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I will be talking about the gauge theory 
approach to the geometric Langlands
correspondence.

But instead of any sort of overview, I am 
going to focus on just one result and 
explain what is involved in interpreting it in 
terms of supersymmetric quantum gauge 
theory.

(See V. Ginzburg, “Perverse Sheaves On A Loop 
Group And Geometric Langlands Duality,’’ alg-
geom/9511007; also I. Mirkovic and K. Vilonen, 
“Perverse Sheaves On Affine Grassmannians
and Geometric Langlands Duality,” alg-
geom/9911050)



Let us start with a (simple) Lie group        
and its Langlands or Goddard-Nuyts-Olive 
dual group         .   If we write

and          for the respective maximal
tori, then the basic relation between them 
is that

(I first heard of these things from Atiyah in 
visiting Oxford in December, 1977.)



Now let           be an irreducible 
representation of            .  Its highest 
weight is a homomorphism

which corresponds to a homomorphism in 
the opposite direction



We can use 

as a “clutching function” to define a 
holomorphic bundle over  



The bundle     we make this way is trivial if
we delete a single point,     , say the south 

pole, from             .     So          is “a Hecke
modification at      of the trivial bundle over      

” , by which we mean  simply a
bundle                                together 

with a trivialization          of

(that is, of the restriction of       to the 
complement of       ) 



Example:  Suppose that 
Then 

Let us think of a          bundle as a rank
complex vector bundle        but with
an equivalence relation 

for any complex line bundle



Now let us take the representation
to be the obvious         dimensional 
representation of 

In this case, we can describe      as follows.
Let       be a local coordinate at the south
pole on           .            differs  from the trivial
bundle                                        

as follows.



For some one-dimensional subspace
,  a section of         takes the

form, near the south pole,

where         are holomorphic near             .
and 

Clearly, what we have constructed depends
on the choice of       , so we really have

a family of possible     ’ s, parametrized by 



Something like this happens for any choice
of a representation           of the dual group

.  To this representation, we associate
the clutching function

via which we construct a whole family 
of possible Hecke modifications of the
trivial bundle – at a given point on a curve.



This furthermore has a natural 
compactification and geometric
Langlands duality associates the
representation        of the dual group to
the cohomology of               .   Let
us see how this works in our example. 



In our example,            was the    
dimensional representation of

, and                   (which in this
example needs no compactification) is 

.  Not coincidentally, the 
cohomology of                      is of rank     ,

the dimension of         . 

The generators of the cohomology are in
degrees                                                        



Let us shift the degrees by                         so
that they are symmetrically placed around
zero.  Then we see that the degrees of the 

cohomology classes are the eigenvalues
of the diagonal matrix

with the indicated eigenvalues.



One may recognize this matrix; it is an 
element of the Lie algebra of

that generates the maximal torus of, in the
terminology of Kostant, a “principal
subgroup” of 

This is the general state of affairs:  the 
grading by degree of the cohomology of

corresponds to the action of the 
Lie algebra element          on 



The nilpotent “raising operator” of the 
principal             also plays a role.

We recall that in a well-known paper, Atiyah
and Bott used gauge theory to define 
certain universal cohomology classes on 
any family of               bundles over a 
Riemann surface C.   The definition 
applies immediately to             , which  is a 
family of               bundles over

(Hecke modifications of a trivial bundle). 



For now, for simplicity, I’ll just mention a 
special case – a two-dimensional class 
that (for                 ) can also be 
constructed as the first Chern class of the

“determinant line bundle.”
Under the identification of the representation

with the cohomology of               ,
the element          of the cohomology
corresonds to the raising operator of the
principal 



In other words, in our example, it 
corresponds to 

with 1’s just above the main diagonal.



There are more facts of this nature, but 
instead of explaining them all, what I really 
want to do is to explain how one can 
understand them using gauge theory.

Consider a four-manifold  M with an 
embedded one-manifold L:

M

L



We want to study gauge theory on M, 
modified in some way along L.

One “classical” modification is to suppose
that L is the trajectory of a “charged 

particle” in the representation        of the
gauge group         .  Mathematically we 
achieve this by including in the “path 
integral” a factor of the holonomy around

L of the connection A – with a trace in the
chosen representation:



It was essentially shown by ‘t Hooft nearly 
30 years ago that the dual operation in 
G gauge theory is to modify the theory
by requiring the fields to have a certain 
type of singularity along L – this singularity
(which mathematically was first studied by 
Kronheimer in the context of the 
Bogomolny equations) gives a way to 
study Hecke modifications via gauge 
theory.

For the moment, we postpone any details.



To study the representation          , 
separated from some of the wonders of 
four dimensions, it is convenient to take

, where           is
a three-manifold and          parametrizes
the “time.” We similarly take
where          is a point in  



The rest of this lecture is based on a 
“Hamiltonian” point of view in which we 
only talk about       :

We want to make a simple choice of W so 
as to study the representation           and 

not the wonders of three-manifolds.

Wp



One might think that the simplest three-
manifold is        -- we don’t have to worry 
about non-trivial flat connections.  But 
there is a snag: the trivial flat connection

on         has non-trivial automorphisms, 
which cause a complication.

We can avoid these automorphisms if we 
take W to be a three-manifold with 
boundary, with Dirichlet boundary 
conditions.  The gauge group then acts 
freely on the space of connections.



What is the simplest three-manifold with 
boundary?  A three-ball           is an 
obvious contender, but it turns out to be 
easier to take 

where       is a unit interval. 

p
W



Now we need boundary conditions at the two 
ends, which we need to pick so that 

(i) gauge transformations act freely; (ii) there are 
no non-trivial flat connections.

Here (i) fails if we use Neumann at both ends (i.e. 
free boundary conditions), and

(ii) fails if we use Dirichlet at both ends
(Dirichlet means that the connection is trivialized 
on the boundary, and gauge transformations 
equal 1 there).

So we pick, say, Neumann on the left and Dirichlet
on the right. 



Now what are we going to do on the three-
manifold W?  

The answer – assuming we mean to study 
the twisted topological field theory relevant 
to geometric Langlands – is that we study 
the Bogomolny equations
of gauge group G, with a certain 
singularity at the point p.  On the G side, 
these are the conditions for 
supersymmetry in this twisted theory.



The Bogomolny equations are certain 
equations of mathematical physics for a 
pair               , where       is a connection 
on a G-bundle                  , and       is a 
section of                 .   The equations 
read

where       is the curvature.  
These equations have been extensively 

studied by Atiyah, Hitchin, and other
mathematicians.



If we take any gauge field at all on
, for any Riemann surface C

(in our case                  ), we can restrict to
for some                and – since 

any connection on a Riemann surface 
determines a holomorphic structure – we 
get a holomorphic G-bundle

One of the special properties of the 
Bogomolny equations is that, if 

obeys those equations, then           is 
independent of y (in a canonical way).



In our case, there is a point
with 
where the Bogomolny equations are not 

obeyed (as there is a singularity). 
In crossing                   ,           jumps

p
W



Even when we cross                , the 
holomorphic type of the bundle          does
not change if one omits the point        from

-- as the Bogomolny equations are 
obeyed away from         .

The jump in              across                 is
very special -- undergoes a Hecke
modification of type       .  (The type is 
encoded in the required singularity of the

solution of the Bogomolny equations.)



Now suppose we have Dirichlet boundary
conditions on the right – trivializing         at 
that boundary – and Neumann boundary 
conditions at the other end – so any
is allowed there.  The result is that the 
space of solutions of the Bogomolny eqns

p
W



is our friend                   , the compactified
space of Hecke modifications.

(The compactification arises in gauge theory 
from monopole bubbling, which is 
analogous to instanton bubbling.) 

In topological field theory, the space of 
physical states is the cohomology of the 
moduli space.  So in the present case, the 
space of physical states is the cohomology
of                .



So far everything I have said is essentially in 
my original paper with A. Kapustin on 
geometric Langlands via gauge theory.

But now I will continue the story in a different 
way using some more recent results with
D. Gaiotto – see our papers
arXiv:0807.3720, arXiv:0804.2902
on the action of electric-magnetic duality 
on boundary conditions in gauge theory.



To learn something new,  about the space of 
physical states, we need to look at the 
dual description involving          gauge 
theory.  Some things are simpler
than what we’ve met so far, and some are 
less simple. 

p
W



First of all, there are no Bogomolny
equations to worry about.  The 
supersymmetric equations on the dual 
side just tell us to look for flat connections.

This is also simple, since we have chosen W 
and the boundary conditions so that there 
are not any nontrivial flat connections, and 
also no gauge theory automorphisms to 
worry about.

(These statements hold despite some 
subtleties about the boundary conditions 
that we come to momentarily.)



There is also no singularity at the point p;
instead, there is a copy of the 

representation          sitting at the point p.
Since there is nothing else that has to be
quantized (we’ve arranged that there are no 

nontrivial flat connections) the physical 
Hilbert space is just a copy of         .

That is the basic reason that there is a 
correspondence



However, I haven’t yet said anything that 
would account for the appearance of the 
principal          subgroup.   There is a trick
here.    Bogomolny’s equations do not 
come in on the       side.   But some other
equations of mathematical physics do 
come in – Nahm’s equations.  These are 
equations for a triple       valued in 

(where                is the Lie
algebra of           ). 



Nahm’s equations read

Nahm related them originally to the 
Bogomolny equations by an analog of the
ADHM transform for instantons.  Many 
other applications have been found since 
then, and the equations have been studied 
by many mathematicians, for example

Kronheimer (1989,1990) 
Atiyah and Bielawski, math/0110112



The gauge theory machinery that leads to 
geometric Langlands is a little elaborate –
it involves a twisted version of N=4 
supersymmetric Yang-Mills theory.

Part of this machinery is a triple of fields
as before, and on the          side, 
supersymmetry leads to Nahm’s
equations.

Often (for instance in analyzing the dual of 
an irreducible flat connection) these fields 
do not play a prominent role, because the 
boundary conditions set them to zero.

In the present case, that is not so.



To find the right boundary conditions, we 
start on the G side (Dirichlet on the right,
Neumann on the left) and apply electric-
magnetic duality.  However, the action of
duality on boundary conditions is subtle. 

p
W



In abelian gauge theory, duality simply 
exchanges Dirichlet and Neumann, but in 
nonabelian gauge theory, there is more to 
it  (Gaiotto and EW, 2008)

The dual of Neumann boundary conditions 
is a modification of Dirichlet in which the 
field      that obeys Nahm’s equations 
plays an important role.   



Nahm’s equations on the half-line
have a singular solution with

where         are any three elements of the
Lie algebra that obey the 

commutation relations of           . 
Thus, we get such a solution for each 

choice of embedding 
Each choice of      gives a supersymmetric
boundary condition: one requires      to 
have the indicated singularity at 



It turns out that ordinary Neumann boundary 
are dual to Dirichlet boundary conditions 
modified by a “Nahm pole” associated with 
the principal                   embedding.

And ordinary Dirichlet boundary conditions 
have an even more unusual dual, related 
to the “universal kernel” of geometric 
Langlands, expressed in quantum field 
theory language.



So the dual picture looks like this:

For the questions we are discussing today,
the important boundary condition is the one that 
uses the Nahm pole.  (There is a crucial detail 
that I won’t explain: globally the solution of 
Nahm’s equations obeying the boundary 
conditions is unique.)

p

W
Nahm pole
principal Universal

kernel



Now we can address the following question:
The grading of                           by the 

degree of a cohomology class, what does 
it correspond to on the         side?  

To answer this question, we need to know 
that the degree of a cohomology class 
corresponds to a symmetry of the twisted 
N=4 super Yang-Mills theory that is 
usually called “ghost number” in the 
context of this sort of topological field 
theory.



On the          side, this symmetry acts by 
rotating two of the three scalar fields     . 

How can this give a symmetry of the 
boundary conditions at the left of the 
picture, where      is required to have a 
pole?

The answer is that the actual symmetry is 
generated by the sum of an ordinary 
rotation of two components of     , plus a
gauge transformation that rotates them 
back.



Since the boundary condition involves a pole
associated with a principal embedding

, the relevant gauge
transformation generates the maximal
torus of a principal            . 



We identify the space of physical states with 
the representation       ; the  rotation of

does not act on       , but the maximal torus
of the principal                does.

This is why duality maps the grading by the 
degree of a cohomology class to grading 
by the action of that maximal torus, as we 
saw by hand in an example at the 
beginning of the lecture.



At the beginning of the lecture, we 
mentioned another point – a certain two-
dimensional characteristic class (“the first 
Chern class of the determinant line 
bundle”) maps to the raising operator of 
the principal           .   To understand this
we must represent  the universal 
cohomology classes of Atiyah and Bott by

quantum field operators, determine how 
they transform under duality, and then 
determine how their images act on the
representation  



In view of the time, I will be rather brief.

Donaldson, in defining the Donaldson 
polynomials, adapted the definitions of 
Atiyah and Bott to four dimensions, and in 
that context the universal cohomology
classes were interpreted in terms of gauge 
theory about 20 years ago.

For example, the two-dimensional class that 
I mentioned (which is the key class in 
Donaldson’s work) is represented by a 



local quantum field operator that takes 
values in two-forms on a four-manifold M.

The usual formula is

where here     is a complex linear 
combination of our three fields

(This physical formula was interpreted in 
differential geometry by Atiyah and 
Jeffrey.)



To get a cohomology class on moduli space

we simply integrate this two-form on a small 
two-sphere S in W that “links” the point p.

p

W
S



The dual picture is just the same thing with

replaced by the dual operator 

One evaluates this using for          the 
electric field produced by the point charge 
in the representation



Upon doing this, we find that the two-
dimensional cohomology class of

maps to the “raising operator”
of the principal             .

There is an analogous story for all of the 
universal characteristic classes.



One last thing that I should perhaps say is 
that this subject can be approached from 
quite a different angle.  The naïve Dirichlet
boundary condition in the        theory 
corresponds, in the usual language, to a 
“brane” (object in the derived category of 
coherent sheaves) whose support is at the 
trivial flat connection.  Its dual is rather 
complicated (as analyzed by Gaiotto and 
EW).  This boundary condition can be 
generalized to incorporate an arbitrary 
homomorphism



that is included via a Nahm pole; this plays 
the role of Arthur’s                 in the 
classical Langlands program.  The dual 
becomes simpler as     becomes “bigger”
and the easiest result is for the principal

embedding, where the dual is 
given by the simplest Neumann boundary 
conditions.  (Further recent developments 
on this by  E. Frenkel and S. Gukov.) 
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