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Brouwer fixed point theorem

Brouwer fixed point theorem

The Brouwer fixed point theorem states that every continuous map
f : Dn → Dn has a fixed point.

When n = 1 this is a trivial consequence of the intermediate value
theorem.

In higher dimensions, if not, then for some f and all x ∈ Dn, f (x) 6= x .

So the map f̃ : Dn → Sn−1 obtained by sending x to the unique point on
Sn−1 on the line segment starting at f (x) and passing through x is
continuous, and when restricted to the boundary ∂Dn = Sn−1 is the
identity.

So to prove the Brouwer fixed point theorem it suffices to show there is
no map g : Dn → Sn−1 which restricted to the boundary Sn−1 is the
identity. (In fact, this is an equivalent formulation.)
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Brouwer fixed point theorem

Proof of Brouwer’s theorem

It is enough, by a standard approximation argument, to prove that
there is no smooth (C1) map g : Dn → Sn−1 which restricted to the
boundary Sn−1 is the identity.

Consider, for Dg the derivative matrix of g,∫
Dn

det Dg.

This is zero as Dg has less than full rank at each x ∈ Dn.
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Brouwer fixed point theorem

So
0 =

∫
Dn

det Dg =

∫
Dn

dg1 ∧ dg2 ∧ · · · ∧ dgn,

which, by Stokes’ theorem equals∫
Sn−1

g1dg2 ∧ · · · ∧ dgn.

This quantity depends only the behaviour of g1 on Sn−1, and, by
symmetry, likewise depends only on the restrictions of g2, . . . ,gn to
Sn−1.

But on Sn−1, g is the identity I, so that reversing the argument, this
quantity also equals ∫

Dn
det DI = |Dn|.

This argument is essentially due to E. Lima. Is there a similarly simple
proof of the Borsuk–Ulam theorem via Stokes’ theorem?
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Borsuk–Ulam theorem Introduction

Borsuk–Ulam theorem

The Borsuk–Ulam theorem states that for every continuous map
f : Sn → Rn there is some x with f (x) = f (−x). When n = 1 this is a
trivial consequence of the intermediate value theorem.

In higher dimensions, it again suffices to prove it for smooth f .

So assume f is smooth and f (x) 6= f (−x) for all x . Then

f̃ (x) :=
f (x)− f (−x)

|f (x)− f (−x)|

is a smooth map f̃ : Sn → Sn−1 such that f̃ (−x) = −f̃ (x) for all x , i.e. f̃
is odd, antipodal or equivariant with respect to the map x 7→ −x .

So it’s ETS there is no equivariant smooth map h : Sn → Sn−1, or,
equivalently, there is no smooth map g : Dn → Sn−1 which is
equivariant on the boundary.

Equivalent to Borsuk–Ulam theorem; BU generalises Brouwer fixed
point thorem (since the identity map is equivariant).
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Borsuk–Ulam theorem Case n = 2

WTS there does not exist a smooth g : D2 → S1 such that
g(−x) = −g(x) for x ∈ S1. If there did exist such a g, consider∫

D2
det Dg =

∫
D2

dg1 ∧ dg2.

This is zero as Dg has less than full rank at each x , and it equals, by
Stokes’ theorem, ∫

S1
g1dg2 = −

∫
S1

g2dg1.

So it’s enough to show that∫ 1

0
(g1(t)g′

2(t)− g2(t)g′
1(t))dt 6= 0

for g = (g1,g2) : R/Z → S1 satisfying g(t + 1/2) = −g(t) for all
0 ≤ t ≤ 1.
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Borsuk–Ulam theorem Case n = 2

ETS ∫ 1

0
(g1(t)g′

2(t)− g2(t)g′
1(t))dt 6= 0

for g = (g1,g2) : R/Z → S1 satisfying g(t + 1/2) = −g(t) for all
0 ≤ t ≤ 1.

Clearly
(g1(t)g′

2(t)− g2(t)g′
1(t))dt

represents the element of net arclength for the curve (g1(t),g2(t))
measured in the anticlockwise direction. (Indeed, |g| = 1 implies
〈g,g′〉 = 1

2
d
dt |g|

2 = 0, so that det(g,g′) = ±|g||g′| = ±|g′|, with the
plus sign occuring when g is moving anticlockwise.) By equivariance,
(g1(1/2),g2(1/2)) = −(g1(0),g2(0)), and∫ 1

0
g1(t)g′

2(t)dt = 2
∫ 1/2

0
g1(t)g′

2(t)dt .

In passing from (g1(0),g2(0)) to (g1(1/2),g2(1/2)) the total net
arclength traversed is clearly an odd multiple of π, and so we’re done.
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Borsuk–Ulam theorem Dimensional reduction

Theorem (Shchepin)
Suppose n ≥ 4 and there exists a smooth equivariant map
f : Sn → Sn−1. Then there exists a smooth equivariant map
f̃ : Sn−1 → Sn−2.

Once this is proved, only the case n = 3 of the Borsuk–Ulam theorem
remains outstanding.

Starting with f , we shall identify suitable equators En−1 ⊆ Sn and
En−2 ⊆ Sn−1, and build a smooth equivariant map f̃ : En−1 → En−2.

We first need to know that there is some pair of antipodal points {±A}
in the target Sn−1 whose preimages under f are covered by finitely
many diffeomorphic copies of (−1,1). This is intuitively clear by
dimension counting (WMA f is onto!) but for rigour we can appeal to
Sard’s theorem.
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Borsuk–Ulam theorem Dimensional reduction

For x ∈ f−1(A) and y ∈ f−1(−A) = −f−1(A) with y 6= −x , consider the
unique geodesic great circle joining x to y . The family of such is clearly
indexed by the two-parameter family of points of

f−1(A)× f−1(−A) \ {(x ,−x) : f (x) = A}.

Their union is therefore a manifold in Sn of dimension at most three.
Since n ≥ 4 there must be points ±B ∈ Sn outside this union (and
necessarily outside f−1(A) ∪ f−1(−A)). Such a point has the property
that no geodesic great circle passing through it meets points of both
f−1(A) and f−1(−A) other than possibly at antipodes. In particular, no
meridian joining ±B meets both f−1(A) and f−1(−A).

We now identify En−2 as the equator of Sn−1 whose equatorial plane is
perpendicular to the axis joining A to −A; and we identify En−1 as the
equator of Sn whose equatorial plane is perpendicular to the axis
joining B to −B. We assume for simplicity that B is the north pole
(0,0, . . . ,0,1).
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Borsuk–Ulam theorem Dimensional reduction

Lemma (Lemma 1)

Suppose B = (0,0, . . . ,0,1) ∈ Sn and that X ⊆ Sn is a closed subset
such that no meridian joining ±B meets both X and −X. Let Sn

±
denote the open upper and lower hemispheres respectively. Then
there is an equivariant diffeomorphism ψ : Sn → Sn such that

X ⊆ ψ(Sn
+).

Remark 1. It is clear that we may assume that ψ fixes meridians and
acts as the identity on small neighbourhoods of ±B.

Remark 2. It is also clear from the proof that we can find a smooth
family of diffeomorphisms ψt such that ψ0 is the identity and ψ1 = ψ.

We shall need this later.
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Borsuk–Ulam theorem Dimensional reduction

Lemma

Suppose B = (0,0, . . . ,0,1) ∈ Sn and that X ⊆ Sn is a closed subset
such that no meridian joining ±B meets both X and −X. Let Sn

±
denote the open upper and lower hemispheres respectively. Then
there is an equivariant diffeomorphism ψ : Sn → Sn such that

X ⊆ ψ(Sn
+).

Continuing with the proof of the theorem, we apply the lemma with
X = f−1(A). Let φ be restriction of ψ to E = En−1. Consider the
restriction f̂ of f to φ(E): it has the property that f̂ (φ(E)) does not
contain ±A. Let r be the standard retraction of Sn−1 \ {±A} onto its
equator En−2; finally let

f̃ = r ◦ f̂ ◦ φ,

which is clearly smooth and equivariant.
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Borsuk–Ulam theorem Dimensional reduction

Proof of Lemma

See the pictures on the blackboard!
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Borsuk–Ulam theorem Dimensional reduction

The Sard argument

WTS there is some pair of antipodal points {±A} in the target Sn−1

whose preimages under f are at most “one-dimensional”, i.e. covered
by finitely many diffeomorphic copies of (−1,1).

Sard’s theorem tells us that the image under f of the set
{x ∈ Sn : rank Df (x) < n − 1} is of Lebesgue measure zero: so there
are plenty of points A ∈ Sn−1 at all of whose preimages x – if there are
any at all – Df (x) has full rank n − 1. By the implicit function theorem,
for each such x there is a neighbourhood B(x , r) such that
B(x , r) ∩ f−1(A) is diffeomorphic to the interval (−1,1). The whole of
the compact set f−1(A) is covered by such balls, from which we can
extract a finite subcover: so indeed f−1(A) is covered by finitely many
diffeomorphic copies of (−1,1).
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Borsuk–Ulam theorem Case n = 3

Proposition (Shchepin)

Suppose that f : S3 → S2 is a smooth equivariant map. Then there
exists a smooth f † : D3 → S2 which is equivariant on ∂D3 = S2, and
moreover maps S2

± to itself.

Discussion: By identifying the closed upper hemisphere of S3 with the
closed disc D3 we obtain a smooth map

f̂ : D3 → S2

which is equivariant on ∂D3 = S2.

Then the restriction of f̂ to ∂D3 = S2 gives a smooth equivariant map
g : S2 → S2. If we could take g to be the identity, we would be finished
– the argument given for the Brouwer fixed point theorem showed that
no such f̂ exists.

We cannot hope for this, but we can hope to “improve” the properties
of g so that a similar argument will work. What we need more precisely
is that g maps S2

± to itself.
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Borsuk–Ulam theorem Case n = 3

Proposition implies BU

Suppose there existed a smooth map f † : D3 → S2 ⊆ R3 which was
equivariant on ∂D3 = S2, and mapped S2

± to itself.

Let C be the cylinder D2 × [−1,1] in R3 with top and bottom faces D±
and curved vertical boundary V = S1 × [−1,1]. Let S± be the upper
and lower halves of S = ∂C. Let E be the equator of S.

Now C, with the all points on each vertical line of V identified, is
diffeomorphic to D3, and S is also diffeomorphic to S2.

Lemma
There is no smooth map f : C → S which is equivariant on ∂C, which
is constant on vertical lines in V and which maps D± into S±.
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Borsuk–Ulam theorem Case n = 3

Proposition
There is no smooth map f : C → S which is equivariant on ∂C, which
is constant on vertical lines in V and which maps D± into S±.

If such an f existed, then∫
C

det Df =

∫
C

df1 ∧ df2 ∧ df3

where Df is the derivative matrix of f . On the one hand this is zero as
Df has less than full rank at almost every x ∈ C, and on the other hand
it equals, by Stokes’ theorem,∫

∂C
f3 df1 ∧ df2 =

∫
V

f3 df1 ∧ df2 + 2
∫

D+

f3 df1 ∧ df2

by equivariance.
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Borsuk–Ulam theorem Case n = 3

0 =

∫
V

f3 df1 ∧ df2 + 2
∫

D+

f3 df1 ∧ df2

Now f maps V into E , so that f3 = 0 on V , and the first term on the
right vanishes.

As for the second term,∫
D+

f3 df1∧df2 =

∫
D+∩{x : f3(x)=1}

f3 df1∧df2 +

∫
D+∩{x : f3(x)<1}

f3 df1∧df2.

The region of D+ on which f3(x) < 1 consists of patches on which
f 2
1 (x) + f 2

2 (x) = 1, and so 2f1 df1 + 2f2 df2 = 0. Taking exterior products
with df1 and df2 tells us that on such patches we have
f1 df1 ∧ df2 = f2 df1 ∧ df2 = 0. Multiplying by f1 and f2 and adding we
get that h df1 ∧ df2 = 0 for all h supported on a patch on which
f3(x) < 1. So for any h we have∫

D+∩{x : f3(x)<1}
h df1 ∧ df2 = 0.
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Borsuk–Ulam theorem Case n = 3

Hence ∫
D+

f3 df1 ∧ df2 =

∫
D+∩{x : f3(x)=1}

df1 ∧ df2

=

∫
D+∩{x : f3(x)=1}

df1 ∧ df2 +

∫
D+∩{x : f3(x)<1}

df1 ∧ df2

=

∫
D+

df1 ∧ df2.

By Stokes’ theorem once again we have∫
D+

df1 ∧ df2 =

∫
∂D+

f1df2 = −
∫

∂D+

f2df1,

and, since f restricted to ∂D+ is equivariant, this quantity is nonzero
(and indeed is an odd multiple of π), by the remarks in the proof of the
case n = 2 above.

So no such f exists and we are done.
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Borsuk–Ulam theorem Case n = 3

Proof of Proposition

Proposition (Shchepin)

Suppose that f : S3 → S2 is a smooth equivariant map. Then there
exists a smooth f † : D3 → S2 which is equivariant on ∂D3 = S2, and
moreover maps S2

± to itself.

Recall that f induces first f̂ : D3 → S2 (identifying the upper closed
hemisphere of S3 with D3), and then a smooth equivariant g : S2 → S2

by restricting f̂ to the boundary of D3.

Lemma (Lemma 8)

If g : S2 → S2 is a smooth equivariant map, then there exists a smooth
equivariant g† : S2 → S2 which preserves the upper and lower
hemispheres of S2.

We shall then extend g† to all of D3, “interpolating” between g† on S2

and f̂ on a shrunken D3.
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Borsuk–Ulam theorem Case n = 3

Proof of Lemma 8

(Equivariant g : S2 → S2 =⇒ hemisphere preserving g†.)

Choose ±A in target S2 such that g−1(±A) are finite.
Choose ±B (wlog N and S poles) in domain S2 s.t. merdinial
projections of g−1(±A) on standard equator E are distinct.
Apply Lemma 3 with X = g−1(A): ∃ equivariant diffeo ψ : S2 → S2

s.t. g−1(A) ⊆ ψ(S2
+).

So g∗ := g ◦ψ is a smooth equivariant selfmap of S2; g−1
∗ (A) ⊆ S2

+.
Let g̃ : E → E be the meridinial projection of g∗(x) on E .
(Well-defined since g−1

∗ (±A) ∩ E = ∅.) Then g̃ smooth and
equivariant.

We next extend g̃ to a small strip around E :
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Borsuk–Ulam theorem Case n = 3

Extend g̃ to a small strip around E ; and then to all of S2.

For x ∈ S2 let l(x) ∈ [−π/2, π/2] denote its latitude with respect to
E .
For x 6= ±B, let x denote its meridinial projection on E .
For 0 < r < π/2 let Er = {x ∈ S2 : |l(x)| ≤ r}.
Consider only r so small that Er ∩ g−1

∗ (±A) = ∅. Let
d = dist (±A,g∗(E)).
Since g∗ is uniformly continuous, there is an r > 0 such that for
x ∈ Er we have d(g∗(x),g∗(x)) < d/10.
Now extend g̃ to Er by defining g̃(x) to be the point with the same
longitude (merdinial projection) as g̃(x) and with latitude πl(x)/2r .
This extension is still equivariant and smooth.
Define g̃(x) = A for l(x) > r and g̃(x) = −A for l(x) < −r . Then g̃
is continuous, equivariant, preserves the upper and lower
hemispheres and – except possibly on the sets {x : l(x) = ±r} –
is smooth.
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Borsuk–Ulam theorem Case n = 3

Thus g̃ satisfies all the properties we needed for g† except for
smoothness.

We shall need to sort this out and to also simultaneously establish an
auxiliary property of g̃ which we’ll need for the interpolation step to
work.

Claim: For all x ∈ S2, g̃(x) 6= −g∗(x).
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Borsuk–Ulam theorem Case n = 3

Claim: For all x ∈ S2, g̃(x) 6= −g∗(x).

Consider, for x ∈ Er , the three points g∗(x), g∗(x) and g̃(x).
Now g∗(x) and g̃(x) are on the same meridian, and g∗(x) is
distant at least d from ±A.
On the other hand, g∗(x) is at most d/10 from g∗(x).
Thus g∗(x) is at least 9d/10 from ±A and lives in a
d/10-neighbourhood of the common meridian containing g∗(x)
and g̃(x).
So for x ∈ Er , g∗(x) cannot equal −g̃(x).
For l(x) > r we have g̃(x) = A and g∗(x) 6= −A because g−1

∗ (−A)
is contained in the lower hemisphere.
Similarly for l(x) < −r , g̃(x) 6= −g∗(x). Thus for all x ∈ S2 we have
g̃(x) 6= −g∗(x).
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Borsuk–Ulam theorem Case n = 3

Mollify g̃ in small neighbourhoods of {x : l(x) = ±r} (and then
renormalise to ensure that the target space remains S2 !) to obtain g†

which is smooth, equivariant, preserves the upper and lower
hemispheres and, being uniformly very close to g̃, is such that
g†(x) 6= −g∗(x) for all x .

Hence we also have, with ψ as above,

g†(x) 6= −(g ◦ ψ)(x) for all x .

Let ψt be a smooth family of diffeomorphisms interpolating between
ψ0 = I and ψ1 = ψ.
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Borsuk–Ulam theorem Case n = 3

With this in hand, the proposition follows by defining, for x ∈ S2 and
0 ≤ t ≤ 1, f̃ : D3 → S2 by

f̃ (tx) =
(3t − 2)g†(x) + (3− 3t)(g ◦ ψ)(x)

|(3t − 2)g†(x) + (3− 3t)(g ◦ ψ)(x)|
when 2/3 ≤ t ≤ 1,

f̃ (tx) = g ◦ ψ3t−1(x) when 1/3 ≤ t ≤ 2/3

and
f̃ (tx) = f̂ (3tx) when 0 ≤ t ≤ 1/3.

This makes sense because for 2/3 ≤ t ≤ 1 we have
(3t − 2)g†(x) + (3− 3t)(g ◦ ψ)(x) 6= 0; then f̃ has all the desired
properties of f † (including continuity) except possibly for smoothness at
t = 1/3 and 2/3. To rectify this we mollify f̃ in a small neighbourhood
of {t = 1/3} and {t = 2/3} and renormalise once more to ensure that
the target space is indeed still S2. The resulting f † now has all the
properties we need.
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An application

Borsuk–Ulam again

Theorem (Borsuk–Ulam)

If F : SM → RM is continuous, then there is some x with F (x) = F (−x).

So if F is also odd, i.e. F (−x) = −F (x) for all x , then there is some x
with F (x) = 0.

Trivially the same applies to functions F : SM → RN with M ≥ N – just
add extra zero components of F until there are M of them.
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An application

A typical application

Theorem (Ham Sandwich Theorem)

Suppose we have open sets U1, . . . ,Un in Rn. Then there exists a
hyperplane bisecting each Uj .

If P is a hyperplane {x : a0 + a1x1 + · · ·+ anxn = 0}, let
P+ = {x : a0 + a1x1 + · · ·+ anxn > 0} and similarly for P−. Note that
changing the signs of all the coefficients swaps P±. We say P bisects
U if |U ∩ P+| = |U ∩ P−|.
Every point a = (a0, . . . ,an) ∈ Sn ⊆ Rn+1 corresponds to some
hyperplane Pa.

Then the map

a 7→

{∫
Uj∩P+

a

1−
∫

Uj∩P−a
1

}n

j=1

is a continuous odd map from Sn to Rn and so there is an a which
maps to zero.
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An application

So, given n 1-separated unit balls B1, . . . ,Bn in Rn, there is a degree 1
algebraic hypersurface (i.e. a hyperplane!) Z such that

Hn−1(Z ∩ Bj) ≥ Cn.

Here, Hn−1 denotes n − 1-dimensional surface area.

More generally, if we have many more balls than the dimension n, can
we find an algebraic hypersurface Z – not of degree 1 but of controlled
degree – such that

Hn−1(Z ∩ B) ≥ Cn

for all B?
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An application

Yes!

In fact, we have:

Proposition (Stone-Tukey, Gromov)

Suppose we have N � n 1-separated unit balls B in Rn. Then there
exists an algebraic hypersurface Z such that

(i) deg Z ≤ CnN1/n

and

(ii) Hn−1(Z ∩ B) ≥ Cn

for all B.
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An application

Proof of Proposition

Given 1-separated {x1, . . . , xN} ⊆ Rn. Then there is a p with deg
p ≤ CnN1/n and zero set Z such that Hn−1(Z ∩ B(xj ,1)) ≥ Cn for all j .

Consider the map

F : p 7→

{∫
{p>0}∩B(xj ,1)

1−
∫
{p<0}∩B(xj ,1)

1

}
j

defined on Xd ,n = { polys of degree ≤ d in n real variables}.
Clearly F is continuous, homogeneous of degree 0 and odd.

So we can think of F as
F : SM → RN

where SM – with M + 1 =
(n+d

n

)
∼ dn – is the unit sphere of Xd ,n.

So by Borsuk–Ulam, if M ≥ N, then F vanishes at some p.

For such p (which we can choose with deg p ≤ CnN1/n) we have
Hn−1(Z ∩ B(xj ,1)) ≥ Cn for all j .
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A question

We’ve seen that given N � n 1-separated unit balls B in Rn, then there
exists an algebraic hypersurface Z such that

(i) deg Z ≤ CnN1/n

and
(ii) Hn−1(Z ∩ B) ≥ Cn

for all B.

What about a version of this “with multiplicities”?

That is, given 1-separated unit balls Bj in Rn and given Mj ≥ 1, can we
find an algebraic hypersurface Z such that

(i) deg Z ≤ Cn

∑
j

Mn
j

1/n

and
(ii) Hn−1(Z ∩ Bj) ≥ CnMj

for all j?
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A question

Proposition

Given 1-separated unit balls Bj in Rn and given Mj ≥ 1, we can find an
algebraic hypersurface Z such that

(i) deg Z ≤ Cn

∑
j

Mn
j

1/n

and
(ii) Hn−1(Z ∩ Bj) ≥ CnMj

for all j

Proof.
Chop each Bj into Mn

j equal sub-balls and apply the same strategy: we

obtain Mn
j contributions of M−(n−1)

j to Z ∩ Bj and the total number of
constraints is

∑
j Mn

j .
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A question

A Qusetion

Let Se(Z ) be the component of surface area of Z in the direction
perpendicular to the unit vector e. Let {ej(Q)} be any approximate
orthonormal basis and let Sj(Q) = Sej (Z ∩Q).

By the G.M./A.M. inequality we have
n∏

j=1

Sj(Q)1/n ≤ Cn

n∑
j=1

Sj(Q) ∼ Hn−1(Z ∩Q)

because the directions involved in the Sj are approximately
orthonormal.

So a harder task is, given M, to find a polynomial p of degree at most
Cn

(∑
Q M(Q)n)1/n, with zero set Z , such that

M(Q) ≤ Cn

n∏
j=1

Sj(Q)1/n for all Q ∈ supp M.
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A question

Algebraic geometry and algebraic topology

Something close to this is indeed true and is a consequence of work of
Guth on the multilinear Kakeya problem.

However, the argument currently relies upon the whole machinery of
algebraic topology. Some of the tools needed:

Z2 -cohomology
Covering spaces
Cup products
Lusternik–Schnirelmann theory
Commutative diagrams and long exact sequences

Is there an “elementary” proof of this result appealing directly to
Borsuk–Ulam?
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