

change in u/. The point is that every time a handle pierces C, the boundary of f(Ml) 

intersects C twice. 

For simplicity of notation, we assume that M c R”‘-I, and thatfis the inclusion map. 

Let D” be the closed unit n-ball. What we need from the theory of handles is that there 

exist a finite number of embeddings hi : D”-’ x D’ + M, with the following properties: 
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(1~ hi(D”-’ X ao’) c dM,; 

(2) C n M, c Vfi((int P-‘) x D’). 

(The ‘handles’ are the sets hi(D”-’ x II’).) The cochain U/ is now defined by the inter- 

section numbers C #hi(D”-’ x 0). 

Let us focus attention on a single handle h,(D”-’ x 0’). We might as well assume 

that hi is the composite of the inclusion maps D”-’ x D’ c D”-’ x D” c R2n-1, since we 

can bring this about by an isotopy of R2”-‘. A new embedding g : MO -+ R2”-’ is described 

as follows. Lets”-’ = aD”, and let P be the north pole of Sn-‘, so that the handle II”-’ x D1 

meets D”-’ x (8D”) in (D”-’ x P) u (D”-’ X (-P)). Let (Y : (D”-l, SD”-‘)+ (S”-*, P)be 

a differentiable map, constant near dD”-‘. Define g : ML -+ RZnel by 

!?cx)= ~~~f~~~~)~~~“xlD:D”ifx=(v ~)ED”-’ x D’. 
, 7 

If a has degree n, then g twists the handle n times around D”-’ x 0. (See Fig. 1 for the 

casen=2,d= 1.) 

FIG. 1. Images of a handle under fand g 

Now akf, meets D”-’ x D” in the union of the images of two antipodal sections, (b, 

and q5_, of the bundle D”-’ x dD”+ D”-‘. Likewise, g(dM,) is the union of the images 

of two antipodal sections $+ and II/_, namely, rl/+(x) =(x, a(x)) and $_(x) =(x, -%(x)). 

The obstruction to deforming 4, into $+(rel dD”-‘) is the homotopy class (z) E x,_~(S”-I), 

and so is the obstruction to deforming q5_ into $_(rel dD”-‘). 

To compute ug, we form a singular disk C’ bounded by g(dMJ by adjoining to C the 

images Y,, Y_ of two homotopies in D”- ’ x D” that take 4, and @_ into $+ and I/I_. 

respectively. From (3.3) we see that 

C # (,‘-I x 0) - c’# (Dn-’ x 0) = (Y, # (D”-’ x 0)) + (Y_ # (D”-1 x 0)) = 24 

where GJ is the degree of a. 

Since d is an arbitrary integer, we can choose g so that the homology class [u,] vanishes 

(assuming that [u,] is uneven). This completes the proof of 2.1. 

D 
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(4.3). Pro~~fof(2.2). We keep the notation of (4.1), except as otherwise indicated. Let 

f : M+ Rznek be an embedding, and let E be the radius of a tubular neighborhood off‘(M). 

If v is a normal vector field onf(M,), letf,: M+ RZnek be the map defined by 

fV(x) = ]/Ix) + %+o$ if x E MI 
\ f(x) if x E D, . 

First of all we have to define the correspondence Cp of Theorem (2.2). We claim that 

(ff : M-, R2n-k is an embedding, there exists a normal rector,field v on f (MO) such that f,(M) 
is homologous to zero in X = R”‘-’ -f (M2), and any two such normal rector fields are 

homotopic. 

An argument like that in (4.1) shows that X is (n - I)-connected, and n,(X) 2 H,(X) 

z H”-‘-‘(Al,). If v, v’ are any two vector fields normal to f(MJ, the difference class 

d(v, v’) E H”-k-1(M2) corresponds to the homology class M;(M)] - [fV(M)] E H,(X), urder 

Alexander duality, according to (3.3). (The orientability of M is used here.) Since the 

homotopy classes of normal vector fields on f(M,) are in 1-I correspondence with 

H”-k-‘(M,) x H”-‘-‘(M,) x H,(X), there is one and only one normal vector field V, up to 

homotopy, such that j;(M) is homologous to zero in X. 

The correspondence associating to/ the couple (f]Mo, v) induces a correspondence C$ 

which to the isotopy class of the embedding .f : M -+ R2”-k assigns the regular homotopy 

class of the immersion f]Me with the normal vector field v. 

(a) Q is injectiue. Letf, g : M-t R2”-k be two embeddings, and let v, p be the normal 

vector fields to f” =f]Mo and go = gjM, associated as before to f and g. Suppose that 

(f’, v) and (go, 11) are regularly homotopic. By (3.1) we can assume they are isotopic. 

Let h,: MO --f R2n-k be an isotopy such that ho = f” and h, = go, and let 2, be a normal 
vector field on h,(M,) with I, = v and R, = p 

We may thus assume thatf and g agree on M,, and that v = /i, because an isotopy of 

h,(M,,) can be extended to an isotopy of RZnek; cf. [I I], [12]. Since f,(M) and g,,(M) are 

homologous to zero in X = RZnwk -f (M,) = R2”-k - g(M2), weseethatf,(M) - g,(M) - 0 

and hence f(D,) - g(Dl) - 0. Thus f ID, and g]D, are homotopic (rel ZD,) in X. By (3.2) 

they are isotopic in X by an isotopy fixed on a neighborhood of dD,. Hence f and g are 

isotopic. 

(b) Q is surjecticz. Let f” : MO ---t R 2n-k be an immersion with a normal vector field v 

As in (4.1), we can assume (by 2.1) that f” is an embedding. Put X = RZnek -f”(M2). 

Since n,(X) * H,(X), the map .Y *f’(x) + i.(x)v(x) of M, in R2”-’ can be extended 

to a map fV : M-t X such that f”(M) - 0 in X. Let g : D, 4 X be defined by 

(,f”(x) if x E DZ - D, 

g(x) = \ f,(x) if .Y E D, . 

As in (4. l), it follows from (3.2) that we can obtain an embedding/ : M + R’“-’ such that 

f,(M) - 0 in X. 
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