The Borsuk–Ulam Theorem

Anthony Carbery

University of Edinburgh & Maxwell Institute for Mathematical Sciences

May 2010

Outline

2 Borsuk–Ulam theorem

- Introduction
- Case *n* = 2
- Dimensional reduction
- Case *n* = 3

3 An application

The Brouwer fixed point theorem states that every continuous map $f: \mathbb{D}^n \to \mathbb{D}^n$ has a fixed point.

When n = 1 this is a trivial consequence of the intermediate value theorem.

In higher dimensions, if not, then for some *f* and all $x \in \mathbb{D}^n$, $f(x) \neq x$.

So the map $\tilde{f} : \mathbb{D}^n \to \mathbb{S}^{n-1}$ obtained by sending *x* to the unique point on \mathbb{S}^{n-1} on the line segment starting at f(x) and passing through *x* is continuous, and when restricted to the boundary $\partial \mathbb{D}^n = \mathbb{S}^{n-1}$ is the identity.

So to prove the Brouwer fixed point theorem it suffices to show there is **no** map $g : \mathbb{D}^n \to \mathbb{S}^{n-1}$ which restricted to the boundary \mathbb{S}^{n-1} is the identity. (In fact, this is an equivalent formulation.)

It is enough, by a standard approximation argument, to prove that there is no **smooth** (C^1) map $g : \mathbb{D}^n \to \mathbb{S}^{n-1}$ which restricted to the boundary \mathbb{S}^{n-1} is the identity.

Consider, for Dg the derivative matrix of g,

 $\int_{\mathbb{D}^n} \det Dg.$

This is zero as Dg has less than full rank at each $x \in \mathbb{D}^n$.

So

$$0=\int_{\mathbb{D}^n}\det Dg=\int_{\mathbb{D}^n}dg_1\wedge dg_2\wedge\cdots\wedge dg_n,$$

which, by Stokes' theorem equals

$$\int_{\mathbb{S}^{n-1}} g_1 dg_2 \wedge \cdots \wedge dg_n.$$

This quantity depends only the behaviour of g_1 on \mathbb{S}^{n-1} , and, by symmetry, likewise depends only on the restrictions of g_2, \ldots, g_n to \mathbb{S}^{n-1} .

But on \mathbb{S}^{n-1} , *g* is the identity *I*, so that reversing the argument, this quantity also equals

$$\int_{\mathbb{D}^n} \det DI = |\mathbb{D}^n|.$$

This argument is essentially due to E. Lima. Is there a similarly simple proof of the Borsuk–Ulam theorem via Stokes' theorem?

Borsuk–Ulam theorem

The Borsuk–Ulam theorem states that for every continuous map $f : \mathbb{S}^n \to \mathbb{R}^n$ there is some *x* with f(x) = f(-x). When n = 1 this is a trivial consequence of the intermediate value theorem.

In higher dimensions, it again suffices to prove it for smooth *f*.

So assume *f* is smooth and $f(x) \neq f(-x)$ for all *x*. Then

$$\tilde{f}(x) := \frac{f(x) - f(-x)}{|f(x) - f(-x)|}$$

is a smooth map $\tilde{f} : \mathbb{S}^n \to \mathbb{S}^{n-1}$ such that $\tilde{f}(-x) = -\tilde{f}(x)$ for all x, i.e. \tilde{f} is *odd, antipodal* or *equivariant* with respect to the map $x \mapsto -x$.

So it's ETS there is no equivariant smooth map $h : \mathbb{S}^n \to \mathbb{S}^{n-1}$, or, equivalently, there is no smooth map $g : \mathbb{D}^n \to \mathbb{S}^{n-1}$ which is equivariant on the boundary.

Equivalent to Borsuk–Ulam theorem; BU generalises Brouwer fixed point thorem (since the identity map is equivariant).

WTS there does not exist a smooth $g : \mathbb{D}^2 \to \mathbb{S}^1$ such that g(-x) = -g(x) for $x \in \mathbb{S}^1$. If there did exist such a g, consider

$$\int_{\mathbb{D}^2} \det Dg = \int_{\mathbb{D}^2} dg_1 \wedge dg_2.$$

This is zero as Dg has less than full rank at each x, and it equals, by Stokes' theorem,

$$\int_{\mathbb{S}^1} g_1 dg_2 = - \int_{\mathbb{S}^1} g_2 dg_1.$$

So it's enough to show that

$$\int_0^1 (g_1(t)g_2'(t) - g_2(t)g_1'(t))dt \neq 0$$

$$g = (g_1, g_2) : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1 \text{ satisfying } g(t+1/2) = -g(t) \text{ for all}$$

$$\leq t \leq 1.$$

for

ETS

$$\int_0^1 (g_1(t)g_2'(t) - g_2(t)g_1'(t))dt \neq 0$$

for $g = (g_1, g_2) : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ satisfying g(t + 1/2) = -g(t) for all $0 \le t \le 1$.

Clearly

$$(g_1(t)g'_2(t) - g_2(t)g'_1(t))dt$$

represents the element of net arclength for the curve $(g_1(t), g_2(t))$ measured in the anticlockwise direction. (Indeed, |g| = 1 implies $\langle g, g' \rangle = \frac{1}{2} \frac{d}{dt} |g|^2 = 0$, so that $\det(g, g') = \pm |g||g'| = \pm |g'|$, with the plus sign occuring when g is moving anticlockwise.) By equivariance, $(g_1(1/2), g_2(1/2)) = -(g_1(0), g_2(0))$, and

$$\int_0^1 g_1(t)g_2'(t)dt = 2\int_0^{1/2} g_1(t)g_2'(t)dt.$$

In passing from $(g_1(0), g_2(0))$ to $(g_1(1/2), g_2(1/2))$ the total net arclength traversed is clearly an odd multiple of π , and so we're done.

Theorem (Shchepin)

Suppose $n \ge 4$ and there exists a smooth equivariant map $f : \mathbb{S}^n \to \mathbb{S}^{n-1}$. Then there exists a smooth equivariant map $\tilde{f} : \mathbb{S}^{n-1} \to \mathbb{S}^{n-2}$.

Once this is proved, only the case n = 3 of the Borsuk–Ulam theorem remains outstanding.

Starting with *f*, we shall identify suitable equators $E_{n-1} \subseteq \mathbb{S}^n$ and $E_{n-2} \subseteq \mathbb{S}^{n-1}$, and build a smooth equivariant map $\tilde{f} : E_{n-1} \to E_{n-2}$.

We first need to know that there is some pair of antipodal points $\{\pm A\}$ in the target \mathbb{S}^{n-1} whose preimages under *f* are covered by finitely many diffeomorphic copies of (-1, 1). This is intuitively clear by dimension counting (WMA *f* is onto!) but for rigour we can appeal to Sard's theorem.

For $x \in f^{-1}(A)$ and $y \in f^{-1}(-A) = -f^{-1}(A)$ with $y \neq -x$, consider the unique geodesic great circle joining *x* to *y*. The family of such is clearly indexed by the two-parameter family of points of

$$f^{-1}(A) imes f^{-1}(-A) \setminus \{(x, -x) : f(x) = A\}.$$

Their union is therefore a manifold in \mathbb{S}^n of dimension at most three. Since $n \ge 4$ there must be points $\pm B \in \mathbb{S}^n$ outside this union (and necessarily outside $f^{-1}(A) \cup f^{-1}(-A)$). Such a point has the property that *no* geodesic great circle passing through it meets points of both $f^{-1}(A)$ and $f^{-1}(-A)$ other than possibly at antipodes. In particular, no *meridian* joining $\pm B$ meets both $f^{-1}(A)$ and $f^{-1}(-A)$.

We now identify E_{n-2} as the equator of \mathbb{S}^{n-1} whose equatorial plane is perpendicular to the axis joining *A* to -A; and we identify E_{n-1} as the equator of \mathbb{S}^n whose equatorial plane is perpendicular to the axis joining *B* to -B. We assume for simplicity that *B* is the north pole $(0, 0, \dots, 0, 1)$.

Lemma (Lemma 1)

Suppose $B = (0, 0, ..., 0, 1) \in \mathbb{S}^n$ and that $X \subseteq \mathbb{S}^n$ is a closed subset such that no meridian joining $\pm B$ meets both X and -X. Let \mathbb{S}^n_{\pm} denote the open upper and lower hemispheres respectively. Then there is an equivariant diffeomorphism $\psi : \mathbb{S}^n \to \mathbb{S}^n$ such that

 $X \subseteq \psi(\mathbb{S}^n_+).$

Remark 1. It is clear that we may assume that ψ fixes meridians and acts as the identity on small neighbourhoods of $\pm B$.

Remark 2. It is also clear from the proof that we can find a smooth family of diffeomorphisms ψ_t such that ψ_0 is the identity and $\psi_1 = \psi$.

We shall need this later.

Lemma

Suppose $B = (0, 0, ..., 0, 1) \in \mathbb{S}^n$ and that $X \subseteq \mathbb{S}^n$ is a closed subset such that no meridian joining $\pm B$ meets both X and -X. Let \mathbb{S}^n_{\pm} denote the open upper and lower hemispheres respectively. Then there is an equivariant diffeomorphism $\psi : \mathbb{S}^n \to \mathbb{S}^n$ such that

 $X \subseteq \psi(\mathbb{S}^n_+).$

Continuing with the proof of the theorem, we apply the lemma with $X = f^{-1}(A)$. Let ϕ be restriction of ψ to $E = E_{n-1}$. Consider the restriction \hat{f} of f to $\phi(E)$: it has the property that $\hat{f}(\phi(E))$ does not contain $\pm A$. Let r be the standard retraction of $\mathbb{S}^{n-1} \setminus \{\pm A\}$ onto its equator E_{n-2} ; finally let

$$\widetilde{f} = r \circ \widehat{f} \circ \phi,$$

which is clearly smooth and equivariant.

Proof of Lemma

See the pictures on the blackboard!

The Sard argument

WTS there is some pair of antipodal points $\{\pm A\}$ in the target \mathbb{S}^{n-1} whose preimages under *f* are at most "one-dimensional", i.e. covered by finitely many diffeomorphic copies of (-1, 1).

Sard's theorem tells us that the image under *f* of the set $\{x \in \mathbb{S}^n : \text{rank } Df(x) < n-1\}$ is of Lebesgue measure zero: so there are plenty of points $A \in \mathbb{S}^{n-1}$ at all of whose preimages x – if there are any at all – Df(x) has full rank n - 1. By the implicit function theorem, for each such *x* there is a neighbourhood B(x, r) such that $B(x, r) \cap f^{-1}(A)$ is diffeomorphic to the interval (-1, 1). The whole of the compact set $f^{-1}(A)$ is covered by such balls, from which we can extract a finite subcover: so indeed $f^{-1}(A)$ is covered by finitely many diffeomorphic copies of (-1, 1).

Proposition (Shchepin)

Suppose that $f : \mathbb{S}^3 \to \mathbb{S}^2$ is a smooth equivariant map. Then there exists a smooth $f^{\dagger} : \mathbb{D}^3 \to \mathbb{S}^2$ which is equivariant on $\partial \mathbb{D}^3 = \mathbb{S}^2$, and moreover maps \mathbb{S}^2_{\pm} to itself.

Discussion: By identifying the closed upper hemisphere of \mathbb{S}^3 with the closed disc \mathbb{D}^3 we obtain a smooth map

$$\widehat{f}:\mathbb{D}^3 o\mathbb{S}^2$$

which is equivariant on $\partial \mathbb{D}^3 = \mathbb{S}^2$.

Then the restriction of \hat{f} to $\partial \mathbb{D}^3 = \mathbb{S}^2$ gives a smooth equivariant map $g: \mathbb{S}^2 \to \mathbb{S}^2$. If we could take g to be the identity, we would be finished – the argument given for the Brouwer fixed point theorem showed that no such \hat{f} exists.

We cannot hope for this, but we can hope to "improve" the properties of g so that a similar argument will work. What we need more precisely is that g maps \mathbb{S}^2_{\pm} to itself.

Proposition implies BU

Suppose there existed a smooth map $f^{\dagger} : \mathbb{D}^3 \to \mathbb{S}^2 \subseteq \mathbb{R}^3$ which was equivariant on $\partial \mathbb{D}^3 = \mathbb{S}^2$, and mapped \mathbb{S}^2_{\pm} to itself.

Let *C* be the cylinder $\mathbb{D}^2 \times [-1, 1]$ in \mathbb{R}^3 with top and bottom faces D_{\pm} and curved vertical boundary $V = \mathbb{S}^1 \times [-1, 1]$. Let S_{\pm} be the upper and lower halves of $S = \partial C$. Let *E* be the equator of *S*.

Now *C*, with the all points on each vertical line of *V* identified, is diffeomorphic to \mathbb{D}^3 , and *S* is also diffeomorphic to \mathbb{S}^2 .

Lemma

There is no smooth map $f : C \to S$ which is equivariant on ∂C , which is constant on vertical lines in V and which maps D_{\pm} into S_{\pm} .

Proposition

There is no smooth map $f : C \to S$ which is equivariant on ∂C , which is constant on vertical lines in V and which maps D_{\pm} into S_{\pm} .

If such an f existed, then

$$\int_C \det D f = \int_C df_1 \wedge df_2 \wedge df_3$$

where *Df* is the derivative matrix of *f*. On the one hand this is zero as *Df* has less than full rank at almost every $x \in C$, and on the other hand it equals, by Stokes' theorem,

$$\int_{\partial C} f_3 df_1 \wedge df_2 = \int_V f_3 df_1 \wedge df_2 + 2 \int_{D_+} f_3 df_1 \wedge df_2$$

by equivariance.

$$0 = \int_V f_3 df_1 \wedge df_2 + 2 \int_{D_+} f_3 df_1 \wedge df_2$$

Now *f* maps *V* into *E*, so that $f_3 = 0$ on *V*, and the first term on the right vanishes.

As for the second term,

$$\int_{D_+} f_3 df_1 \wedge df_2 = \int_{D_+ \cap \{x : f_3(x) = 1\}} f_3 df_1 \wedge df_2 + \int_{D_+ \cap \{x : f_3(x) < 1\}} f_3 df_1 \wedge df_2.$$

The region of D_+ on which $f_3(x) < 1$ consists of patches on which $f_1^2(x) + f_2^2(x) = 1$, and so $2f_1 df_1 + 2f_2 df_2 = 0$. Taking exterior products with df_1 and df_2 tells us that on such patches we have $f_1 df_1 \wedge df_2 = f_2 df_1 \wedge df_2 = 0$. Multiplying by f_1 and f_2 and adding we get that $h df_1 \wedge df_2 = 0$ for all h supported on a patch on which $f_3(x) < 1$. So for any h we have

$$\int_{D_+ \cap \{x : f_3(x) < 1\}} h \, df_1 \wedge df_2 = 0.$$

$$\int_{D_{+}} f_{3} df_{1} \wedge df_{2} = \int_{D_{+} \cap \{x : f_{3}(x) = 1\}} df_{1} \wedge df_{2}$$
$$= \int_{D_{+} \cap \{x : f_{3}(x) = 1\}} df_{1} \wedge df_{2} + \int_{D_{+} \cap \{x : f_{3}(x) < 1\}} df_{1} \wedge df_{2}$$
$$= \int_{D_{+}} df_{1} \wedge df_{2}.$$

By Stokes' theorem once again we have

$$\int_{D_+} df_1 \wedge df_2 = \int_{\partial D_+} f_1 df_2 = - \int_{\partial D_+} f_2 df_1,$$

and, since *f* restricted to ∂D_+ is equivariant, this quantity is nonzero (and indeed is an odd multiple of π), by the remarks in the proof of the case n = 2 above.

So no such *f* exists and we are done.

()

Proof of Proposition

Proposition (Shchepin)

Suppose that $f : \mathbb{S}^3 \to \mathbb{S}^2$ is a smooth equivariant map. Then there exists a smooth $f^{\dagger} : \mathbb{D}^3 \to \mathbb{S}^2$ which is equivariant on $\partial \mathbb{D}^3 = \mathbb{S}^2$, and moreover maps \mathbb{S}^2_{\pm} to itself.

Recall that *f* induces first $\hat{f} : \mathbb{D}^3 \to \mathbb{S}^2$ (identifying the upper closed hemisphere of \mathbb{S}^3 with \mathbb{D}^3), and then a smooth equivariant $g : \mathbb{S}^2 \to \mathbb{S}^2$ by restricting \hat{f} to the boundary of \mathbb{D}^3 .

Lemma (Lemma 8)

If $g : \mathbb{S}^2 \to \mathbb{S}^2$ is a smooth equivariant map, then there exists a smooth equivariant $g^{\dagger} : \mathbb{S}^2 \to \mathbb{S}^2$ which preserves the upper and lower hemispheres of \mathbb{S}^2 .

We shall then extend g^{\dagger} to all of \mathbb{D}^3 , "interpolating" between g^{\dagger} on \mathbb{S}^2 and \hat{f} on a shrunken \mathbb{D}^3 .

Proof of Lemma 8

(Equivariant $g: \mathbb{S}^2 \to \mathbb{S}^2 \implies$ hemisphere preserving g^{\dagger} .)

- Choose $\pm A$ in target \mathbb{S}^2 such that $g^{-1}(\pm A)$ are finite.
- Choose ±B (wlog N and S poles) in domain S² s.t. merdinial projections of g⁻¹(±A) on standard equator E are distinct.
- Apply Lemma 3 with X = g⁻¹(A): ∃ equivariant diffeo ψ : S² → S² s.t. g⁻¹(A) ⊆ ψ(S²₊).
- So $g_* := g \circ \psi$ is a smooth equivariant selfmap of \mathbb{S}^2 ; $g_*^{-1}(A) \subseteq \mathbb{S}^2_+$.
- Let *g̃* : *E* → *E* be the meridinial projection of *g*_{*}(*x*) on *E*.
 (Well-defined since *g*⁻¹_{*}(±*A*) ∩ *E* = Ø.) Then *g̃* smooth and equivariant.

We next extend \tilde{g} to a small strip around *E*:

Extend \tilde{g} to a small strip around E; and then to all of \mathbb{S}^2 .

- For x ∈ S² let l(x) ∈ [-π/2, π/2] denote its latitude with respect to E.
- For $x \neq \pm B$, let \overline{x} denote its meridinial projection on *E*.
- For $0 < r < \pi/2$ let $E_r = \{x \in \mathbb{S}^2 : |I(x)| \le r\}$.
- Consider only *r* so small that $E_r \cap g_*^{-1}(\pm A) = \emptyset$. Let $d = \text{dist}(\pm A, g_*(E))$.
- Since g_* is uniformly continuous, there is an r > 0 such that for $x \in E_r$ we have $d(g_*(x), g_*(\overline{x})) < d/10$.
- Now extend *ğ* to *E_r* by defining *ğ̃(x)* to be the point with the same longitude (merdinial projection) as *ğ̃(x̄)* and with latitude *πI(x)/2r*. This extension is still equivariant and smooth.
- Define g̃(x) = A for l(x) > r and g̃(x) = −A for l(x) < −r. Then g̃ is continuous, equivariant, preserves the upper and lower hemispheres and except possibly on the sets {x : l(x) = ±r} is smooth.

- Thus \tilde{g} satisfies all the properties we needed for g^{\dagger} except for smoothness.
- We shall need to sort this out and to also simultaneously establish an auxiliary property of \tilde{g} which we'll need for the interpolation step to work.
- **Claim:** For all $x \in \mathbb{S}^2$, $\tilde{g}(x) \neq -g_*(x)$.

Claim: For all $x \in \mathbb{S}^2$, $\tilde{g}(x) \neq -g_*(x)$.

- Consider, for $x \in E_r$, the three points $g_*(x)$, $g_*(\overline{x})$ and $\tilde{g}(x)$.
- Now g_{*}(x̄) and g̃(x) are on the same meridian, and g_{*}(x̄) is distant at least *d* from ±*A*.
- On the other hand, $g_*(x)$ is at most d/10 from $g_*(\overline{x})$.
- Thus $g_*(x)$ is at least 9d/10 from $\pm A$ and lives in a d/10-neighbourhood of the common meridian containing $g_*(\overline{x})$ and $\tilde{g}(x)$.
- So for $x \in E_r$, $g_*(x)$ cannot equal $-\tilde{g}(x)$.
- For I(x) > r we have $\tilde{g}(x) = A$ and $g_*(x) \neq -A$ because $g_*^{-1}(-A)$ is contained in the lower hemisphere.
- Similarly for l(x) < -r, $\tilde{g}(x) \neq -g_*(x)$. Thus for all $x \in \mathbb{S}^2$ we have $\tilde{g}(x) \neq -g_*(x)$.

Mollify \tilde{g} in small neighbourhoods of $\{x : l(x) = \pm r\}$ (and then renormalise to ensure that the target space remains \mathbb{S}^2 !) to obtain g^{\dagger} which is smooth, equivariant, preserves the upper and lower hemispheres and, being uniformly very close to \tilde{g} , is such that $g^{\dagger}(x) \neq -g_*(x)$ for all x.

Hence we also have, with ψ as above,

$$g^{\dagger}(x) \neq -(g \circ \psi)(x)$$
 for all x .

Let ψ_t be a smooth family of diffeomorphisms interpolating between $\psi_0 = I$ and $\psi_1 = \psi$.

With this in hand, the proposition follows by defining, for $x \in S^2$ and $0 \le t \le 1$, $\tilde{f} : \mathbb{D}^3 \to S^2$ by

$$ilde{f}(tx) = rac{(3t-2)g^{\dagger}(x) + (3-3t)(g\circ\psi)(x)}{|(3t-2)g^{\dagger}(x) + (3-3t)(g\circ\psi)(x)|} ext{ when } 2/3 \leq t \leq 1,$$

$$\widetilde{f}(tx) = \boldsymbol{g} \circ \psi_{3t-1}(x)$$
 when $1/3 \leq t \leq 2/3$

and

$$\tilde{f}(tx) = \hat{f}(3tx)$$
 when $0 \le t \le 1/3$.

This makes sense because for $2/3 \le t \le 1$ we have $(3t-2)g^{\dagger}(x) + (3-3t)(g \circ \psi)(x) \ne 0$; then \tilde{f} has all the desired properties of f^{\dagger} (including continuity) except possibly for smoothness at t = 1/3 and 2/3. To rectify this we mollify \tilde{f} in a small neighbourhood of $\{t = 1/3\}$ and $\{t = 2/3\}$ and renormalise once more to ensure that the target space is indeed still \mathbb{S}^2 . The resulting f^{\dagger} now has all the properties we need.

Borsuk–Ulam again

Theorem (Borsuk–Ulam)

If $F : \mathbb{S}^M \to \mathbb{R}^M$ is continuous, then there is some x with F(x) = F(-x).

So if *F* is also odd, i.e. F(-x) = -F(x) for all *x*, then there is some *x* with F(x) = 0.

Trivially the same applies to functions $F : \mathbb{S}^M \to \mathbb{R}^N$ with $M \ge N$ – just add extra zero components of F until there are M of them.

A typical application

Theorem (Ham Sandwich Theorem)

Suppose we have open sets U_1, \ldots, U_n in \mathbb{R}^n . Then there exists a hyperplane bisecting each U_j .

If *P* is a hyperplane $\{x : a_0 + a_1x_1 + \dots + a_nx_n = 0\}$, let $P^+ = \{x : a_0 + a_1x_1 + \dots + a_nx_n > 0\}$ and similarly for P^- . Note that changing the signs of all the coefficients swaps P^{\pm} . We say *P* bisects *U* if $|U \cap P^+| = |U \cap P^-|$.

Every point $\mathbf{a} = (a_0, \dots, a_n) \in \mathbb{S}^n \subseteq \mathbb{R}^{n+1}$ corresponds to some hyperplane $P_{\mathbf{a}}$.

Then the map

$$\mathbf{a} \mapsto \left\{ \int_{U_j \cap P_{\mathbf{a}}^+} 1 - \int_{U_j \cap P_{\mathbf{a}}^-} 1 \right\}_{j=1}^n$$

is a continuous odd map from \mathbb{S}^n to \mathbb{R}^n and so there is an **a** which maps to zero.

So, given *n* 1-separated unit balls B_1, \ldots, B_n in \mathbb{R}^n , there is a degree 1 algebraic hypersurface (i.e. a hyperplane!) *Z* such that

$$\mathcal{H}_{n-1}(Z \cap B_j) \geq C_n.$$

Here, \mathcal{H}_{n-1} denotes n-1-dimensional surface area.

More generally, if we have *many more* balls than the dimension n, can we find an algebraic hypersurface Z – not of degree 1 but of *controlled degree* – such that

 $\mathcal{H}_{n-1}(Z \cap B) \geq C_n$

for all B?

Yes!

In fact, we have:

Proposition (Stone-Tukey, Gromov)

Suppose we have $N \gg n$ 1-separated unit balls B in \mathbb{R}^n . Then there exists an algebraic hypersurface Z such that

(i) deg $Z \leq C_n N^{1/n}$

and

(ii) $\mathcal{H}_{n-1}(Z \cap B) \geq C_n$

for all B.

Proof of Proposition

Given 1-separated $\{x_1, \ldots, x_N\} \subseteq \mathbb{R}^n$. Then there is a *p* with deg $p \leq C_n N^{1/n}$ and zero set *Z* such that $\mathcal{H}^{n-1}(Z \cap B(x_j, 1)) \geq C_n$ for all *j*.

Consider the map

$$F: p \mapsto \left\{ \int_{\{p>0\} \cap B(x_j, 1)} 1 - \int_{\{p<0\} \cap B(x_j, 1)} 1 \right\}_j$$

defined on $X_{d,n} = \{$ polys of degree $\leq d$ in *n* real variables $\}$. Clearly *F* is continuous, homogeneous of degree 0 and odd. So we can think of *F* as

$$\mathsf{F}:\mathbb{S}^{\mathsf{M}}
ightarrow\mathbb{R}^{\mathsf{N}}$$

where \mathbb{S}^M – with $M + 1 = \binom{n+d}{n} \sim d^n$ – is the unit sphere of $X_{d,n}$.

So by Borsuk–Ulam, if $M \ge N$, then *F* vanishes at some *p*.

For such *p* (which we can choose with deg $p \le C_n N^{1/n}$) we have $\mathcal{H}^{n-1}(Z \cap B(x_j, 1)) \ge C_n$ for all *j*.

A question

We've seen that given $N \gg n$ 1-separated unit balls *B* in \mathbb{R}^n , then there exists an algebraic hypersurface *Z* such that

(*i*) deg $Z \leq C_n N^{1/n}$

and

(ii)
$$\mathcal{H}_{n-1}(Z \cap B) \geq C_n$$

for all B.

What about a version of this "with multiplicities"?

That is, given 1-separated unit balls B_j in \mathbb{R}^n and given $M_j \ge 1$, can we find an algebraic hypersurface Z such that

$$(i) \quad \deg Z \leq C_n \left(\sum_j M_j^n
ight)^{1/i}$$

and

(*ii*) $\mathcal{H}_{n-1}(Z \cap B_j) \geq C_n M_j$

for all j?

A question

Proposition

Given 1-separated unit balls B_j in \mathbb{R}^n and given $M_j \ge 1$, we can find an algebraic hypersurface Z such that

(i) deg
$$Z \leq C_n \left(\sum_j M_j^n\right)^{1/r}$$

and

(ii)
$$\mathcal{H}_{n-1}(Z \cap B_j) \geq C_n M_j$$

for all j

Proof.

Chop each B_j into M_j^n equal sub-balls and apply the same strategy: we obtain M_j^n contributions of $M_j^{-(n-1)}$ to $Z \cap B_j$ and the total number of constraints is $\sum_j M_j^n$.

A question

A Qusetion

Let $S_e(Z)$ be the component of surface area of Z in the direction perpendicular to the unit vector e. Let $\{e_j(Q)\}$ be any approximate orthonormal basis and let $S_j(Q) = S_{e_j}(Z \cap Q)$.

By the G.M./A.M. inequality we have

$$\prod_{j=1}^n S_j(Q)^{1/n} \leq C_n \sum_{j=1}^n S_j(Q) \sim \mathcal{H}_{n-1}(Z \cap Q)$$

because the directions involved in the S_j are approximately orthonormal.

So a *harder* task is, given *M*, to find a polynomial *p* of degree at most $C_n \left(\sum_Q M(Q)^n\right)^{1/n}$, with zero set *Z*, such that

$$M(Q) \leq C_n \prod_{j=1}^n S_j(Q)^{1/n}$$
 for all $Q \in \operatorname{supp} M$.

Something close to this is indeed true and is a consequence of work of Guth on the multilinear Kakeya problem.

However, the argument currently relies upon the whole machinery of algebraic topology. Some of the tools needed:

- \mathbb{Z}_2 -cohomology
- Covering spaces
- Oup products
- Lusternik–Schnirelmann theory
- Commutative diagrams and long exact sequences

Is there an "elementary" proof of this result appealing directly to Borsuk–Ulam?