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This talk is based on the work of many physicists.

The more recent material | will present on F-theory
is based on work | have done with my student
Jonathan Heckman, and some of them include
additional colleagues (Chris Beasley, Alireza Tavanfar,
Vincent Bouchard, Jihye Seo, Miranda Cheng,

Sergio Cecotti). Related work includes the work

of Wijnholt and Donagi as well as Tatar etal.



Here | aim to draw a geometric picture of particle physics using
modern ideas of theoretical physics as has been discovered in the
context of string theory. | will start with a series of experimental
facts and discuss how we can embed them in string theory and
what this exercise teaches us.

| will start with the main experimental fact, that has been known
for a long time: The existence of gravitational force. Combining
this fact with the modern age discovery of quantum theory leads
to the natural question of how to understand quantum gravity.

This is precisely the unique defining property of string theory: Itis
currently our only consistent framework of a quantum theory of
gravity.



Another important fact of nature is that gauge symmetry
is an important principle of physics and is the underlying
explanation of all forces in nature (with the exception of
gravitational force). In particular we know that the gauge

symmetry realized at energy scales which are presently
probed in accelerators is:

SU(3)xSU(2)xU(1)

We ask how gauge symmetries are realized in string theory.
It turns out we have a multitude of ways of doing this:
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Another way gauge theory arises in string theory is by having
A-D-E singularities:
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Depending on what is the locus of the A-D-E singularity we
obtain different theories in 4 dimensions. In the context of
F-theory this locus is:






The idea that we can potentially combine the three gauge
groups into one, is an old idea, dating back to the work of




If the couplings of SU(3) and SU(2) and U(1) were
equal, we could have imagined a simpler structure
with a simple group being responsible for the gauge

forces:
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It is well known that the parameters that we measure in
physics depends on scale. This is due to quantum corrections.

This in particular applies to the coupling constants ol;
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Thus even though we start with fixed classical value for the
couplings, in the quantum theory they vary. This is welcome
as it is not true that at the energy scales available in labs
coupling constants are equal.










It is relatively simple to implement the idea of gauge symmetry
breaking in string theory: We simply consider a configuration

in the internal compact geometry of string theory where the

gauge bundle is non-trivial (either by having non-trivial holonomies
or field strengths), leaving a reduced symmetry group at lower
scales.
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There are two specific ways this idea has been implemented:

In the context of heterotic strings, it is natural to break the GUT
group SU(5) by having a U(1) gauge bundle which is flat but
with non-trivial holonomy. This requires the assumption that
the compactification manifold has in particular a non-trivial
fundamental group.
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In this context it is thus natural to identify the unification
scale to be smaller than the scale at which the gauge

bundle ‘breaks’ the gauge symmetry to smaller group.
In other words the scale of unification of forces is a distance

scale where we cannot distinguish the internal gauge
bundle from that of a trivial SU(5) bundle.
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The dictionary for F-theory thus far is the following:

The section of the elliptic fourfold = fano 3-fold

The locus where elliptic fiber degenerates = brane

The Kodaira-type of the singularity=gauge theory on
the brane

This is very encouraging: We can cook up’ whatever
gauge group we desire geometrically!



Matter Fields

matter fields

are sections
of an associated vector bundle

Quarks:: (u;d) (328 ur:(3L%);  dr: (3L 3);

L eptons : (er;°) 1 (L2 3); er : (1;1;i 1); °r 1 (1;1;0);




Another evidence for unification of forces (and in my opinion
a much stronger evidence) is that the matter representations
dramatically simplify by going to a unifying gauge group:
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In fact by going to an even bigger unifying group the
matter representations also unify:

SO(1p) > S UIS)
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How do we get matter fields from string theory?
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The same idea also works in the context of singularities:
Intersecting singularities give rise to matter which lives
on the intersection locus:
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Block diagonal elements of U(n+m) lead to connections
of the U(n)xU(m) . The block

(m,m) + (n,m) .

The generalization of this story to other local Higgs bundles
is simple: We have a codimension 2 locus where two
singularities meet and give rise to a more singular locus, i.e.,
a bigger local gauge group, which is locally Higgsed.
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Matter

So for F-theory matter resides on the loci of colliding
elliptic singularities.




It is relatively easy to get matter fields in the fundamental
representations, or even the rank 2 representations of
classical groups.

7 By B

J(Dx |/ (my S U (met)= 0



But how about the one of special interest for particle physics,
namely the spmor of SO(10)?

& C a-fa-wfzo—-o
\)(|))<SO( 10> C By

‘7‘5—r((o+\é+l — 7%

) N watteY

Exceptional singularities are needed for particle physics!



How many matter fields to we get?




How many does the particle phenomenology suggest?

3 copies of the same representation, i.e. in the SO(10) context

This repetitive structure of nature is very hard to explain
from the viewpoint of particle theory in 4d. It is very satisfying
that string theory offers an elegant explanation of this repetition.



Interactions

In addition to having a matter content we also need
interactions. Of course there are interactions of matter
fields with gauge fields, which simply follows from the fact
that connections enter the covariant derivatives in the
kinetic terms of the matter field Lagrangian. However, we
need more: How does matter receive its mass?

For this to happen we need quadratic terms involving matter
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Instead we need to introduce an additional matter
field (the Higgs field) and consider the cubic term:
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Yukawa Couplings in String Theory

For F-theory the interaction arises as a further enhancement of

the singularity. Namely instead of just two singularities meeting on a
curve to give matter fields, we have three singularities meeting
pairwise on curves and all three meeting at a point. So we have

an interesting hierarchy of structure:

Gravity in 10d = 4+6
Gauge theory 8d=4+4 Sw f‘Qf\ (e
Matter 6d = 4+2 Cu{\'ﬁ/

Interaction 4d = 4+0 yo Im’t.:



Cubic Interactions
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The geometry of the interactions is captured by obstruction theory
of a YM-Higgs bundle geometry characterized by the action:
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We start with a background [)
0







An unexpected mass hierarchy:

2 3 |
PPy T s T -:] (0.003,1.3,170) x eV

(mg, ms.myp) ~ (0.005,0.1,4) x T,L\
(e, my,mr) ~ (0.0005,0.1,1.8) x GeV




So to a good approximation we have one massive and two
massless generations. Can we explain this bizarre fact?




This rank one matrix can be organized as follows:
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