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Geometric Langlands duality relates a representation of a simple Lie group G∨ to the
cohomology of a certain moduli space associated with the dual group G. In this
correspondence, a principal SL2 subgroup of G∨ makes an unexpected appearance.
This can be explained using gauge theory, as this paper will show, with the help of
the equations of Nahm and Bogomolny.

1. Introduction

This paper is intended as an introduction to the gauge theory approach [15] to the
geometric Langlands correspondence. But, rather than a conventional overview,
which I have attempted elsewhere [25, 26], the focus here is on understanding a
very particular result, which I learned of from [13]. (Another standard reference on
closely related matters is [17].)

This introduction is devoted to describing the facts that we wish to explain. In
§ 2, gauge theory, in the form of new results about how duality acts on boundary
conditions [11,12], will be brought to bear to explain them. Finally, some technical
details are reserved for § 3. In § 3.3, we also briefly discuss the compactification of
the relevant gauge theory to three dimensions, showing some novel features that
appear to be relevant to recent work [6]. In § 3.5 we discuss the universal kernel of
geometric Langlands from a gauge theory point of view.

1.1. The dual group

Let us start with a compact, simple Lie group G and its Langlands or Goddard–
Nuyts–Olive dual group G∨. (In gauge theory, we start with a compact gauge
group G, but by the time we make contact with the usual statements of geometric
Langlands, G is replaced by its complexification GC.) If we write T and T∨ for the
respective maximal tori, then the basic relation between them is

Hom(T∨, U(1)) = Hom(U(1), T ), (1.1)

and vice versa. Modulo some standard facts about simple Lie groups, this relation
defines the correspondence between G and G∨.

∗Present address: School of Natural Sciences, Institute for Advanced Study, Einstein Drive,
Princeton, NJ 08540, USA (witten@ias.edu).

857
c© 2010 The Royal Society of Edinburgh



858 E. Witten

Now let R∨ be an irreducible representation of G∨. Its highest weight is a homo-
morphism ρ∨ : T∨ → U(1). Using (1.1), this corresponds to a homomorphism in
the opposite direction ρ : U(1) → T .

We can think of U(1) ∼= S1 as the equator in S2 ∼= CP
1. With this understood,

we can view ρ : S1 → G as a ‘clutching function’ that defines a holomorphic GC

bundle Eρ → CP
1. Every holomorphic GC bundle over CP

1 arises this way, up to
isomorphism, for a unique choice of R∨. Thus, isomorphism classes of such bundles
correspond to isomorphism classes of irreducible representations of G∨. In the lan-
guage of Goddard, Nuyts and Olive this is the correspondence between the electric
charge of G∨ and the magnetic charge of G.

Actually, the homomorphism ρ : U(1) → G can be complexified to a homomor-
phism ρ : C

∗ → GC. Here we can view C
∗ as the complement in CP

1 of two points
p and q (the north and south poles). So the bundle Eρ is naturally made by gluing
a trivial bundle over CP

1 \ p to a trivial bundle over CP
1 \ q. In particular, Eρ

is naturally trivial over the complement of the point p ∈ CP
1. So Eρ is ‘a Hecke

modification at p of the trivial GC bundle over CP
1’. By definition, such a Hecke

modification is simply a holomorphic GC bundle E → CP
1 with a trivialization over

the complement of p. E is said to be of type ρ if, forgetting the trivialization, it is
equivalent holomorphically to Eρ.

More generally, for any Riemann surface C, point p ∈ C and holomorphic GC

bundle E0 → C, a Hecke modification of E0 at p is a holomorphic GC bundle
E → C with an isomorphism ϕ : E ∼= E0 away from p. As in [13, 17], loop groups
and affine Grassmannians give a natural language for describing these notions and
explaining in general what it means to say that a Hecke modification is of type ρ.
We will not need this language here.

1.2. An example

Let us consider an example. Suppose that G∨ = SU(N) for some N , and accord-
ingly its complexification is G∨

C
= SL(N, C). Then G = PSU(N) and GC =

PSL(N, C). We can think of a holomorphic GC bundle as a rank N holomorphic
vector bundle V , with an equivalence relation V ∼= V ⊗L, for any holomorphic line
bundle L. (The equivalence relation will not play an important role in what we are
about to say.) Let us take the representation R∨ to be the obvious N -dimensional
representation of G∨

C
= SL(N, C). With this data we should associate a rank-N

holomorphic bundle V → CP
1 that is obtained by modifying the trivial bundle

U = C
N × CP

1 → CP
1 at a single point p ∈ CP

1. More precisely, we will obtain
a family of possible choices of V : the possible Hecke modifications of U of the
appropriate type. To describe such a V , pick a one-dimensional complex subspace
S ⊂ C

N and let z be a local coordinate near p. Declare that a holomorphic section
v of V over an open set U ⊂ CP

1 is a holomorphic section of U over U \ p, which,
near p, looks like

v = a +
s

z
, (1.2)

where a and s are holomorphic at z = 0 and s(0) ∈ S.
This gives a Hecke modification of U , since V is naturally equivalent to U away

from z = 0. Clearly, the definition of V depends on S, so we have really constructed
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a family of possible choices of V , parametrized by CP
N−1. This is the family of all

possible Hecke modifications of the appropriate type.
There is an analogue of this for any choice of representation R∨ of the dual group.

To such a representation, we associate as before the clutching function ρ : U(1) →
T ⊂ G with this representation, leading to a holomorphic GC bundle Eρ → CP

1.
Then we define N (ρ) as the space of all possible1 Hecke modifications at p of the
trivial bundle over CP

1 that are of type ρ.
The moduli space N (ρ) of possible Hecke modifications has a natural compact-

ification N̄ (ρ). In the description of N̄ (ρ) via the three-dimensional Bogomolny
equations, which we come to in § 2, the compactification involves monopole bub-
bling,2 which is analogous to instanton bubbling in four dimensions. N (ρ) is known
as a Schubert cell in the affine Grassmannian, and N̄ (ρ) is known as a Schubert
cycle in that Grassmannian. N̄ (ρ) parametrizes a family of Hecke modifications of
the trivial bundle, but they are not all of type ρ; the compactification is achieved by
allowing Hecke modifications dual to a representation of G∨ whose highest weight
is ‘smaller’ than that of R∨.

1.3. The principal SL2

Geometric Langlands duality associates the representation R∨ of the dual group
to the cohomology of N̄ (ρ). Let us see how this works in our example.

In the example, R∨ is the natural N -dimensional representation of SL(N, C),
and N (ρ) (which needs no compactification, as R∨ is minuscule) is CP

N−1. Not
coincidentally, the cohomology of CP

N−1 is of rank N , the dimension of R∨.
The generators of the cohomology of CP

N−1 are in degrees 0, 2, 4, . . . , 2N −2. Let
us shift the degrees by −(N −1) so that they are symmetrically spaced around zero.
Then we have the following diagonal matrix whose eigenvalues are the appropriate
degrees:

h =

⎛⎜⎜⎜⎝
N − 1 · · ·

N − 3 · · ·
. . .
· · · −(N − 1)

⎞⎟⎟⎟⎠ . (1.3)

One may recognize this matrix; it is an element of the Lie algebra of G∨
C

= SL(N, C)
that, in the language of Kostant, generates the maximal torus of a ‘principal SL2
subgroup’ of G∨

C
.

This is the general state of affairs. In the correspondence between a representation
R∨ and the cohomology of the corresponding moduli space N̄ (ρ), the grading of
the cohomology by degree corresponds to the action on R∨ of a generator of the
maximal torus of a principal SL2.

1In one important respect, our example is misleadingly simple. In our example, every possible
Hecke modification can be made using a clutching function associated with a homomorphism
ρ̃ : C∗ → GC (which is conjugate to the original homomorphism ρ : C∗ → TC ⊂ GC). Accordingly,
in our example, N (ρ) is a homogeneous space for an obvious action of GC. In general, this is only
so if the representation R∨ is ‘minuscule’, as it is in our example.

2This phenonomenon was investigated in the 1980s in unpublished work by P. Kronheimer,
and more recently in [8, 15].
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1.4. Characteristic classes in gauge theory

The nilpotent ‘raising operator’ of the principal SL2 also plays a role. To under-
stand this, first recall that Atiyah and Bott [2] used gauge theory to define certain
universal cohomology classes over any family of GC-bundles over a Riemann sur-
face C. The definition applies immediately to N̄ (ρ), which parametrizes a family
of holomorphic GC-bundles over CP

1 (Hecke modifications of a trivial bundle).
If G is of rank r, then the ring of invariant polynomials on the Lie algebra g of

G is itself a polynomial ring with r generators, say P1, . . . , Pr, which we can take
to be homogeneous of degrees d1, . . . , dr. The relation of the di to a principal SL2
subgroup of GC is as follows: the Lie algebra g decomposes under the principal SL2
as a direct sum

g =
r⊕

i=1

Ji (1.4)

of irreducible modules Ji of dimensions 2di − 1; in particular, therefore,

r∑
i=1

(2di − 1) = dimG.

For example, if G = SU(N), then r = N−1, letting Tr denote an invariant quadratic
form on g, we can take the Pi to be the polynomials Pi(σ) = (i + 1)−1 Tr σi+1 for
σ ∈ g and i = 1, 2, 3, . . . , N − 1. Thus, Pi is homogeneous of degree i+1. As in this
example, if G is simple, the smallest value of the degrees di is always 2 and this
value occurs precisely once. The corresponding polynomial P is simply an invariant
quadratic form on the Lie algebra g.

If F is the curvature of a G-bundle over any space M, then Pi(F ) is a 2di-
dimensional characteristic class, taking values in H2i(M). (For topological pur-
poses, it does not matter if we consider G-bundles or GC-bundles.) Atiyah and
Bott consider the case that M parametrizes a family of G-bundles over a Rie-
mann surface C. We let E → M × C be the corresponding universal G bundle. (If
necessary, we consider the associated Gad bundle and define the Pi(F ) as rational
characteristic classes.) From the class Pi(F ) ∈ H2i(M × C) we can construct two
families of cohomology classes over M. Fixing a point c ∈ C, and writing π for the
projection M×C → M, we set vi to be the restriction of Pi(F ) to M× c. We also
set xi = π∗(Pi(F )). Thus, vi ∈ H2di(M), and xi ∈ H2di−2(M). To summarize,

vi = Pi(F )|M×c,

xi = π∗(Pi(F )).

}
(1.5)

For our present purposes, we want M to be one of the families N̄ (ρ) of Hecke
modifications of the trivial bundle U → CP

1 at a specified point p ∈ CP
1. Taking

c to be disjoint from p, it is clear that the classes vi vanish for M = N̄ (ρ) (since
a Hecke modification at p has no effect at c). However, the classes xi are non-zero
and interesting.

Multiplication by xi gives an endomorphism of H∗(N̄ (ρ)) that increases the
degree by 2di − 2. It must map under duality to an endomorphism fi of R∨ that
increases the eigenvalue of h (the generator of a Cartan subalgebra of a principal
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SL2) by 2di − 2. Thus, we expect [h, fi] = (2di − 2)fi. Moreover, the fi must
commute, since the xi do.

As noted above, the smallest value of the degrees di is 2, which occurs precisely
once. So this construction gives an essentially unique class3 x of degree 2. It turns
out that duality maps x to the nilpotent raising operator of the principal SL2
subgroup of G that we have already encountered (the action of whose maximal
torus is dual to the grading of H∗(N̄ (ρ)) by degree). This being so, since the xi all
commute with x, duality must map them to elements of g that commute with the
raising operator of the principal SL2. These are precisely the highest weight vectors
in the SL2 modules Ji of (1.4).

For example, for SL(N, C), the raising operator of the principal SL2 is the matrix

f =

⎛⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 0

⎞⎟⎟⎟⎠ , (1.6)

with 1s just above the main diagonal. The image of the two-dimensional class x
under duality is precisely f . Indeed, in this example, the cohomology of N̄ (ρ) =
CP

N−1 is spanned by the classes 1, x, x2, . . . , xN−1, and in this basis (which we
have used in writing the degree operator as in (1.3)), x coincides with the matrix
f . The traceless matrices that commute with f (in other words, the highest weight
vectors of the Ji) are the matrices fk, k = 1, . . . , N − 1. The invariant polynomial
Pi = (1/(i + 1)) Trσi+1, with di = i + 1, is associated with a class xi of dimension
2(di − 1) = 2i. This class maps under duality to f i.

Let T be the subgroup of G∨
C

generated by a maximal torus in a principal SL2
subgroup together with the highest weight vectors in the decomposition (1.4). A
summary of part of what we have said is that the action of T on the representation
R∨ corresponds to a natural T action on the cohomology of N̄ (ρ). The rest of
the G∨ action on R∨ does not have any equally direct meaning in terms of the
cohomology of N̄ (ρ).

There are additional facts of a similar nature. Our goal here is not to describe
all such facts but to explain how such facts can emerge from gauge theory.

1.5. Convolution and the operator product expansion

One obvious gap in what we have said so far is that we have treated indepen-
dently each representation R∨ of the dual group G∨. For example, in § 1.4, the
characteristic class x was defined uniformly for all N̄ (ρ) by a universal gauge theory
construction. But it might appear from the analysis that x could map under duality
to a multiple of the Lie algebra element f of equation (1.6) (or, more exactly, a
multiple of the linear transformation by which f acts in the representation R∨),
with a different multiple for every representation.

Actually, the different irreducible representations of G∨ are linked by the classical
operation of taking a tensor product of two representations and decomposing it in a

3For G = SU(N), x can also be constructed as the first Chern class of the ‘determinant line
bundle’ associated to the family M of vector bundles over C. For G = SO(N) or Sp(2N), x can
similarly be constructed as the first Chern class of a Pfaffian line bundle.
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direct sum of irreducibles. This operation is dual to a certain natural ‘convolution’
operation [13, 17] on the cohomology of the moduli spaces N̄ (ρ). This operation
also has a gauge theory interpretation, as we recall shortly.

Suppose that R∨
α and R∨

β are two irreducible representations of G∨, and that the
decomposition of their tensor product is

R∨
α ⊗ R∨

β =
⊕

γ

Nγ
αβ ⊗ R∨

γ , (1.7)

where R∨
γ are inequivalent irreducible representations of G∨, and Nγ

αβ are vector
spaces (with trivial action of G∨). For each α, let ρα : U(1) → T ⊂ G be the
homomorphism corresponding to R∨

α. Under the duality maps R∨
α ↔ H∗(N̄ (ρα)),

equation (1.7) must correspond to a decomposition

H∗(N̄ (ρα)) ⊗ H∗(N̄ (ρβ)) =
⊕

γ

Nγ
αβH∗(N̄ (ργ)), (1.8)

with the same vector spaces Nγ
αβ as before. Indeed [13,17], the appropriate decom-

position can be described directly in terms of the affine Grassmannian of G without
reference to duality. This decomposition is compatible with the action of the group
T described in § 1.4. In other words, T acts on each factor on the left of (1.8) and
hence on the tensor product; it likewise acts on each summand on the right of (1.8)
and hence on the direct sum; and these actions agree.

In gauge theory terms, the classical tensor product of representations (1.7) cor-
responds to the operator product expansion for Wilson operators, and the corre-
sponding decomposition (1.8) corresponds to the operator product expansion for
’t Hooft operators. This has been explained in [15, § 10.4], and that story will not
be repeated here. However, in § 2.12, we will explain why the operator product
expansions (or, in other words, the above decompositions) are compatible with the
action of T .

2. Gauge theory

2.1. The Â and B̂ models

Let M be a 4-manifold. We will be studying gauge theory on M : more specifically,
the twisted version of N = 4 super Yang–Mills theory that is related to geometric
Langlands duality. We write A for the gauge field, which is a connection on a bundle
E → M , and F for its curvature. Another important ingredient in the theory is a
1-form φ that is valued in ad(E).

As explained in [15], the twisting introduces an asymmetry between G∨ and G.
A and φ combine together in quite different ways in the two cases.

In the G∨ theory, which we will loosely call the B̂ model (because, on compact-
ification to two dimensions, it reduces to an ordinary B model), A and φ combine
to form a complexified connection A = A + iφ. As explained in [15], supersymme-
try in the B̂ model requires the connection A to be flat. So the B̂ model involves
the study of representations of the fundamental group of M in G∨

C
. As long as the

flat connection A is irreducible, it is the only important variable in the B̂ model.
However, we will later analyse a situation in which the condition of irreducibility
is not satisfied, so we will encounter other variables (also described in [15]).
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In the G theory, the pair (A, φ) instead obey a nonlinear elliptic equation

F − φ ∧ φ = � dAφ, (2.1)

where � is the Hodge star operator and dA is the gauge-covariant extension of
the exterior derivative. This equation is analogous to the instanton equations of
two-dimensional A models (as well as to other familiar equations such as Hitchin’s
equations in two dimensions), so we will call this the Â model. Equation (2.1) may
be unfamiliar, but it has various specializations that are more familiar. For example,
suppose that M = W ×R, and that the solution is invariant under rigid motions of
R, including those that reverse orientation. (To get a symmetry of (2.1), orientation
reversal must be accompanied by a sign change of φ.) Parametrizing R by a real
coordinate t, the conditions imply that A is pulled back from W and that φ = φ0 dt,
where the section φ0 of ad(E) is also pulled back from W . Then (2.1) specializes
to the three-dimensional Bogomolny equations

F = � dAφ0. (2.2)

Here � is now the Hodge star operator in three dimensions. Similarly, (2.1) can be
reduced to Hitchin’s equations in two dimensions. (For this, we take M = Σ × C,
where Σ and C are two Riemann surfaces, and assume that A and φ are pulled
back from C.) The Bogomolny equations have been extensively studied (see, for
example, [4]).

2.2. Wilson and ’t Hooft operators

Let L ⊂ M be an embedded oriented 1-manifold. We want to make some modi-
fication along L of gauge theory on M .

Starting with the B̂ model, one ‘classical’ modification is to suppose that L is
the trajectory of a ‘charged particle’ in the representation R∨ of the gauge group,
which we take to be G∨. Mathematically, we achieve this by including in the ‘path
integral’ of the theory a factor consisting of the trace, in the R∨ representation,
of the holonomy around L of the complexified connection A. This trace might be
denoted as TrR∨ Hol(A, L); physicists usually write it as TrR∨ P exp{−

∮
L

A}. Since
it is just a function of A, this operator preserves the topological invariance of the
B̂ model. (The B̂ model condition that A is flat means that the holonomy only
depends on the homotopy class of L.) When included as a factor in a quantum
path integral, the holonomy is known as a Wilson operator.

In taking the trace of the holonomy, we have assumed that L is a closed 1-
manifold, that is, a circle. If M is compact, this is the only relevant case. More
generally, if M has boundaries or ends, one also considers the case that L is an
open 1-manifold that connects boundaries or ends of M . Then instead of a trace,
one considers the matrix elements of the holonomy between prescribed initial and
final states: that is, prescribed initial and final vectors in R∨. This is actually the
situation that we will consider momentarily.

What is the dual in G gauge theory of including the holonomy factor in G∨ gauge
theory? The dual is the ’t Hooft operator. It was essentially shown by ’t Hooft nearly
30 years ago that the dual operation to including a holonomy factor or Wilson
operator is to modify the theory by requiring the fields to have a certain type of



864 E. Witten

singularity along L. This singularity gives a way to study, using gauge theory, the
Hecke modifications of a G bundle on a Riemann surface. The required singularity
and its interpretation in terms of Hecke modifications have been described in [15,
§§ 9,10]. A few relevant points are summarized in § 2.4.

2.3. Choice of M

In this paper, our interest is in the representation R∨, not the 4-manifold M .
So we simply want to choose M and the embedded 1-manifold L to be as simple
as possible. It is convenient to take M = W × R, where W is a 3-manifold and R

parametrizes the ‘time’. We similarly take L = w × R, where w is a point in W .
Henceforth, we adopt a ‘Hamiltonian’ point of view in which, in effect, we work at

time zero and only talk about W . So instead of a 4-manifold M with an embedded
1-manifold L labelled by a representation R∨, we consider a 3-manifold W with
an embedded point w labelled by that representation. The presence of this special
point means that, in the quantization, we must include an ‘external charge’ in the
representation R∨,

Moreover, we want to make a simple choice of W so as to study the representation
R∨ and its dual, keeping away from the wonders of 3-manifolds.

What is the simplest 3-manifold? S3 comes to mind right away, but there is a
snag. Suppose that we study the G∨ gauge theory on W = S3, with a marked point
w that is labelled by the representation R∨. What will the quantum Hilbert space
turn out to be? A flat connection on S3 is necessarily trivial, so there is no moduli
space of flat connections to quantize. If the trivial flat connection on S3 had no
automorphisms, the quantum Hilbert space of the B̂ model would be simply R∨, as
there is nothing else to quantize. However, the trivial flat connection on S3 actually
has a group GC of automorphisms and, in quantization, one is supposed to impose
invariance under the group of gauge transformations. Because of this, the quantum
Hilbert space is not R∨ but the G∨

C
invariant subspace of R∨: namely, 0. Thus,

simply taking W = S3 with a marked point labelled by the representation R∨ will
not give us a way to use the B̂ model to study the representation R∨.

Our requirement, of a 3-manifold on which the trivial flat connection is unique
and irreducible, does not exist. However, we can pick W to be a 3-manifold with
boundary, provided that we endow the boundary with a supersymmetric boundary
condition. For example, suppose that W is a three-dimensional ball B3. We may
pick Dirichlet boundary conditions on the boundary of B3. In the B̂ model, Dirichlet
boundary conditions mean that A is trivial on the boundary ∂B3, and that only
gauge transformations that are trivial on the boundary are allowed.

If we formulate the B̂ model on B3 with Dirichlet boundary conditions and a
marked point labelled by R∨, then as there are no non-trivial flat connections and
the trivial one has no gauge symmetries, the physical Hilbert space is a copy of
R∨. So this does give a way to study the representation R∨ as a space of physical
states in the B̂ model. The only trouble is that the dual of Dirichlet boundary
conditions is rather complicated [11, 12], and the resulting Â-model picture is not
very transparent.

There is another choice that turns out to be more useful because it gives some-
thing that is tractable in both the Â model and the B̂ model. This is to take
W = S2 × I, where I ⊂ R is a closed interval. Of course, W has two ends, since I
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Neumann Dirichlet
w

Figure 1. W = S2 × I in G gauge theory with a marked point w at which an ’t Hooft
operator is inserted. Dirichlet boundary conditions are imposed at the right boundary and
Neumann boundary conditions at the left boundary.

has two boundary points. Suppose that we pick Dirichlet boundary conditions at one
end of S2 × I and Neumann boundary conditions at the other. (Neumann boundary
conditions in gauge theory mean that the gauge field and the gauge transformations
are arbitrary on the boundary; instead, there is a condition on the normal derivative
of the gauge field, though we will not have to consider it explicitly because it is a
consequence of the equations that we will be solving anyway.) With these boundary
conditions, the trivial flat connection on W is unique and irreducible.

By contrast, if we were to place Dirichlet boundary conditions at both ends of
S2 × I, there would be non-trivial flat connections classified by the holonomy along
a path from one end to the other. With Dirichlet boundary conditions at both ends,
this holonomy is gauge-invariant. If we were to place Neumann boundary conditions
at both ends, every flat connection would be gauge-equivalent to the trivial one,
but (since there would be no restriction on the boundary values of a gauge trans-
formation) the trivial flat connection would have a group GC of automorphisms,
coming from constant gauge transformations.

The case that works well is therefore the case of mixed boundary conditions:
Dirichlet at one end and Neumann at the other. So we could study the representa-
tion R∨ in the B̂ model by working on W = S2×I with mixed boundary conditions.
This may even be an interesting thing to do.

Instead, here, we will do something that turns out to be simpler. We will study
the Â model, not the B̂ model, on W = S2 × I, with mixed Dirichlet and Neumann
boundary conditions, and one marked point labelled by an ’t Hooft singularity
(see figure 1). Since they make the trivial solution of the Bogomolny equations
isolated and irreducible, mixed boundary conditions simplify the Â model just as
they simplify the B̂ model.

In fact, the Â model on S2×I with mixed boundary conditions was studied in [15,
§ 10.4] in order to investigate the operator product expansion for ’t Hooft operators.
At the time, it was not possible to compare with a B̂-model description, since
the duals of Dirichlet and Neumann boundary conditions in supersymmetric non-
abelian gauge theory were not sufficiently clear. Here, we will complete the analysis
using more recent results [11,12] on duality of boundary conditions. This will enable
us to understand, using gauge theory, the results that were surveyed in § 1.

2.4. Bogomolny equations with a singularity

In the Â model on W = S2 × I, we must solve the Bogomolny equations (2.2),
with singularities at the positions of ’t Hooft operators. For the moment, suppose
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that there is a single such singularity, located at w = c×r, where c and r are points
in S2 and I, respectively.

If E is any G bundle with connection over C × I, where C is a Riemann surface
(in our case, C = S2), we can restrict E to C ×{y}, for y ∈ I, to obtain a G bundle
with connection Ey → C. Since any connection on a bundle over a Riemann surface
defines an integrable ∂̄ operator, the bundles Ey are holomorphic GC bundles in a
natural way.

One of the many special properties of the Bogomolny equations is that if the pair
(A, φ0) obeys these equations, then, as a holomorphic bundle, Ey is independent
of y, up to a natural isomorphism. This is proved by a very short computation.
Writing z for a local holomorphic coordinate on C, a linear combination of the
Bogomolny equations gives Fyz̄ = −iDz̄φ0, or [∂y + Ay + iφ0, ∂̄A] = 0, where ∂̄A is
the ∂̄ operator on Ey determined by the connection A. Thus, ∂̄A is independent
of y, up to a complex gauge transformation, and integrating the modified connec-
tion Ay + iφ0 in the y direction gives a natural isomorphism between the Ey of
different y.

In the presence of an ’t Hooft operator at w = c × r, the Bogomolny equations
fail (because there is a singularity) at the point w, and as a result, the holomorphic
type of Ey may jump when we cross y = r. However, if we delete from C the point
c, then we do not see the singularity and no jumping occurs. In other words, if
we write E′

y for the restriction of Ey to C \ c, then E′
y is independent of y, as a

holomorphic bundle over C \ c. (Moreover, there is a natural isomorphism between
the E′

y of different y, by parallel transport with the connection Ay + iφ0.) Thus,
the jump in Ey in crossing y = r is a Hecke modification at the point c ∈ C.

Suppose that R∨ is an irreducible representation of the dual group G∨. Using
ideas described in § 1.1, let ρ : U(1) → G be the homomorphism corresponding to
R∨, and let Eρ → CP

1 be the corresponding GC bundle. Then the ’t Hooft operator
dual to R∨ in G gauge theory is defined so that the Hecke modification found in the
last paragraph is of type ρ. This is accomplished by specifying a suitable singularity
type in the solution of the Bogomolny equations. Roughly, one arranges that the
solution (A, φ0) of the Bogomolny equations has the property that, when restricted
to a small 2-sphere S that encloses the point w, the connection A determines a
holomorphic GC bundle over S that is equivalent holomorphically to Eρ [15].

2.5. The space of physical states

Now let us determine the space of physical states of the Â model on W = S2 × I,
with mixed boundary conditions. On general grounds, this is the cohomology of the
moduli space of solutions of the Bogomolny equations, with the chosen boundary
conditions.

Dirichlet boundary conditions at one end of W means that Ey is trivial at that
end. Neumann boundary conditions mean that, at the other end, any Ey that is
produced by solving the Bogomolny equations is allowed. In the presence of a single
’t Hooft operator dual to R∨, any Hecke modification of type ρ can occur. So the
moduli space of solutions of the Bogomolny equations is our friend the moduli
space N (ρ) of Hecke modifications of type ρ. This moduli space has a natural
compactification by allowing monopole bubbling [8,15], the shrinking to a point of
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a ‘lump’ of energy in a solution of the Bogomolny equations.4 This compactification
is the compactified space N̄ (ρ) of Hecke modifications.

Therefore, the space H of physical states of the Â model is the cohomology
H∗(N̄ (ρ)). Together with the fact that we will find H = R∨ in the B̂ model, this
is the basic reason that electric–magnetic duality establishes a map between the
cohomology H∗(N̄ (ρ)) and the representation R∨ of G∨.

2.6. Nahm’s equations

To learn more about H, we need to analyse its dual description in G∨ gauge
theory. Some things are simpler than what we have met so far, and some things are
less simple.

First of all, there are no Bogomolny equations to worry about. The supersym-
metric equations of the B̂ model are quite different. As formulated in [15], these
equations involve a connection A on a G∨ bundle E∨ → M , a 1-form φ valued
in the adjoint bundle ad(E∨) and a 0-form σ∨ taking values in the complexifica-
tion ad(E∨) ⊗ C. (We write σ∨ for this field, a slight departure from the notation
in [15], as we will later introduce an analogous field σ in the Â model.) It is conve-
nient to combine A and φ to a complex connection A = A + iφ on the G∨

C
-bundle

E∨
C

→ M obtained by complexifying E∨. Moreover, we write F for the curvature
of A, and dA, dA for the exterior derivatives with respect to A and A, respectively.
The supersymmetric conditions read

FA = 0,

dAσ∨ = 0,

d∗
Aφ + i[σ∨, σ̄∨] = 0.

⎫⎪⎪⎬⎪⎪⎭ (2.3)

Here d∗
A = � dA� is the adjoint of dA. The first condition says that E∨

C
is flat, and

the second condition says that σ∨ generates an automorphism of this flat bundle.
Therefore, if E∨

C
is irreducible, then σ∨ must vanish. This is the case most often

considered in the geometric Langlands correspondence, but we will be in a rather
different situation because, for W = S2 × I and with the boundary conditions we
have introduced, there are no non-trivial flat connections. While the first two equa-
tions are invariant under G∨

C
-valued gauge transformations, the third one is only

invariant under G∨-valued gauge transformations. For a certain natural symplectic
structure on the data (A, φ, σ∨), the expression d�

Aφ+i[σ∨, σ̄∨] is the moment map
for the action of G∨ gauge transformations on this data. As this interpretation
suggests, the third equation is a stability condition; the moduli space of solutions
of the three equations, modulo G∨-valued gauge transformations, is the moduli
space of stable pairs (A, σ∨) obeying the first two equations, modulo G∨

C
-valued

gauge transformations. A pair is considered strictly stable if it cannot be put in a
triangular form (

α β

0 γ

)
, (2.4)

4Monopole bubbling is somewhat analogous to instanton bubbling in four dimensions, which
involves the shrinking of an instanton. An important difference is that instanton bubbling can
occur anywhere, while monopole bubbling can only occur at the position of an ’t Hooft operator.
Monopole bubbling involves a reduction of the weight ρ associated to the ’t Hooft singularity.
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and semistable if it can be put in such a form. (There are no strictly unstable
pairs.) Two semistable pairs are considered equivalent if the diagonal blocks α and
γ coincide. For the case when σ∨ = 0, this interpretation of the third equation was
obtained in [9].

Rather surprisingly, the system of equations (2.3) can be truncated to give a
system of equations in mathematical physics that are familiar but are not usually
studied in relation to complex flat connections. These are Nahm’s equations. They
were originally obtained [18] as the result of applying an ADHM-like transform to
the Bogomolny equations on R

3. Subsequently, they have turned out to have a wide
range of mathematical applications (see, for instance, [1, 16]).

To reduce (2.3) to Nahm’s equations, suppose that A = 0 and that φ = φy dy,
where y is one of the coordinates on M . In our application, we have M = W × R,
W = S2 × I, and we take y to be a coordinate on I, so that y = 0 is one end of I.
Furthermore, write σ∨ = (X1 + iX2)/

√
2, where X1 and X2 take values in the real

adjoint bundle ad(E∨), and set
φy = X3. (2.5)

Then the equations (2.3) reduce unexpectedly to Nahm’s equations dX1/ dy +
[X2, X3] = 0, and cyclic permutations of indices 1, 2, 3. Alternatively, combining
X1, X2 and X3 to a section X of ad(E∨) ⊗ R

3, the equations can be written

dX

dy
+ X × X = 0. (2.6)

Here (X × X)1 = [X2, X3], etc.
Nahm’s equations (2.6) have an obvious SO(3) symmetry acting on X. In the

way we have derived these equations from (2.3), this symmetry is rather mysterious.
Its origin is more obvious in the underlying four-dimensional gauge theory, as we
explain in § 3.

2.7. The dual boundary conditions

Nahm’s equations admit certain singular solutions that are important in many
of their applications [1,16,18]. Let ϑ : su(2) → g∨ be any homomorphism from the
SU(2) Lie algebra to that of G∨. It is given by elements t = (t1, t2, t3) ∈ g∨ that
obey the su(2) commutation relations [t1, t2] = t3, and cyclic permutations. Then
Nahm’s equations on the half-line y > 0 are obeyed by

X =
t

y
. (2.7)

Consider G∨ gauge theory on a half-space y � 0. Dirichlet boundary conditions
on G∨ gauge fields can be extended to the full N = 4 super Yang–Mills theory
in a supersymmetric (half-BPS) fashion. When this is done in the most obvious
way, the fields X actually obey free (or Neumann) boundary conditions and thus
are unconstrained, but non-singular, at the boundary. With the aid of the singular
solutions (2.7) of Nahm’s equations, one can describe boundary conditions [11] in
G∨ gauge theory that generalize the most obvious Dirichlet boundary conditions
in that they preserve the same supersymmetry. To do this, instead of saying that
X is regular at y = 0, we say that it should have precisely the singular behaviour
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universal
kernel

regular
Nahm
pole

R

>

Figure 2. W = S2 × I in G∨ gauge theory with a marked point at which an external
charge in the representation R∨ is included. The boundary conditions are dual to those of
figure 1. Dirichlet boundary conditions modified with a regular Nahm pole are shown on
the left, while more complicated boundary conditions associated with the universal kernel
of geometric Langlands are shown on the right.

of (2.7) near y = 0. This condition can be uniquely extended to the full N = 4
theory in a supersymmetric fashion. This use of a classical singularity to define a
boundary condition in quantum theory is somewhat analogous to the definition of
the ’t Hooft operator via a classical singularity (in that case, a singularity along a
codimension-3 submanifold of space-time).

The most important case for us will be what we call a regular Nahm pole. This
is the case that ϑ : su(2) → g∨ is a principal embedding. (Usually the principal
embedding is defined as a homomorphism sl(2, C) → g∨

C
. The complexification of ϑ

is such a homomorphism.) For G∨
C

= SL(N, C), a principal sl(2) embedding (or at
least the images of two of the three sl(2) generators) was described explicitly in (1.3)
and (1.6). As in this example, a principal sl(2) embedding ϑ is always irreducible
in the sense that the subalgebra of g∨

C
that commutes with the image of ϑ is zero.

Conversely, an irreducible sl(2) embedding is always conjugate to a principal one.

2.7.1. The dual picture

We finally have the tools to discuss the dual of the Â model picture that was
analysed in § 2.5. In our study of G gauge theory, we imposed mixed Dirichlet–
Neumann boundary conditions: say, Neumann at y = 0 and Dirichlet at y = L. To
compare this with a description in G∨ gauge theory we need to know what happens
to Neumann and Dirichlet boundary conditions under duality.

For G = G∨ = U(1), electric–magnetic duality simply exchanges Dirichlet and
Neumann boundary conditions. One of the main results of [11,12] is that this is not
true for non-abelian gauge groups. Rather, electric–magnetic duality maps Neu-
mann boundary conditions to Dirichlet boundary conditions modified by a regular
Nahm pole. Furthermore, it maps Dirichlet boundary conditions to something that
is very interesting (and related to the ‘universal kernel’ of geometric Langlands, as
explained in § 3.5), but more difficult to describe.

For our purposes, all we really need to know about the dual of Dirichlet bound-
ary conditions is that in the B̂ model on W = S2 × I (times R), with boundary
conditions at y = 0 given by the regular Nahm pole, and the appropriate bound-
ary conditions at y = L, the solution of Nahm’s equations is unique. In fact, the
relevant solution is precisely X = t/y. (The boundary conditions at y = 0 require
that the solution should take this form, modulo regular terms; the regular terms
are fixed by the boundary condition at y = L.) How this comes about is described
in § 3.4.
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The dual picture, therefore, is as described in figure 2.

2.8. The space of physical states in the B̂ model

Now we can describe the space of physical states in the B̂ model on S2 × I, with
these boundary conditions, and with a marked point w = c × r labelled by the
representation R∨.

The analysis is easy because, with the boundary conditions, Nahm’s equations
have a unique and irreducible solution, with no gauge automorphisms and no moduli
that must be quantized. Moreover, no moduli appear when Nahm’s equations are
embedded in the more complete system (2.3). This follows from the irreducibility
of the solution of Nahm’s equations with a regular pole.

In the absence of marked points, the physical Hilbert space H would be a copy
of C, from quantizing a space of solutions of Nahm’s equations that consists of only
one point. However, we must take into account the marked point. In general, in
the presence of the marked point, H would be computed as the ∂̄ cohomology of
a certain holomorphic vector bundle5 with fibre R∨ over the moduli space M of
solutions of (2.3). (If a generic point in M has an automorphism group H, then
one takes the H-invariant part of the ∂̄ cohomology.) In the present case, as M is a
single point (with no automorphisms), the physical Hilbert space is simply H = R∨.

Therefore, electric–magnetic duality gives a natural map from H∗(N̄ (ρ)), which
is the space H of physical states computed in the Â model, to R∨. Now, in the B̂
model, we can try to identify the grading of H that, in the Â model, corresponds
to the grading of the cohomology H∗(N̄ (ρ)) by degree.

In the underlying N = 4 super Yang–Mills theory, there is a Spin(6) group
of global symmetries (these symmetries act non-trivially on the supersymmetries
and are hence usually called R-symmetries). The twisting that leads eventually to
geometric Langlands breaks this Spin(6) symmetry down to Spin(2). (This remark
and related remarks in the next paragraph are explained more fully in § 3.) In the
context of topological field theory, this Spin(2) symmetry is usually called ‘ghost
number’ symmetry. The action of this Spin(2) symmetry on the Â model gives the
grading of H∗(N̄ (ρ)) by degree.

So we must consider the action of the Spin(2) or ghost number symmetry in the
B̂ model. In the B̂ model, Spin(2) acts by rotation of σ∨, that is, by rotation of
the X1 − X2 plane. To be more precise, σ∨ has ghost number 2. Equivalently, the
Spin(2) generator acts on the X1 − X2 plane as 2(X1∂/∂X2 − X2∂/∂X1).

In quantizing the B̂ model on S2 × I with the boundary conditions that we have
chosen, X1 and X2 are not zero; in fact, they appear in the solution of Nahm’s
equations with the regular pole, X = t/y. So this solution is not invariant under
a rotation of the X1 − X2 plane, understood naively. Why, therefore, is there a
Spin(2) grading of the physical Hilbert space H in the B̂ model?

The answer to this question is that we must accompany a Spin(2) rotation of the
X1 − X2 plane with a gauge transformation. The regular Nahm pole X = t/y is
invariant under the combination of a rotation of the X1 − X2 plane and a gauge

5Let E → M × W be the universal bundle. We construct the desired bundle ER∨ → M
by restricting E to M × w and taking the associated bundle in the representation R∨. (In this
construction, in general E must be understood as a twisted bundle, twisted by a certain gerbe.)
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transformation generated by t3. The rotation of the X1 − X2 plane does not act on
the representation R∨, but the gauge transformation does. So, on the B̂ model side,
the grading of H comes from the action of t3. But since the boundary condition
involves a regular Nahm pole, t3 generates the maximal torus of a principal SL2
subgroup of G∨.

So electric–magnetic duality maps the grading of H∗(N̄ (ρ)) by degree to the
action on R∨ of the maximal torus of a principal SL2 subgroup. This fact was
described in § 1.3. Now we understand it via gauge theory.

2.9. Universal characteristic classes in the Â model

It remains to understand, using gauge theory, an additional fact described in
§ 1.4: under duality, certain natural cohomology classes of N̄ (ρ) map to elements
of g∨ acting on R∨. There are three steps to understanding this:

(i) interpreting these cohomology classes as local quantum field operators in the
Â model;

(ii) determining their image under electric–magnetic duality;

(iii) computing the action of the dual operators in the B̂ model.

We consider step (i) here and steps (ii) and (iii) in § 2.11.
The method for carrying out the first step is known from experience with Don-

aldson theory. In defining polynomial invariants of 4-manifolds [10], Donaldson
adapted to four dimensions the universal gauge theory cohomology classes that
were described in two dimensions in [2] (and reviewed in § 1.4). Donaldson’s con-
struction was interpreted in quantum field theory in [24]. One of the main steps in
doing so was to interpret the universal characteristic classes in terms of quantum
field theory operators. The resulting formulae were understood geometrically by
Atiyah and Jeffrey [5]. Formally, the construction of Donaldson theory by twist-
ing of N = 2 super Yang–Mills theory is just analogous to the construction of the
Â model relevant to geometric Langlands by twisting of N = 4 super Yang–Mills
theory. (The instanton equation plays the same formal role in Donaldson theory
that the equation F − φ ∧ φ = � dAφ plays in the Â model related to geometric
Langlands.) As a result, we can carry out the first step by simply borrowing the
construction of [24].

As in § 1.4, the starting point is an invariant polynomial Pi on the Lie algebra g of
G. Using this polynomial, one constructs corresponding supersymmetric operators
in the Â model (or in Donaldson theory). The construction uses the existence of
a field σ of degree or ghost number 2, taking values in the adjoint bundle ad(E)C

associated to a G bundle, E. (There is also an analogous field σ∨ in the B̂ model; it
has already appeared in (2.3), and will reappear in § 2.11.) σ is invariant under the
topological supersymmetry of the Â model, so it can be used to define operators
that preserve the topological invariance of that model.

The most obvious way to do this is simply to define Pi(z) = Pi(σ(z)). This
commutes with the topological supersymmetry of the Â model, since it is a function
only of σ, which has this property. Here, z is a point in a 4-manifold M , and we
have made the z-dependence explicit to emphasize that Pi is supposed to be a
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local operator in quantum field theory. We will usually not write the z-dependence
explicitly.

Suppose that Pi(σ) is homogeneous of degree di. Then, as σ has degree 2, Pi

is an operator of degree 2di. It corresponds to the cohomology class vi of degree
2di that was defined from a more topological point of view in (1.5). (The link
between the two points of view depends on the fact that σ can be interpreted as
part of the Cartan model of the equivariant cohomology of the gauge group acting
on the space of connections and other data; see [5] for related ideas.) This has an
important generalization, which physicists call the descent procedure. It is possible
to derive from the invariant polynomial Pi a family of r-form-valued supersymmetric
operators of degree 2di − r, for r = 1, . . . , 4. (The definition stops at r = 4 since we
are in four dimensions.) Let us write

P̂i = P(0)
i + P(1)

i + · · · + P(4)
i ,

where P(0)
i = Pi = Pi(σ), and P(r)

i will be a local operator with values in r-forms
on M . We define the P(r)

i for r > 0 by requiring that

(d + [Q, ·])P̂i = 0, (2.8)

where d is the ordinary exterior derivative on M , and Q is the generator of the
topological supersymmetry.

P̂i is uniquely determined by the condition (2.8) plus the choice of P(0)
i and the

fact that P̂i is supposed to be a locally defined quantum field operator (in other
words, a universally defined local expression in the fields of the underlying super
Yang–Mills theory). For example, both in Donaldson theory and for our purposes,
the most important component is the 2-form component P(2)

i . It turns out to be

P(2)
i =

〈
∂Pi

∂σ
, F

〉
+

〈
∂2Pi

∂σ2 , ψ ∧ ψ

〉
. (2.9)

The notation here means the following. As Pi is an invariant polynomial on the
Lie algebra g, we can regard ∂Pi/∂σ as an element of the dual space g∗. Hence, it
can be paired with the g-valued 2-form F (the curvature of the gauge connection
A) to make a gauge-invariant 2-form-valued field that appears as the first term on
the right-hand side of (2.9). Similarly, we can consider ∂2Pi/∂σ2 as an element of
g∗ ⊗ g∗. On the other hand, ψ is a g-valued fermionic 1-form (of degree or ghost
number 1) that is part of the twisted super Yang–Mills theory under consideration
here (either twisted N = 2 relevant to Donaldson theory, or twisted N = 4 relevant
to geometric Langlands). So ψ ∧ψ is a 2-form valued in g⊗g; it can be paired with
∂2Pi/∂σ2 to give the second term on the right-hand side of (2.9).

From (2.8), we have [Q,P(2)
i ] = −dP(1)

i ; thus [Q,P(2)
i ] is an exact form. So the

integral of P(2)
i over a 2-cycle S ⊂ M , that is,

xi(S) =
∫

S
P(2)

i , (2.10)

commutes with the generator Q of the topological supersymmetry. Thus, xi(S) is
an observable of the Â model. Since dP(2)

i = −{Q,P(3)
i }, this observable element
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S

time

L

Figure 3. An ’t Hooft or Wilson line operator that runs in the time direction (shown
vertically) at a fixed position in W . A small two-surface S (sketched here as a circle) is
supported at a fixed time and is linked with L.

only depends on the homology class of S. Concretely, xi(S) will correspond to a
cohomology class on the relevant moduli spaces.

In our problem with M = W ×R, W = S2×I and an ’t Hooft operator supported
on w × R with w ∈ W , what choice do we wish to make for S? Part of the answer
is that we will take S to be supported at a particular time. In other words, we take
it to be the product of a point t0 ∈ R and a 2-cycle in W that we will call S.

Remark 2.1. The fact that S is localized in time means that the corresponding
quantum field theory expression xi(S) is an operator that acts on the quantum
state at a particular time. (In topological field theory, the precise time does not
matter, but, in general, as operators may not commute, their ordering does.) By
contrast, the ’t Hooft operator in this problem is present for all time, as its support
is w×R. Being present for all time, it is part of the definition of the quantum state,
rather than being an operator that acts on this state.

What will we choose for S ⊂ W? (In what follows, we will not distinguish in the
notation between S ⊂ W and S = S × t0 ∈ W × R.) One obvious choice is to let
S be the left or right boundary of W . If S is the right boundary, where we have
imposed Dirichlet boundary conditions, so that the G-bundle is trivialized, then
xi(S) vanishes. (From a quantum field theory point of view, the supersymmetric
extension of Dirichlet boundary conditions actually says that A, ψ and σ all vanish,
so P̂i certainly does.) On the other hand, if S is the left boundary, with Neumann
boundary conditions, there is no reason for xi(S) to vanish. The difference between
the left and right boundaries of S2 × I is homologous to a small 2-sphere that
‘links’ the point w = c × r ∈ W at which an ’t Hooft operator is present. This is
the most illuminating choice of S (figure 3). At any rate, whether we make this
choice of S or take S to simply be the left boundary of W , xi(S) coincides with
the class xi ∈ H2di−2(N̄ (ρ)) that was defined in (1.5). In view of remark 2.1, we
should think of xi(S) not just as an element of H2di−2(N̄ (ρ)) but as an operator
acting on this space (by cup product, as follows from general properties of the Â
model).

In § 1.4, we also used the invariant polynomial Pi to define gauge theory char-
acteristic classes vi of degree 2di. As we have already mentioned, in the quantum
field theory language, these classes simply correspond to the quantum field operator
Pi(z), evaluated at an arbitrary point z ∈ M . In § 1.4, we noted that the vi vanish
as elements of H2di(N̄ (ρ)) (though, of course, they are non-zero in other gauge
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theory moduli spaces). We can prove this in the quantum field theory approach by
taking z to approach the Dirichlet boundary of W ; on this boundary, σ = 0 so Pi

vanishes.

2.10. A group theory interlude

Before describing the dual picture, we need a small group theory interlude.
Let T and T∨ be the maximal tori of G and G∨ and let t and t∨ be their Lie

algebras. Because t and t∨ are dual vector spaces, and G and G∨ have the same
Weyl group, Weyl-invariant and non-degenerate quadratic forms on t correspond in
a natural way to Weyl-invariant and non-degenerate quadratic forms on t∨. Indeed,
thinking of an invariant quadratic form γ on t as a Weyl-invariant map from t to t∨,
its inverse γ−1 is a Weyl-invariant map in the opposite direction, or, equivalently, a
quadratic form on t∨. If γ and γ∨ are invariant quadratic forms on the Lie algebras
g and g∨ whose restrictions to t and t∨ are inverse matrices, then we formally write
γ∨ = γ−1 even without restricting to t and t∨. (As we state more fully later, the
most natural relation between quadratic forms on the two sides that comes from
duality really contains an extra factor of ng, the ratio of length squared of long and
short roots.)

G-invariant polynomials on the Lie algebra g are in natural correspondence with
Weyl-invariant polynomials on t. Similarly, G∨-invariant polynomials on g∨ corre-
spond naturally to Weyl-invariant polynomials on t∨.

Combining the above statements, once an invariant quadratic form γ∨ or γ is
picked on g∨ or equivalently on g, we get a natural map from homogeneous invariant
polynomials on g to homogeneous invariant polynomials on g∨ of the same degree.
Given an invariant polynomial on g, we restrict to a Weyl-invariant polynomial on t,
multiply by a suitable power of γ∨ so it can be interpreted as a Weyl-invariant poly-
nomial on t∨ and then associate it to a G∨-invariant polynomial on g∨. To restate
this, let (Symdi(g))G and (Symdi(g∨))G∨

be the spaces of homogeneous and invari-
ant polynomials of the indicated degrees, and let Θ and Θ∨ be the spaces of invariant
quadratic forms on g and g∨. For brevity, we suppose that G and G∨ are simple.
Then Θ and Θ∨ are one dimensional and (Symdi(g))G = Θdi ⊗ (Symdi(g∨))G∨

.
Hence, if γ∨ ∈ Θ∨ is picked, we get a correspondence

Pi ↔ (γ∨)diP∨
i (2.11)

between homogeneous polynomials Pi ∈ (Symdi(g))G and P∨
i ∈ (Symdi(g∨))G∨

.
The main reason that these considerations are relevant to gauge theory is that

an invariant quadratic form appears in defining the Lagrangian. For example, the
kinetic energy of the gauge fields is commonly written

− 1
2e2

∫
M

Tr F ∧ �F, (2.12)

where − Tr is usually regarded as an invariant quadratic form on g that is defined a
priori, and 1/e2 is a real number. However, as the theory does not depend separately
on the quadratic form − Tr and the real number 1/e2 but rather only on their
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product, we may as well combine them6 to γ = −(4π/e2) Tr and say that the theory
simply depends on an arbitrary choice of a positive definite invariant quadratic form
on g. The G∨ theory similarly depends on a quadratic form γ∨ = −(4π/e∨2)Tr.
The relation between the two that follows from electric–magnetic duality is

γ∨ =
1
ng

γ−1, (2.13)

where ng is the ratio of length squared of long and short roots of G or G∨.

2.11. Remaining steps

The procedure that was started in § 2.9 has two remaining steps: to find the B̂
model duals of the operators P(r)

i of the Â model, and to determine their action on
the space H of physical states.

The B̂ model of G∨ has a complex adjoint-valued scalar field σ∨ whose role is
somewhat similar to that of σ in the Â model. We have already encountered this
field in (2.3).

For G = G∨ = U(1), the action of electric–magnetic duality on these fields is
very simple: σ maps to a multiple of σ∨. For non-abelian G and G∨, the relation
cannot be as simple as that, since σ and σ∨ take values in different spaces; they
are valued in the complexified Lie algebras of G and G∨, respectively. However,
G-invariant polynomials in σ do transform into G∨-invariant polynomials in σ∨ in
a way that one would guess from (2.11):

Pi(σ) = (
√

ngγ
∨)diP∨

i (σ∨). (2.14)

So Pi = Pi(σ) maps to a multiple of P∨
i = P∨

i (σ∨).
We can apply this right away to our familiar example of quantization on W =

S2×I with mixed Dirichlet and Neumann boundary conditions in the Â model, and
the corresponding dual boundary conditions in the B̂ model. Picking a point z ∈ W
(or, more accurately, z ∈ M = W × R), the operator Pi(z) = Pi(σ(z)) corresponds
in general to a natural cohomology class of degree 2di on the Â-model moduli space.
However, for the specific case of W = S2 × I with our chosen boundary conditions,
Pi(z) vanishes, as we explained at the end of § 2.9. To see the equivalent vanishing
in the B̂ model on W , we note that σ∨, being the raising operator of a principal SL2
subgroup of G∨, is nilpotent. Hence, P∨

i (σ∨) vanishes for every invariant polynomial
P∨

i . This is the dual of the vanishing seen in the Â model.
It is probably more interesting to understand the B̂-model duals of those Â

model operators that are non-vanishing. For this, we must understand the duals of
the other operators P(r)

i introduced in § 2.9. As these operators were obtained by a
descent procedure starting with P(0)

i = Pi, we can find their duals by applying the
descent procedure starting with P∨(0)

i = P∨
i . In other words, we look for a family

of r-form valued operators P∨(r)
i , r = 0, . . . , 4, with P∨(0)

i = P∨
i and such that

6The factor of 4π is convenient here. Actually, a more complete description involves the gauge
theory θ angle as well. Then the theory really depends on a complex-valued invariant quadratic
form τ = (θ/2π + 4πi/e2)(−Tr), whose imaginary part is positive definite. For our purposes, we
omit θ and set γ = Im τ .
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(d + {Q, · })P̂∨
i = 0, where

P̂∨
i = P∨(0)

i + P∨(1)
i + · · · + P∨(4)

i .

The P∨(r)
i are uniquely determined by those conditions and must be the duals of the

P(r)
i .
For our application, the important case is r = 2. The explicit formula for P∨(2)

i

is very similar to the formula (2.9) for P(2)
i , except that the curvature F must be

replaced by �F , as follows:

P(2)
i =

〈
∂Pi

∂σ∨ , �F

〉
+

〈
∂2Pi

∂σ∨2 , ψ ∧ ψ

〉
. (2.15)

Of course, F and ψ are now fields in G∨ rather than G gauge theory, though we do
not indicate this in the notation.

We can now identify the B̂-model dual of the classes xi ∈ H2di−2(N̄ (ρ)) that
were defined in (2.10). We simply replace P(2)

i by (√ngγ
∨)diP∨(2)

i in the definition
of these classes (the power of √

ngγ
∨ is from (2.14)), so the dual formula is

xi(S) = (
√

ngγ
∨)di

∫
S

P∨(2)
i . (2.16)

As in § 2.9, S is a small 2-sphere that links the marked point w = c × r ∈ W . We
recall that, in the B̂ model, an external charge in the representation R∨ is present
at the point w.

All we have to do, then, is to evaluate the integral on the right-hand side of (2.16).
Since S is a small 2-cycle around the point w = c × r, a non-zero integral can arise
only if the 2-form P∨(2)

i has a singularity at w. The reason that there is such a
singularity is that the external charge in the representation R∨ produces an electric
field, or, in other words, a contribution to �F . In keeping with Coulomb’s law, the
electric field is proportional to the inverse of the square of the distance from the
location w of the external charge. As a result, �F has a non-zero integral over S.
The electric field due to the external point charge is proportional to e∨2, or, in
other words, to (γ∨)−1. It is also proportional to the charge generators, that is, to
the matrices that represent the G∨ action on R∨. Taking this into account, we find
that ∫

S

P∨(2)
i = (γ∨)−1 ∂P∨

i

∂σ∨ . (2.17)

To understand this formula, observe that as Pi is an invariant polynomial on g∨

its derivative ∂Pi/∂σ∨ can be understood as an element of the dual space (g∨)∗;
understanding (γ∨)−1 as a map from (g∨)∗ to g∨, the right-hand side of (2.17) is
an element of g∨, or, in other words, an operator that acts on the space H = R∨

of physical states.
So at last, the Â-model cohomology class

xi =
∫

S

P
(2)
i

can be written in the B̂ model as

xi = n
di/2
g (γ∨)di−1 ∂P∨

i (σ∨)
∂σ∨ . (2.18)
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w1 w2

wn

Figure 4. S2 × I with n marked points (only a few of which have been labelled)
at which ’t Hooft or Wilson operators have been inserted.

An illuminating special case of this result is the case that we pick Pi to be
of degree 2, corresponding to an invariant quadratic form on g and to a two-
dimensional class x ∈ H2(N̄ (ρ)). In this case, ∂P∨/∂σ∨ is a Lie algebra element
that is linear in σ∨, and is in fact simply a multiple of σ∨. In the relevant solution of
Nahm’s equations, σ∨ is the raising operator of a principal SL2. So in other words,
the class x ∈ H2(N̄ (ρ)) maps to the raising operator of a principal SL2, acting on
R∨. This is a typical fact described in § 1.4.

Finally, we can understand the sense in which this result is independent of the
choice of γ∨ (which should be irrelevant in the B̂ model). The raising operator of
a principal SL2 is well defined only up to a scalar multiple. As the right-hand side
of (2.18) is homogeneous in σ∨ of degree di − 1, a change in γ∨ can be absorbed in
a rescaling of σ∨. The same rescaling works for all i.

2.12. Compatibility with fusion

For simplicity, we have considered the case of a single marked point w ∈ W =
S2 ×I. However, there is an immediate generalization to the case of several distinct
marked points wα ∈ W , labelled by representations R∨

α of G∨. At these points
there is an ’t Hooft singularity in the Â model, or an external charge in the given
representation in the B̂ model (see figure 4).

On the Â-model side, the moduli space with our usual mixed boundary condi-
tions is

M =
∏
α

N̄ (ρα),

where ρα is related to R∨
α as described in § 1.1. This follows from the relation of

the Bogomolny equations to Hecke modifications. The space of physical states is
the cohomology of M or

H =
⊗

α

H∗(N̄ (ρα)). (2.19)

On the B̂-model side, since the solution of Nahm’s equations is unique and irre-
ducible, with a regular pole at one end, the physical Hilbert space is simply the
tensor product of the representations R∨

α associated with the marked points,

H =
⊗

α

R∨
α. (2.20)

The duality map between (2.19) and (2.20) is simply induced from the individual
isomorphisms H∗(N̄ (ρα)) ↔ R∨

α.
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w2w1

w3

S

Figure 5. A 2-sphere S (at fixed time) surrounding all of the marked points wα ∈ S2 × I.
(In this example, there are three marked points). S is homologous to a sum of 2-spheres
Sα, each of them linking just one of the wα.

As discussed in § 1.5, we can also let some of the points wα coalesce. This
leads to an operator product expansion of ’t Hooft operators in the Â model, or
of Wilson operators in the B̂ model. On the B̂-model side, the operator prod-
uct expansion for Wilson operators corresponds to the classical tensor product
R∨

α ⊗ R∨
β =

⊕
γ Nγ

αβR∨
γ . The corresponding Â-model picture is more complicated

and is described in gauge theory terms in [15, § 10.4].
The only observation that we will add here is that the operator product expansion

for Wilson or ’t Hooft operators commutes with the action of the group T described
at the end of § 1.4. We recall that T is generated on the Â-model side by the grading
of the cohomology by degree and the action of the cohomology classes xi(S). For
example, consider the grading of the Â-model cohomology by degree. With

M =
∏
α

N̄ (ρα),

the operator that grades H = H∗(M) by the degree of a cohomology class is
the sum of the corresponding operators on the individual factors H∗(N̄ (ρα)). The
operator product expansion of ’t Hooft operators commutes with the degree or
ghost number symmetry, which, after all, originates as a symmetry group (a group
of R-symmetries) of the full N = 4 super Yang–Mills theory. So after fusing some
of the ’t Hooft operators together, the action of the ghost number symmetry is
unchanged. Similarly, the dual B̂-model grading is by the generator t3 of a maximal
torus of a principal SL2 subgroup of G∨. Again, the linear transformation by which
t3 acts on H =

⊗
α R∨

α is the sum of the corresponding linear transformations for
the individual R∨

α. This linear transformation is unchanged if some of the points are
fused together, since it originates as a combination of an R-symmetry and a gauge
transformation, both of which are symmetries of the full theory and therefore of
the operator product expansion of Wilson operators.

A similar story holds for the linear transformations that correspond to the gauge
theory cohomology classes xi introduced in § 1.4. Let S be a 2-cycle that encloses
all of the marked points wα, as indicated in figure 5. In the Â model, we have

xi =
∫

S

P(2)
i ,

while in the B̂ model the analogue is

xi =
∫

S

P∨(2)
i .
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time

Figure 6. The operator product expansion as a time-dependent process. Time runs verti-
cally in the figure. In the past, there are n distinct marked points with insertions of Wilson
or ’t Hooft operators. In the future, the points fuse together in various groups. (Complete
fusion is not shown in the figure.) In this example, n = 6 and the groups are of sizes 2,
1 and 3. If, as in figure 5, we add a 2-sphere S that surrounds all of the points, then,
by topological invariance we could move it to the past, where it acts on n distinct line
operators, or to the future, where it acts on a smaller number of line operators created
by fusion. Hence, the action of the operators xi(S) commutes with the operator product
expansion of Wilson or ’t Hooft operators.

These definitions make it clear that nothing happens to xi if we fuse together some
of the points wα that are contained inside S.

It is illuminating here to think of the fusion as a time-dependent process. We go
back to a four-dimensional picture on M = W ×R, where R parametrizes the time,
and instead of thinking of the marked points as having time-independent positions
(as we have done so far in this paper) we take them to be separate in the past and
to possibly fuse together (in arbitrary subsets) in the distant future, as in figure 6.
The surface S is located at a fixed time, but topological invariance means that
we can place it in the distant past, acting on the Hilbert space of a collection of
isolated points wα, or in the far future, after some fusing may have occurred. So
fusion commutes7 with the action of xi(S).

Finally, we want to see that, for each i, the linear transformation by which xi

acts on the physical Hilbert space H =
⊗

α H∗(N̄ (ρα)) =
⊗

α R∨
α can be written

as a sum of the linear transformations by which xi would act on the individual
factors H∗(N̄ (ρα)) or R∨

α. For each α, let Sα be a 2-cycle that encloses only the
single marked point wα. Then S is homologous to the sum of the Sα. Hence,∫

S

P(2)
i =

∑
α

∫
Sα

P(2)
i ,

and similarly ∫
S

P∨(2)
i =

∑
α

∫
Sα

P∨(2)
i .

So in either the Â model or the B̂ model, xi acts on H by the sum of the linear
transformations by which xi would act on a single factor H∗(N̄ (ρα)) or R∨

α.

7The ability to move the xi(S) backwards or forwards in time also means that they are central:
they commute with any other operators that may act on the Wilson or the ’t Hooft operators.
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3. From physical Yang–Mills theory to topological field theory

In §§ 3.1 and 3.2, we describe some details of the relation between supersymmetric
Yang–Mills theory and topological field theory in four dimensions that were omitted
in § 2.

In § 3.3, we discuss the compactification (not reduction) of the theory to three
dimensions, hopefully shedding light on some recent mathematical work [6].

In § 3.4, we explain the claim of § 2.7 that, with the boundary conditions that we
chose on W = S2 ×I, Nahm’s equations have a unique solution. Finally, in § 3.5, we
explain the relation of the dual of Dirichlet boundary conditions to the universal
kernel of geometric Langlands.

3.1. Twisting

We begin by reviewing the ‘twisting’ procedure by which topological field theo-
ries can be constructed, starting from supersymmetric Yang–Mills theory in four
dimensions. The original example involved starting with N = 2 super Yang–Mills
theory. The twisted theory is then essentially unique and is related to Donald-
son theory [24]. Starting from N = 4 super Yang–Mills theory, there are three
choices [22], one of which is related to geometric Langlands [15].

We begin by considering N = 4 super Yang–Mills theory on the Euclidean space
R

4. The rotation group is SO(4). We denote the positive and negative spin repre-
sentations of the double cover Spin(4) as V+ and V−, respectively; they are both two
dimensional. One important point is that, although N = 4 super Yang–Mills theory
is conformally invariant, both classically and quantum mechanically, the twisting
procedure does not use this conformal invariance. (A close analogy of the construc-
tion with the twisting of N = 2 super Yang–Mills theory would not be possible if
we had to make use of conformal invariance, since N = 2 super Yang–Mills theory
is not conformally invariant quantum mechanically.)

N = 4 super Yang–Mills theory also has an R-symmetry group Spin(6). An
R-symmetry group is simply a group of symmetries that acts by automorphisms
of the supersymmetries, while acting trivially on space-time. The group Spin(6)
has positive and negative spin representations that we will call U+ and U−. They
are both of dimension 4. The supersymmetries of N = 4 super Yang–Mills theory
transform under Spin(4) × Spin(6) as

Y = V+ ⊗ U+ ⊕ V− ⊗ U−. (3.1)

Classically [7], it is possible to construct N = 4 super-Yang Mills theory by dimen-
sional reduction from 10 dimensions, that is, from R

10. This entails an embedding
(Spin(4)×Spin(6))/Z2 ⊂ Spin(10). In this way of constructing the N = 4 theory, Y
simply corresponds to one of the irreducible spin representations of Spin(10). The
supersymmetry algebra in 10 dimensions reads

{Qγ , Qδ} =
10∑

I=1

Γ I
γδPI , (3.2)

where the notation is as follows. Qγ and Qδ are two supersymmetry charges, cor-
responding to elements of Y. The PI generate the translation symmetries of R

10,
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while the ΓI are the generators of the Clifford algebra, understood as bilinear maps
Sym2 Y → V10, where V10 is the 10-dimensional representation of Spin(10). Reduc-
tion to four dimensions is achieved by requiring the fields to be independent of
the last six coordinates of R

10. This reduces Spin(10) symmetry to the subgroup
(Spin(4)×Spin(6))/Z2 considered in the last paragraph. In the reduced theory,8 the
PI vanish in (3.2) for 5 � I � 10. Therefore, in the reduced theory, the right-hand
side of (3.2) contains precisely the four operators PI , I = 1, . . . , 4.

Remark 3.1. In particular, in the theory reduced to four dimensions, there is no
Spin(4)-invariant operator on the right-hand side of (3.2). On the other hand, the
right-hand side of (3.2) is Spin(6)-invariant.

The idea of twisting is to replace Spin(4) by another subgroup of (Spin(4) ×
Spin(6))/Z2 that acts in the same way on space-time, but has some convenient
properties that will be described. This is accomplished by picking a homomorphism
λ : Spin(4) → Spin(6). Then we extend this to an embedding (1 × λ) : Spin(4) →
Spin(4) × Spin(6) and we define Spin′(4) = (1 × λ)(Spin(4)). The twisted theory
is one in which the ordinary rotation group Spin(4) is replaced by Spin′(4). In
other words, whenever we make a rotation of R

4 by an element f ∈ Spin(4), we
accompany this by a Spin(6) transformation λ(f).

We want to pick λ so that the Spin(4) × Spin(6) module Y contains a non-zero
Spin′(4) invariant. Supposing that this is the case, pick such an invariant and write
Q for the corresponding supersymmetry. Q automatically satisfies the fundamental
condition Q2 = 0. The reason for this is that Q2 is Spin′(4) invariant and (since
Q is a linear combination of the Qγ) can be computed from (3.2). But, in view of
remark 3.1, this is no Spin′(4) invariant on the right-hand side of (3.2).

Since Q2 = 0, one can pass from N = 4 super Yang–Mills theory to a much
‘smaller’ theory by taking the cohomology of Q. One considers only operators (or
states) that commute with Q (or are annihilated by Q) modulo operators of the
form {Q, . . . } (or states in the image of Q).

It is possible to state a simple condition under which the small theory can be
extended to a topological field theory. The condition is that the stress tensor T of
the theory, which measures the response of the theory to a change in the metric of
R

4, must be trivial in the cohomology of Q; that is, it must be of the form T =
{Q, Λ} for some Λ. In practice, this condition is always satisfied in four dimensions.
Given this, one can promote the ‘local’ construction on R

4 sketched in the last few
paragraphs to a ‘global’ construction that makes sense on a rather general smooth
4-manifold M . (Depending on λ, M may require some additional structure such
as an orientation or a spin structure; however, for the choice of λ that leads to
geometric Langlands, no such additional structure is required.)

Three possible twists of N = 4 super Yang–Mills theory lead to topological field
theories. Two of these are close cousins of Donaldson theory, and the third is related
to geometric Langlands.

8It is possible [20] to pick boundary conditions such that the PI , I � 5, survive in the reduced
theory as central charges (electric charges) that commute with all local operators (and in this case
magnetic charges appear in the algebra as additional central charges). We are not interested here
in such boundary conditions. In any event, the automorphism of the algebra of local operators
generated by the PI always vanishes; this is what we need in the following arguments.
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The twist which leads to geometric Langlands is easily described as follows:
SO(6) = Spin(6)/Z2 has an obvious SO(4) × SO(2) subgroup⎛⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.3)

Taking the double cover, Spin(6) has commuting Spin(4) and Spin(2) subgroups
whose centres coincide, and hence a global embedding

Spin(4) × Spin(2)
Z2

⊂ Spin(6). (3.4)

We simply take λ : Spin(4) → Spin(6) to be an isomorphism onto this Spin(4)
subgroup of Spin(6). Since Spin(2) commutes with the image of λ, it becomes a
global symmetry of the model. This actually is the group Spin(2) that played an
important role in § 2.8.

The spin representations U± of Spin(6) decompose under Spin(4) × Spin(2) as

U+ = V 1
+ ⊕ V −1

− ,

U− = V −1
+ ⊕ V 1

−.

}
(3.5)

Here the notation is as follows. As before, V+ and V− are the two spin represen-
tations of Spin(4). As for Spin(2), it is abelian and isomorphic to U(1). Its spin
representations are one-dimensional representations of U(1) of ‘charge’ 1 and −1;
the charge is indicated by the superscripts ±1 in (3.5).

Now, in view of equation (3.1), the supersymmetries of the theory transform
under Spin′(4) × Spin(2) as

V+ ⊗ (V 1
+ ⊕ V −1

− ) ⊕ V− ⊗ (V −1
+ ⊕ V 1

−). (3.6)

We want to find the Spin′(4) invariants. Decomposing (3.6) into a direct sum of irre-
ducibles, both V+ ⊗ V 1

+ and V− ⊗ V 1
− contain a one-dimensional Spin′(4)-invariant

subspace, while there are no invariants in V± ⊗ V −1
∓ .

Let us write Q+ and Q− for Spin′(4)-invariant supersymmetries derived from the
invariant part of V+ ⊗V 1

+ and V− ⊗V 1
−, respectively. Note that they both transform

under Spin(2) with charge 1. A general complex linear combination

Q = uQ+ + vQ− (3.7)

is Spin′(4) invariant and also has charge 1. It also turns out that any such Q (with u
and v not both zero) obeys the condition for defining a topological field theory: the
stress tensor can be written as T = {Q, . . . }. The topological field theory that we
get by passing to the cohomology of Q is invariant under rescaling Q by a non-zero
complex number. So we should think of u and v as homogeneous coordinates on a
copy of CP

1 that parametrizes a family of topological field theories.
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Because Spin(2) ∼= U(1), its representations are labelled by integers, correspond-
ing to the characters exp(iθ) → exp(inθ), n ∈ Z. The action of Spin(2) gives a Z

grading of the full physical Hilbert space Ĥ of N = 4 super Yang–Mills theory.
In topological field theory, we want a Z grading not of Ĥ, but of a vastly smaller

space H: the cohomology of Q. In order for the cohomology of Q to be Z-graded, we
require that Q should transform in a definite character of Spin(2). This is true for
any choice of u and v because both Q+ and Q− transform with the same character
of Spin(2): what we have called charge 1. So any complex linear combination Q =
uQ+ + vQ− also has charge or degree 1, and the cohomology of Q is Z-graded.

If it were the case, for example, that Q+ and Q− had charge 1 and −1, respec-
tively, then a generic complex linear combination Q = uQ+ + vQ− would not have
definite charge, and its cohomology would be only Z2-graded. In § 3.3, we describe
a situation in which something similar to that occurs.

3.1.1. A slight complication

Roughly speaking, the Â model and the B̂ model correspond to different values
of the ratio v/u. The full details are a little more complicated, and involve also the
coupling parameter τ = θ/2π+4πi/e2 of the gauge theory, as explained in [15, § 3.5].

The complication arises because the Lagrangian of the theory cannot be written
in the form {Q, . . . }, but is of this form only modulo a multiple of the topological
invariant ∫

M

Tr F ∧ F.

Consequently, the topological field theory depends not only on the twisting param-
eter v/u, but also on τ . Actually, the topological field theory depends on τ and the
twisting parameter only via a single parameter defined in [15, (3.50)]; as a result,
it is true that twisting leads to a family of topological field theories parametrized
by CP

1 and that the Â model and the B̂ model correspond to two points in this
space.

The expression ∫
M

Tr F ∧ F

actually has another interpretation. Let P (σ) be an invariant quadratic polynomial
on the Lie algebra g. Applying the construction of § 2.9 to P , we construct a
sequence of r-form-valued operators P(r), r = 0, . . . , 4, with P(0) = P (σ) and

(d + {Q, ·})
∑

r

P(r) = 0.

If we pick P correctly, then P(4) = (1/8π2) Tr F ∧ F . The integral∫
M

P(4) =
1

8π2

∫
M

Tr F ∧ F

(which is none other than the instanton number) is Q-invariant but is non-trivial
in the cohomology of Q. It is this fact that causes the coupling parameter τ to be
relevant in the topological field theory.
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In a superficially similar situation that will be considered in § 3.3,
∫

M
P(4) will

disappear from the Q-cohomology (by ‘cancelling’ a certain integral of P(3), which
will also disappear at the same time). This being so, τ will be irrelevant in the
topological field theory, which will depend only on the choice of Q.

3.2. Scalar fields in twisted theory

Now we want to describe the bosonic fields of N = 4 super Yang–Mills theory
before and after twisting. In 10 dimensions, the only bosonic field is the connec-
tion Â. Writing

Â =
4∑

I=1

AI dxI +
10∑

J=5

AJ dxJ ,

we can parametrize Â by the four-dimensional connection

A =
4∑

I=1

AI dxI

and six scalar fields ΦI = A4+I , I = 1, . . . , 6, that are valued in the adjoint repre-
sentation of the gauge group G.

In particular, the six scalar fields Φ transform in the ‘vector’ representation
of SO(6) = Spin(6)/Z2. Under the embedding SO(4) × SO(2) ⊂ SO(6) sketched
in (3.3), Φ splits into ‘upper’ components that transform under SO(4) and ‘lower’
components that transform under SO(2).

In the twisted theory on a general 4-manifold M , the upper components are
interpreted as an ad(E)-valued 1-form φ. Twisting transforms φ from a collection
of four scalar fields (or 0-forms) into a 1-form. In other words, the upper components
of φ are invariant under Spin(4), but transform under Spin′(4) in such a way that
it is natural to interpret

φ =
4∑

I=1

ΦI dxI

as a 1-form. This 1-form entered prominently in § 2. In the B̂ model it combines
with A to the complex connection A = A + iφ, and in the Â model it appears with
A in the elliptic differential equations F − φ ∧ φ = � dAφ.

The lower components of Φ are a pair of ad(E)-valued scalar fields that transform
trivially under Spin′(4) but in a real two-dimensional representation of Spin(2). In
§ 2.6, these fields were called X1 and X2 and were combined into a complex field
σ = (X1 +iX2)/

√
2. The field σ has charge or degree 2 for the following reason. We

defined the charge so that the fundamental representation of Spin(2) has charge 1,
so the fundamental representation of SO(2) = Spin(2)/Z2 has charge 2. The fields
X1 and X2 transform in the fundamental representation of SO(2), as is clear from
the embedding SO(4) × SO(2) ⊂ SO(6). In the Â model, σ can be viewed as part
of the Cartan model of the equivariant cohomology of the gauge group acting on
the fields (A, φ). In the B̂ model, its role was described in § 2.6.

All of this holds on a generic 4-manifold M . However, matters simplify if M is
the product of a 3-manifold M3 with a 1-manifold M1. Here, M1 may be either R
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or S1 or a compact interval I with some boundary conditions chosen. Topological
field theory on M does not really depend on what metric is chosen on M , but if
M is a product, it is simplest to do the computations with a product metric. The
cotangent bundle of M then splits metrically (as well as topologically) as a direct
sum T ∗M = T ∗M3 ⊕ T ∗M1, where the connection on T ∗M1 is trivial.

We now should re-examine the four ‘upper’ components of Φ that are interpreted
for generic M after twisting as a 1-form φ. In the case of the 3 ⊕ 1 split of the
last paragraph, only three components of Φ are twisted. They can be interpreted
as a 1-form on M3. As for the fourth ‘upper’ component, it is a 1-form on M1, but
the cotangent bundle of M1 is completely trivial, topologically, metrically and from
the point of view of the Riemannian connection. So, in this particular situation,
twisting has done nothing at all to this scalar field. Since it is unaffected by the
twisting, just like the ‘lower’ components X1 and X2, we may as well combine it
with them and call it X3.

The Spin(2) global symmetry of N = 4 twisted super Yang–Mills theory on
a generic M is now promoted to Spin(3), rotating X1, X2 and X3. This is the
Spin(3) symmetry that mysteriously appeared when we derived Nahm’s equations
in § 2.6. The example in that section and in most of § 2 was M = R×S2 × I, which
can be decomposed as M3 × M1 in more than one way. The decomposition that
is relevant for understanding § 2.6 is M3 = R × S2, M1 = I. Indeed, the formula
X3 = φy of equation (2.5) shows that X3 is the component of φ in the I direction.

Although physical Yang–Mills theory on M3 × M1 (after twisting but before
passing to the Q cohomology) has Spin(3) symmetry, the topological field theory
that we get by taking the Q cohomology does not. That is because Q does not
transform in a one-dimensional representation of Spin(3). In fact, it lies in a two-
dimensional representation of Spin(3).

3.3. More general construction in three dimensions

We will now make a digression aimed at making contact with some recent math-
ematical work [6]. At the end of § 3.2, we considered a four-dimensional topological
field theory specialized to a 4-manifold with a product structure. Henceforth, we
take this to be specifically M = M3 × S1. Keeping S1 fixed and letting M3 vary,
the four-dimensional topological field theory reduces to a three-dimensional one.

Starting with N = 4 super Yang–Mills in four dimensions, it is possible to modify
the construction slightly to obtain a three-dimensional topological field theory that
does not quite come in this way from a four-dimensional topological field theory.
Roughly speaking, to do this, we require Q to have only Spin′(3) invariance, not
Spin′(4) invariance.

To explain the construction in more detail, begin with N = 4 super Yang–Mills
theory on R

3 × S1. The spin group of R
3 is Spin(3), and of course the R-symmetry

group of the theory is still Spin(6). Now we want to pick a homomorphism λ̃ :
Spin(3) → Spin(6) and to define Spin′(3) as the image of

(1 × λ̃) : Spin(3) → Spin(3) × Spin(6).

We simply define λ̃ to be the restriction to Spin(3) of the homomorphism λ :
Spin(4) → Spin(6) that we used before. In other words, we now begin with a
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subgroup (Spin1(3)×Spin2(3))/Z2 ⊂ Spin(6) (here Spini(3), i = 1, 2, are two com-
muting copies of Spin(3)). We define Spin′(3) as the diagonal product of Spin(3) ×
Spin1(3) ⊂ Spin(3) × Spin(6).

Clearly, Spin′(3) commutes with the group F = Spin2(3), which is yet another
copy of Spin(3). F will play the role that was played in §§ 3.1 and 3.2 by Spin(2).
The reason for the extension of Spin(2) to Spin(3) is the same as in § 3.2: only
three scalar fields have been twisted, not four. We will also be interested in the
complexification of F , which is FC = Spin(3, C) ∼= SL(2, C).

To construct a three-dimensional topological field theory we must pick a Spin′(3)-
invariant supercharge. So let us determine how the supercharges transform under
Spin′(3) × F . We write V , V1 and V2 for the spin representations of Spin(3), Spin1(3)
and Spin2(3). The two spin representations V± of Spin(4) are both equivalent to V
when restricted to Spin(3). Similarly, the two spin representations U± of Spin(6)
are both equivalent under (Spin1(3) × Spin2(3))/Z2 to V1 ⊗ V2. So, as a Spin(3) ×
Spin1(3) × Spin2(3) module, the space of supersymmetries is

Y = V ⊗ V1 ⊗ V2 ⊗ C
2. (3.8)

We restrict to Spin′(3) × Spin2(3) by setting V1 = V , giving Y = V ⊗ V ⊗ V2 ⊗ C
2

The first step in constructing three-dimensional supersymmetric field theories is to
extract the Spin′(3)-invariant subspace. The Spin′(3)-invariant subspace of V ⊗ V
is one-dimensional, so the Spin′(3)-invariant subspace of Y is four-dimensional. We
call this subspace J . As an F -module, J is isomorphic to V2 ⊗ C

2, where V2 is a
two-dimensional module for FC

∼= SL(2, C).
If Q is the supersymmetry corresponding to a generic point in J , it is not true

that Q2 = 0. We can see this from (3.2). Though there is no Spin′(4) invariant on
the right-hand side of (3.2), there is an essentially unique Spin′(3) invariant. It is
the generator of the rotation of S1, the second factor of R

3 × S1. Let us call this
generator V. A generic Spin′(3)-invariant supersymmetry squares not to zero but to
a multiple of V. On the Spin′(3) invariant subspace J , (3.2) reduces to something
that in coordinates looks like

{Qα, Qβ} = δαβV. (3.9)

Intrinsically, δαβ is a quadratic form (·, ·) on the four-dimensional vector space J .
This quadratic form is obviously FC invariant, and this is actually enough to ensure
that it is non-degenerate, given that J ∼= V2 ⊗C

2. Indeed, the quadratic form is the
tensor product of an FC-invariant skew form on V2 and a non-zero (and therefore
non-degenerate) skew form on C

2. The skew form on C
2 is invariant under a group

F̃C that is another copy of SL(2, C). F̃C is therefore a group of symmetries of the
quadratic form, though there is no natural way to make it act on the states and
operators of the full theory.

Suppose that Q is a Spin′(3)-invariant supersymmetry with Q2 = V (or equiva-
lently, Q2 a non-zero multiple of V). Can we use Q as a differential to construct a
topological field theory? Superficially, the answer is ‘no’, since Q2 is non-zero. How-
ever, V generates a symmetry (a compact group of rotations of R

3 × S1) and we
can restrict to V-invariant operators and states. In this smaller space, Q2 = 0 and
we can pass to the cohomology of Q. In fact, similar constructions have been made
previously [19,21]. These constructions, respectively, involve non-free S1 actions on
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R
4 or S4. The construction we describe here is similar but simpler as it involves a

free S1 action.
The relation Q2 = V is reminiscent of equivariant cohomology. Consider a U(1)

action on a manifold B generated by a vector field V . Localized equivariant cohom-
ology can be described by the operator dV = d + ιV acting on differential forms on
B; here ιV is the operator of contraction with V . One has d2

V = LV , where LV is the
Lie derivative with respect to V . The operator dV was related to supersymmetric
nonlinear sigma models in [23] and was interpreted in equivariant cohomology in [3].
In our problem, since V generates the natural S1 action on M4 = M3 × S1, the
relation Q2 = V is suggestive of localized equivariant cohomology for this action.
This connection is made much more precise in [19,21].

Up to scaling by a non-zero complex number, Q corresponds a priori to an
arbitrary point in the projective space P(J) ∼= CP

3. But it is not true that CP
3

parametrizes a family of inequivalent topological field theories. If f is any invertible
operator acting on the Hilbert space H of N = 4 super Yang–Mills theory, then
Q and fQf−1 lead to equivalent topological field theories. In particular, picking
f ∈ FC

∼= SL(2, C), we see that, to classify the three-dimensional topological field
theories that emerge from this construction, we must divide by the action of FC

on CP
3.

Let us first classify those topological field theories for which Q2 = 0. These
correspond to the zeros of the non-degenerate quadratic form (·, ·) on P(J). They
form a non-degenerate quadric Q, which is a copy of CP

1 × CP
1. This particular

copy of CP
1 × CP

1 is a homogeneous space for the group SO(4, C) ∼= (FC × F̃C)/Z2
that acts on P(J) preserving the quadric, so we write it as CP

1 × C̃P
1
. Here CP

1 is
a homogeneous space for FC, and C̃P

1
is a homogeneous space for F̃C. The quotient

(CP
1 × C̃P

1
)/FC is just a copy of C̃P

1
. However, FC does not act freely on C̃P

1
.

Each point in C̃P
1

is left fixed by a Borel subgroup B of FC, isomorphic to(
∗ ∗
0 ∗

)
. (3.10)

In the topological field theory associated to a particular choice of Q, this Borel group
acts as a group of symmetries. In particular, the cohomology of Q is Z-graded by
the action of the diagonal matrices in B.

So we have a family of Z-graded three-dimensional topological field theories,
parametrized by a copy of CP

1 (at this point we drop the tilde), with the property
that Q2 = 0. Actually, these are simply the examples that come by compactification
on S1 of a four-dimensional topological field theory.

To obtain something new we consider the examples for which Q2 is a non-zero
multiple of V. Note that P(J) is a complex manifold of complex dimension 3, as is
FC. This makes it possible for the complement of the quadric Q ⊂ P(J) to consist of
a single FC orbit. This is, in fact, the situation. Bearing in mind the decomposition
J ∼= V2 ⊗ C

2, where FC acts on the first factor and F̃C on the second, we can think
of an element of J as a 2 × 2 matrix KAȦ, A, Ȧ = 1, 2, with FC and F̃C acting on
K respectively on the left and right. In this representation, the FC × F̃C-invariant
quadratic form is K → det(K) and the condition for K not to be a null vector for
the quadratic form is that it should be an invertible matrix. But any two invertible
matrices are equivalent under the action of FC ×C

∗ (FC acts on the 2×2 matrix K
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by left multiplication, while C
∗ acts by scaling K → λK, λ ∈ C

∗: we must divide
by C

∗ since we view K as an element of the projective space P(J)). So, as claimed,
the complement of the quadric in P(J) is a single FC orbit.

Although the left action of FC on the space of invertible 2 × 2 matrices is free,
when we project to P(J), the action becomes only semi-free (that is, the stabilizer
of a point is a finite group). In fact, FC

∼= SL(2, C) contains a central subgroup Z2
consisting of the matrices −1 and 1. These matrices act trivially on P(J), and the
subgroup of FC that leaves a fixed point in P(J) that is not on the quadric is Z2.
So if Q corresponds to a point that is not on the quadric, then its cohomology is
Z2-graded, but not Z-graded.

We can thus summarize what three-dimensional topological field theories arise
from this construction. There is the usual CP

1 family of theories that arise by
compactification from four dimensions. Two points in this family are the Â model
and B̂ model of G (which are equivalent, respectively, to the B̂ model and Â model
of G∨). The generic point in this family corresponds to what is sometimes called
quantum geometric Langlands (of G or equivalently of G∨). There is one more
theory that does not arise by compactification of a four-dimensional theory. It is
only Z2 graded and, as we explain momentarily, does not distinguish G from G∨.

What we have established so far is really that, by varying Q at a fixed value of
the coupling parameter τ of the theory, we can construct only one new theory. In
§ 3.3.1 we will show that because of vanishing of a certain element of cohomology,
the parameter τ is irrelevant in the new theory. This means that the new theory is
really unique.

This new Z2-graded theory appears to be a candidate for the one studied in [6].
Electric–magnetic duality acts non-trivially on the CP

1 that parametrizes theo-
ries that come from four dimensions. But the new theory, being unique, must be
invariant under duality. In particular, as duality exchanges G and G∨, the new
three-dimensional theory defined for G is equivalent to the same theory defined
for G∨.

Starting with any point on the quadric Q, corresponding to one of the usual
theories studied in (ordinary or quantum) geometric Langlands, and making an
infinitesimal perturbation away from Q, one lands on the same generic FC orbit. So
the same theory (the one that is symmetrical between G and G∨) can be reached
(after compactification to three dimensions) by an infinitesimal perturbation of any
of the theories of four-dimensional origin. The required perturbation reduces the
Z-grading to a Z2-grading.

3.3.1. Vanishing of a certain element of cohomology

As explained in § 3.1.1, the reason that the gauge coupling parameter τ is not
completely irrelevant in the twisted four-dimensional theories that lead to geometric
Langlands is that the instanton number

ν =
∫

M

P(4) =
1

8π2

∫
M

Tr F ∧ F

is Q-invariant and not of the form {Q, . . . }; that is, it represents a non-trivial
cohomology class of Q. Adding a multiple of ν to the Lagrangian gives a non-trivial
deformation of the theory.
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It turns out that when we perturb slightly away from the quadric, this cohomology
class disappears. As a result, the parameter τ becomes irrelevant, completing the
justification of the claim that, after compactification to three dimensions on a circle,
there is precisely one new Z2-graded topological field theory that we can make.

Remark 3.2. The fact that the cohomology class disappears under perturbation
away from the quadric can be anticipated as follows. As shown in [15], the defor-
mation by the cohomology class ν is equivalent to the deformation associated with
a change in the linear combination Q = uQ+ + vQ−. We have already seen that
once we move away from Q, the deformation by changing Q becomes trivial, so
the deformation by ν must also become trivial. Instead of relying on this sort of
argument, we prefer to be more explicit.

In general, for a cohomology class to disappear under an infinitesimal perturba-
tion, it must annihilate another cohomology class whose Z-grading differs by ±1
(if the perturbation preserves a Z-grading, as in the case usually considered), or
at least one that has the opposite Z2 grading (if the perturbation preserves only
a Z2-grading, as in the case considered here). In the four-dimensional topological
field theories related to geometric Langlands, there is no 4-form-valued cohomology
class of Q with an odd grading that could possibly cancel

∫
M

P(4) in the cohom-
ology. However, once we compactify to three dimensions, there is such a class. Our
construction on M = M3 × S1 made use of a vector field V that generates the
rotation of S1. There is a natural V-invariant 1-form dy on S1 with

∫
S1 dy = 1.

This enables us to consider the expression

ν̃ =
∫

M

P(3) ∧ dy,

which is a Q cohomology class of degree 1. If the four-dimensional Z-graded theory is
restricted to 4-manifolds of the form M3×S1, then, in addition to the usual complex
modulus corresponding to the cohomology class ν (this modulus is tangent to the
usual CP

1 family), there is an odd modulus corresponding to ν̃.
But, when one perturbs away from the quadric Q to a Z2-graded theory, the

cohomology classes ν and ν̃ both disappear, as we will now argue. Let Q be the
topological supersymmetry generator corresponding to a point in Q, so that Q2 = 0
and Q descends from four dimensions. Pick a one-parameter deformation Qε =
Q+εQ′, where Q′ corresponds to another point in P(J) and Q2

ε �= 0. After possibly
replacing Q′ by a linear combination of Q and Q′, we can assume that (Q′)2 = 0
and that

{Q, Q′} = V. (3.11)

Let

CS(A) =
1

8π2 Tr(A ∧ dA + 2
3A ∧ A ∧ A)

be the Chern–Simons 3-form. Its periods are not well defined as real numbers, but
rather take values in R/Z. Let

Θ =
∫

M

CS(A) ∧ dy.
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In defining Θ, we pick a point y0 ∈ S1 and, at that point, we pick an R-valued lift
of ∫

M3×y0

CS(A).

Then we pick an R-valued lift of

f(y) =
∫

M3×y

CS(A)

so that this function is continuous for y > y0, and define

Θ =
∫

S1
dy f(y).

Once we go all the way around the circle, f(y) will jump by ν, the instanton
number, so the definition of Θ depends on both the choice of y0 and the real lift
chosen for

∫
M3×y0

CS(A). But the indeterminacy of Θ is independent of A, and
hence it makes sense to compute the commutator [V, Θ], where V acts on A by
generating the rotation of the circle. Since∫

S1
dy

(
df

dy

)
(which is the change in f in going around the circle) equals the instanton number
ν, the commutator is

[V, Θ] = ν. (3.12)

(Physicists would usually describe this computation by saying that [V, Ai] = Fyi,
where Ai is a component of the connection tangent to M3 and Fyi is a correspond-
ing curvature component. Using this, a formal evaluation of the commutator gives
(3.12).)

Another useful calculation gives

[Q, Θ] =
∫

M

P(3) ∧ dy = ν̃. (3.13)

Again, the commutator makes sense because Θ is well defined modulo an additive
constant. To compute this commutator, one needs to know that [Q, A] = ψ, where
ψ is an adjoint-valued fermion field such that P(3) = (1/4π2) Tr F ∧ ψ. The formula
(3.13) does not make ν̃ =

∫
M

P(3) trivial in the cohomology of Q, since Θ is not a
well-defined real-valued function.

However, now we find {Q′, ν̃} = {Q′, [Q, Θ]} = −{Q, [Q′, Θ]} + {V, Θ}, where
(3.11) has been used along with the Jacobi identity. Also using (3.12), we obtain

{Q′, ν̃} = ν − {Q, [Q′, Θ]}. (3.14)

Again, the commutator [Q′, Θ] is well defined despite the uncertainty of Θ by a real
constant (an explicit local quantum field theory expression can be written for this
commutator). So when we pass to the cohomology of Q, the last term in (3.14) is
trivial and this equation reduces to {Q′, ν̃} = ν. This implies that when we perturb
Q to Qε = Q + εQ′, both ν̃ and ν disappear from the cohomology.
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Remark 3.3. Going back to four dimensions, we can select an invariant polynomial
Pi of degree di and perturb the topological field theories related to geometric Lang-
lands by the Q-invariant interaction

∫
M

P(4)
i . This perturbation has degree 2di − 4,

so, for di > 2, it gives a Z2di−4-graded theory. If we include a linear combina-
tion of such perturbations with all possible values of i, we will get a family of
four-dimensional topological field theories that (for most simple Lie groups G) are
generically only Z2-graded. These theories have similar behaviour under electric–
magnetic duality to the Z-graded theories that are usually considered in geometric
Langlands. It is not clear to the author whether they contain any essentially new
information.

3.4. Uniqueness of the solution of Nahm’s equation

An important point in § 2.7 was that, with the appropriate boundary conditions
at the two ends, the solution of Nahm’s equations on the half-open interval (0, L]
is unique. The boundary condition for y → 0 was described in equation (2.7): X
should have a regular pole at y = 0, the singular part being

X =
t

y
, (3.15)

where t are the images of the su(2) generators under a principal embedding ϑ :
su(2) → g∨.

The boundary condition at y = L was not explained in § 2 but, as we will explain,
its effect is that the solutions of Nahm’s equations on (0, L] with the conditions we
will want at y = L are tautologically the same as the solutions of Nahm’s equations
on the open half-line (0,∞) with a requirement that X → 0 at infinity.

Kronheimer [16] investigated Nahm’s equations on the open half-line with these
conditions9 (including the regular Nahm pole at y = 0) and showed that the solution
is unique. So once we have explained how our problem on the half-open interval
(0, L] is related to Kronheimer’s problem on the half-line (0,∞), the uniqueness
claimed in § 2.7 will follow.

Actually, Kronheimer considered a more general problem in which ϑ : su(2) → g∨

is taken to be an arbitrary homomorphism, not necessarily related to a principal
embedding. We will need to know about the opposite case, when ϑ = 0. For this
choice, there is no pole at y = 0, so we are studying solutions of Nahm’s equations
on the closed half-line [0,∞). In this case, the moduli space of solutions of Nahm’s
equations turns out to be a hyper-Kahler manifold X (G∨) that, in any of its complex
structures, is equivalent to the nilpotent cone in the complex Lie algebra g∨

C
. The

moduli space X (G∨) has G∨ symmetry for an easily understood reason: if ϑ = 0,
then the group G∨ acts on the solutions of Nahm’s equations in the obvious fashion
X → gXg−1. (For ϑ �= 0, the group that acts is the subgroup of G∨ that commutes
with the image of ϑ.) The hyper-Kahler moment map for the G∨ action on X (G∨)
turns out to be µ = X(0). All this has the following trivial generalization. If we

9Kronheimer also considered a generalization of the condition X → 0 at infinity, the require-
ment being instead that X is conjugate at infinity to a specified triple of elements of t ∨. It is
possible to modify our boundary conditions on both the Â-model and B̂ model sides so as to
arrive at this generalization. The necessary facts are mostly presented in [11]. However, we will
omit this generalization here.
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solve Nahm’s equations on the half-line [L,∞) (rather than on [0,∞)), we obtain an
isomorphic hyper-Kahler manifold, the moment map for the G∨ action now being

µ = X(L). (3.16)

Here we will only require the extreme cases that ϑ is either 0 or a principal
embedding. The general result [16], however, for any ϑ, is that the moduli space of
solutions of Nahm’s equations turns out to be, as a complex manifold in any of its
complex structures, the Slodowy slice transverse to the nilpotent element t1 + it2
of g∨

C
.

Now we need to describe the boundary conditions at y = L in the construction
of § 2.7. The relevant notion of a boundary condition is more extended than one
may be accustomed to in the world of partial differential equations, for example. A
boundary condition in a quantum field theory defined on d-manifolds is a choice of
how to extend the definition to d-manifolds with boundary in such a way that all
the usual axioms of local quantum field theory are preserved. This notion allows
us to include on the boundary a (d − 1)-dimensional quantum field theory. It is
only interesting to do that, however, if the (d − 1)-dimensional boundary theory is
coupled in some way to the ‘bulk’ theory.

One might think that this notion of a boundary condition is too broad. However, it
is shown in [11,12] that this extended notion of a boundary condition is unavoidable
if one wishes electric–magnetic duality to act on boundary conditions, since the dual
of a more conventional boundary condition can very well be a boundary condition in
this extended sense. For example, as shown in [12], the dual of Dirichlet boundary
conditions in G-gauge theory is a boundary condition in G∨ gauge theory that
involves the coupling of the G∨ gauge fields to a very special superconformal field
theory T (G∨) that is supported on the boundary. For our purposes, T (G∨) has the
following important properties. It has G∨ ×G as a group of global symmetries. The
Higgs branch of vacua of T (G∨) turns out to be the Kronheimer manifold X (G∨),
and the Coulomb branch of vacua is the dual Kronheimer manifold X (G).

As explained in [11], for a boundary condition in G∨ gauge theory that is obtained
by coupling to a boundary theory with G∨ symmetry, the appropriate boundary
condition in Nahm’s equations is to set X equal on the boundary to µ, the moment
map for the action of G∨ on the Higgs branch:

X(L) = µ. (3.17)

This equation looks just like (3.16), even though the two equations have a com-
pletely different meaning. In (3.17), X is a solution of Nahm’s equations on the
interval (0, L], where the quantum field theory is defined. In equation (3.16), X
is a solution of Nahm’s equations on the half-line [L,∞). It defines a point in the
Higgs branch of the boundary theory. Nevertheless, if we simply combine the two
equations we see that, even though their interpretations are completely different,
the solution of Nahm’s equations on (0, L] agrees at y = L with the solution of
Nahm’s equations on [L,∞). Hence, they fit together to a single solution of Nahm’s
equations on the open half-line (0,∞). Nahm’s equations ensure that this solution
is smooth near y = L. It has the singular behaviour (3.15) near y = 0, and vanishes
for y → ∞, since this is a characteristic of the moduli space X (G). According to the
first result of Kronheimer mentioned at the beginning of this subsection, Nahm’s
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equations have a unique solution (namely X = t/y) obeying these conditions. This
is the uniqueness asserted in § 2.7.

The examples that we have described here of the role of Nahm’s equations in
duality of boundary conditions in N = 4 super Yang–Mills theory are really only
the tip of the iceberg. Much more can be found in [11, 12]. The full story involves,
among other things, the more general moduli spaces defined by Kronheimer for an
arbitrary ϑ : su(2) → g.

3.5. More on the dual of Dirichlet boundary conditions

In § 3.4 we exploited, in a rather technical way, the special properties of the dual
of Dirichlet boundary conditions. We should perhaps not leave the subject without
explaining that the dual of Dirichlet boundary conditions actually plays a rather
basic role in the geometric Langlands correspondence.

We start by explaining intuitively why the dual of Dirichlet boundary conditions
should be important. In geometric Langlands, one considers the B̂ model of N = 4
super Yang–Mills theory, compactified on a Riemann surface C, for gauge group
G∨. We compare it with the Â model of G on the same Riemann surface. The
most basic branes in the B̂ model are branes associated with a homomomorphism
χ : π1(C) → G∨

C
. We would like to understand their duals in the Â model.

Let us start with the case that χ is trivial. Let B be the corresponding B̂-brane.
We could modify B by introducing a Nahm pole, but let us not do so.

Then the brane B is simply the one that is defined by Dirichlet boundary con-
ditions for the complexified gauge field A = A + iφ (extended to all other fields
to preserve the topological supersymmetry of the B̂ model). After all, Dirichlet
boundary conditions say that A should be trivialized on the boundary, so that
the boundary data corresponds to a trivial flat connection representing the trivial
homomorphism from π1(C) to G∨

C
.

Dirichlet boundary conditions can be considered without any compactification,
as indeed was the case in [11, 12]. Thus the brane B associated to the trivial flat
connection without a Nahm pole has a universal meaning, independent of any choice
of Riemann surface C. (This is also true for the analogous problem with a specified
Nahm pole.)

Let B∗ be the Â-brane that is dual to B. Then B∗, like B, can be defined univer-
sally without any choice of compactification. As explained in [12], and as already
stated in § 3.4, B∗ is defined by coupling G gauge theory to a three-dimensional
superconformal field theory T (G) that has G × G∨ global symmetry.10 We use
the G symmetry of T (G) to couple it to G gauge fields in bulk. This leaves a G∨

global symmetry, matching the fact that G∨ is the automorphism group of Dirichlet
boundary conditions (or of the trivial homomorphism π1(C) → G∨

C
) in G∨ gauge

theory.
The duality between B and B∗ holds before or after compactification on a Rie-

mann surface C. However, after compactification, we can consider a twisted version
of the picture in which we twist using the automorphism group G∨

C
, which B and

10For three-dimensional superconformal field theories with the relevant amount of supersymme-
try, there is a notion of mirror symmetry [14], somewhat analogous to the more familiar mirror
symmetry in two dimensions. The mirror of T (G), in this sense, is T (G∨). Indeed, T (SU(2)) was
one of the fundamental examples considered in [14].
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B∗ have in common. On the B̂-model side, the twisted version of the picture sim-
ply involves a choice of homomorphism χ : π1(C) → G∨

C
. To each choice of χ, one

defines a B̂-brane B(χ) that is locally isomorphic to B, but globally is obtained from
B by twisting by the homomorphism χ from π1(C) to the automorphism group G∨

C

of B. (The statement that B(χ) is ‘locally’ isomorphic to B means that they are
locally isomorphic along C.) Let us denote by B∗(χ) the dual of B(χ). Then B∗(χ)
is obtained from B∗ exactly as B(χ) was obtained from B: by twisting, via a homo-
morphism, from π1(C) to the automorphism group. This makes sense, since B and
B∗ have the same automorphism group G∨.

So the dual of any B(χ) can be constructed if one understands the three-dimen-
sional superconformal field theory T (G) that is the main ingredient in describing
the dual of Dirichlet boundary conditions. Thus, a knowledge of T (G) gives the
same sort of results that one would expect mathematically from a description of
the universal kernel of geometric Langlands. This universal kernel is supposed to be
a brane in the product theory Â(G) × B̂(G∨) that has certain universal properties.
In fact, T (G) can be used to construct the appropriate brane. This can be done
prior to compactification, and thus independently of any choice of C.

The relevant construction is quite simple and was described in [12, § 4]. We divide
R

4 into two half-spaces separated by a copy of R
3, supported at, say, y = 0, where

y is one of the Euclidean coordinates of R
4. For y < 0, we place N = 4 super Yang–

Mills theory with gauge group G, while, for y > 0, we place the same theory with
gauge group G∨. At y = 0, one places the theory T (G). Using its G × G∨ global
symmetries, it can be coupled to G gauge theory on the left and G∨ gauge theory
on the right. Moreover, the coupling can be chosen so that the whole construction
is supersymmetric or, to be more precise, invariant under a subgroup OSp(4|4) of
the symmetry supergroup PSU(2, 2 | 4) of N = 4 super Yang–Mills theory. One
can pick a fermionic generator of OSp(4|4) that for y < 0 generates the topological
supersymmetry of the Â model of G, and for y > 0 generates the corresponding
symmetry of the B̂ model of G∨.

To get closer to the usual mathematical point of view, we can ‘fold’ R
4 along the

hypersurface y = 0, so that the G and G∨ gauge groups are now both supported
at y < 0 and there is nothing for y > 0. In this description, then, the theoretical
T (G) provides a boundary condition in the product of G and G∨ gauge theories.
After topological twisting, this boundary condition corresponds to a brane B̃ in the
product of the Â model of G and the B̂ model of G∨. Like the branes B and B∗

discussed above, B̃ can be defined in a universal way without any compactifica-
tion. This was indeed the viewpoint in [12], where properties were discussed that
correspond to the desired universal properties in geometric Langlands.
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