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An important mathematical problem arising in modern engineering is
that of understanding and computing with regions that are defined by a
”negative” condition, that is that they consist of the set of points which
do not belong to a set that is defined in an explicit manner. Here are two
important examples.

Sensor nets are collections of large numbers of sensors with very primitive
capabilities, distributed over a domain. The idea is to use these sensors to
detect the presence of an intruder within the domain. The sensors do not
have GPS capability, so are not able to recognize their absolute position, but
they are able to detect an intruder at a fixed threshold radius R. They are
also able to recognize the presence of another sensor of the same type, also at
a distance R. One can then speak of the covered region as the union of balls of
radius R with centers at the positions of the sensors. An important question
to ask is whether or not these balls cover the domain, or equivalently whether
or not the covered region is the entire domain. If that is the case, then one
knows that if an intruder is present in the domain, it will be detected by
one of the sensors. It turns [1] out that there are topological methods for
determining whether or not the domain is covered, from knowing only the
information about which sensors are within a distance R of each other. There
are numerous extensions of this question. For example, one might include
a time parameter, and ask whether an intruder can move from one point
on the boundary of the domain to another over times, as the sensors move
[2],[3]. In addition, one might want to learn the structure of the uncovered
region in the case where one does not have coverage, so as to understand
how to navigate while avoiding sensors.

A central problem in robotics is motion planning in domains where there
are obstacles. In this case, one may have explicit knowledge of the positions
of the obstacles and their shapes, but is interested in that part of the domain
not included in the obstacles. One might have a complicated set of obstacles,
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and nevertheless want to obtain an understanding of the complement of the
collection of obstacles (the ”feasible region”), so as to be able to understand
the motion paths through it. The potential of topology is to determine if a
path exists, and if so, to yield a coarse classification of such paths, up to the
homotopy relation. Once such a classification exists, one can then imagine
optimizing for various objective functions within the equivalence class. A
desirable feature for such a scheme would be to develop it without having
to parametrize the feasible region, but only using explicit understanding of
the infeasible region, i.e. the union of the various obstacles.

Idealized versions of this problem have been developed within algebraic
topology. For example, Alexander duality shows that the homology of the
complement of a finite subcomplex X in Euclidean space is completely deter-
mined by the homology of X. More generally, the Spanier-Whitehead duality
theorem shows that the stable homotopy type of the complement of X is de-
termined by the stable homotopy type of X. However, it is also clear that the
unstable homotopy type of the complement is not determined by the unsta-
ble homotopy type of X, since it is well known that different knotted circles
in three-dimensional space produce complements with non-isomorphic fun-
damental groups. The key piece of missing information to determine the
unstable homotopy type of the complement is the specific embedding of X
in Euclidean space, much as a knot is determined by an explicit embedding
of a circle in three-dimensional Euclidean space. Embedding questions have
been studied extensively in topology, particularly through the seminal work
of Haefliger [4],[5]. More recently, the idea of embedding calculus has been
introduced in order to study the classification of embeddings of one manifold
in another [6], [7]. This work seems well suited to the study of the problems
described above, but in order to become applicable, it must be generalized
in two directions.

The manifold hypothesis must be removed, since the regions defined as
the covered regions of families of sensors and the obstacles in robotics typi-
cally are not manifolds. The calculus needs to be extended to the situation
of spaces over a fixed base space. For example, in the case of sensors or
obstacles that are moving in time, on must study the problem over the base
space consisting of the real line, which is tracking the time variable.

The above generalizations are a critical first step. Once there is some
understanding of how these extensions work, it will then be important to
make them more directly computational in real situations, and also to iden-
tify standard unstable homotopy theoretic invariants from the embedding
space calculations.

We propose a small focused meeting to address the required generaliza-
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tions. We would bring together investigators in the actual embedding calcu-
lus, as well as engineers and topologists working in computational topology.
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