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Abstract

The gravity waves (GWs) produced by three-dimensional potential-vorticity (PV)
anomalies are examined under the assumption of constant vertical shear, constant strat-
ification, and unbounded domain. As in the two-dimensional case analysed in an earlier
paper, the disturbance near the PV anomaly is well modelled by quasi-geostrophic the-
ory. At larger distances the nature of the disturbance changes across the two inertial
layers that are located above and below the anomaly, and it takes the form of a vertically
propagating GW beyond these.

For an horizontally monochromatic PV anomaly of infinitesimal depth, the disturbance
is described analytically using both an exact solution and a WKB approximation; the
latter includes an exponentially small term which captures the change of the solution
near the PV anomaly induced by the radiation boundary condition in the far field. The
analytical results reveal a strong sensitivity of the emission to the Richardson number and
to the orientation of the horizontal wavenumber: the absorptive properties of the inertial
layers make that the emission is maximised in the northern hemisphere for wavenumbers
at negative angles to the shear.

For localised PV anomalies, numerical computations give the temporal evolution of the
GWs field. Analytical and numerical results are also used to establish an explicit form
for the Eliassen-Palm flux that could be used to parameterize GWs sources in GCMs.
The properties of the Eliassen–Palm flux vector imply that in a westerly shear, the GWs
exert a drag in a south-west direction in the upper inertial-layer, and exert a drag in a
north-west direction at the altitudes where the GWs dissipate aloft.

1 Introduction

Spontaneous adjustment, the mechanism whereby a well balanced flow radiates gravity waves
(GWs) in the course of its near-balanced evolution (Ford et al. 2000, Vanneste 2008), is a
possible source of atmospheric GWs. It can be distinguished from other mechanisms, including
topographic forcing and the classical adjustment originally described in Rossby (1937), by the
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fact that it involves no process external to the flow itself. In realistic configurations however,
spontaneous adjustment is mixed with other mechanisms. For instance, large mountain GWs
produce potential-vorticity (PV) anomalies when they break (Shär and Smith 1993) as well
as secondary GWs (Scavuzzo et al. 1998). To measure the relative importance of these two
signals, Lott (2003) studied the large-scale reponse to mountain-wave breaking near critical
levels and showed that substantial GWs are re-emitted during the breaking itself, while the
long term evolution is dominated by the balanced response. Martin (2008) subsequently found
that the PV field associated with the balanced response radiates GWs well after the end of
the initial breaking. This emission, although weaker than the initial one, is potentially more
persistent since it is tied to the slowly evolving PV. It is plausible, therefore, that it contributes
to the low-frequency GWs observed in the wakes of breaking topographic waves (Plougonven
et al 2010).

To quantify this emission by PV more precisely, Lott et al. (2010, hereinafter LPV10)
examined the GWs emitted by small-amplitudes PV anomalies in a shear. In this scenario, the
separation between balanced motion and GWs does not hold: because of the Doppler shift,
motions which are balanced in the vicinity of the anomalies become, in the far-field, gravity
waves (see also Plougonven et al 2005, Mamatsachvili et al 2010). In the linear approximation,
and assuming constant wind shear Λ, and constant Brunt-Väisälä fequency N , LPV10 found
that substantial GWs reach the far field when the Richardson number J = N2/Λ2 is not too
large (say between 1 and 10). By substantial, we mean that, for PV anomalies representative
of those likely to be found when thin layers of stratospheric air enter the troposphere, the
Eliassen–Palm (EP, or pseudomomentum) flux associated with the GWs is comparable to that
measured in the stratosphere far from mountains (Hertzog et al. 2008).

A practical result of LPV10 is a simple analytical estimate for the EP flux which could be
used in General Circulation Models (GCMs) that include the stratosphere. In non-dimensional
form, this estimate is given by

F ∼
1

4
e−π

√
J . (1.1)

LPV10 also showed that half of this flux is absorbed in the inertial layers above and below the
PV anomaly while the other half is radiated in the far field as GWs. The dimensional EP flux
follows from (1.1) by multiplication by the scaling factor

F0 =
ρrg2

fθ2rN
3
(ρrqrσz)

2, (1.2)

where g is the gravity constant, f the Coriolis parameter, ρr and θr background reference
values for the density and potential temperature, qr the amplitude of the PV anomaly and σz

its depth. In a GCM, these last two quantities could be related to the grid-scale PV value and
to the vertical gridspacing.

A limitation of LPV10 is the restriction to two-dimensional PV anomalies, with no structure
in the direction transverse to the basic shear. This is a significant limitation since the absorption
of GWs at inertial levels strongly depends on the orientation of the horizontal wavevector. This
is known from the investigations on GW propagating upward into interial levels: Grimshaw
(1975) and Yamanaka and Tanaka (1984) showed that the absorption at the lowest inertial
level is large for νΛ < 0, where ν = l/k is the ratio between the transverse and parallel
horizontal wavenumbers, and much smaller for νΛ > 0. This results in a ’valve effect’ which
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Yamanaka (1985) interpreted by analyzing the tilt of the phase lines of the GWs (i.e. of particle
displacements) relative to the isentropes. The configuration that we analyse is quite different
since the GW associated with a PV disturbance is generated between the critical levels and
propagates outwards of them. Nevertheless, the argument of Yamanaka (1985) applies and we
find strong absorption at the inertial level if νΛ > 0 and much weaker absorption if νΛ < 0.

The motivation of the present paper is to extend the results in LPV10 to three-dimensional
PV anomalies. Accordingly, its first aim is to obtain the vertical structure of the 3D singular
modes associated with PV anomalies that have the form of a Dirac function in the vertical.
The analytic results derived for monochromatic anomalies can then be integrated to obtain
the vertical structure associated with anomalies of arbitrary horizontal structure and show, in
particular, that an horizontally isotropic PV anomaly produces a very specific anisotropic GW
signature beyond the inertial levels. A second aim is to deduce further, by integration over the
continuous spectrum, the GW response to a vertically smooth, localised PV distribution. A
third aim is to extend the EP flux predictions in (1.1) and (1.2) to the 3D case. In this case,
the (vertical component of the) EP flux, which can also be interpreted as a wave stress, is a
horizontal vector. For a horizontally isotropic shear in the Northern hemisphere, this vector is
shown to make an angle with the shear that decreases with altitude, from zero at the anomaly
level to some negative value in the far field. This implies that a PV anomaly in a westerly
shear exerts a drag that is oriented to the south-west in the upper inertial region and to the
north-west where the associated GW dissipates aloft.

The plan of the paper is as follows. The general formulation of the problem and its transfor-
mation to a dimensionless form are given in Section 2. There we discuss both the exact response
to a δ-PV distribution in the vertical, and its WKB approximation valid for J " 1. The WKB
analysis extends that of LPV10 by resolving the Stokes phenomenon associated with the exis-
tence of an exponentially small (in J) contribution to the solution which grows exponentially
between the PV anomaly and the inertial levels. Taking this contribution into account, we ob-
tain a 3D generalisation of the EP flux estimate (1.1). Section 3 presents the vertical structure
of the response in some detail. It emphasizes the directional aspects and relates them to the
tilt of the solution about isentropes in the meridional plane. Section 4 recasts the results in
dimensional form and considers PV distributions that are localised horizontally and that have
a finite depth, in which case the GW-response is transient. Section 5 summarizes the results.
Appendices A and B provide technical details on the exact and WKB solutions, respectively.

2 Formulation

2.1 Disturbance equations and potential vorticity

In the absence of mechanical and diabatic forcings, the linearized hydrostatic–Boussinesq equa-
tions for a three-dimensional disturbance in the shear flow u0 = (Λz, 0, 0) read

(∂t + Λz∂x) u
′ + Λw′ − fv′ = −

1

ρr
∂xp

′, (2.1a)

(∂t + Λz∂x) v
′ + fu′ = −

1

ρr
∂yp

′, (2.1b)

0 = −
1

ρr
∂zp

′ + g
θ′

θr
, (2.1c)
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(∂t + Λz∂x) g
θ′

θr
− fΛv′ +N2w′ = 0, (2.1d)

∂xu
′ + ∂yv

′ + ∂zw
′ = 0. (2.1e)

Here u′, v′, and w′ are the three components of the velocity disturbance, p′ is the pressure
disturbance, θ′ is the potential temperature disturbance, and N2 = gθ0z/θr is the square of the
constant Brunt–Väisälä frequency, with θ0(y, z) the background potential-temperature. With-
out loss of generality we assume that Λ > 0.

Equations (2.1a)–(2.1e) imply the conservation equation

(∂t + Λz∂x) q
′ = 0, (2.2)

for the potential-vorticity (PV) perturbation

q′ =
1

ρr

(

θ0z(∂xv
′ − ∂yu

′) + θ0y∂zu
′ + Λθ′y + f∂zθ

′
)

. (2.3)

It follows that the PV at any time t is given explicitly in terms of the initial condition
q′0(x, y, z) = q′(x, y, z, t = 0) by

q′(x, y, z, t) = q′0(x− Λzt, y, z). (2.4)

2.2 Normal-mode decomposition

To evaluate the disturbance field associated with the PV anomaly (2.4), we express this solution
in Fourier space,

q′(x, y, z, t) =

∫ ∫

q̂(k, l, z, t)eikx+ilydkdl =

∫ ∫

q̂0(k, l, z)e
i(kx+ly−kΛzt)dkdl, (2.5)

where q̂0 is the horizontal Fourier transform of q′0,

q̂0(k, l, z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

q′0(x, y, z)e
−i(kx+ly)dxdy. (2.6)

Here and henceforth integrations without limits are understood to be over the whole space.
We rewrite (2.5) in the form

q′(x, y, z, t) =
kΛ

f

∫ ∫ ∫

q̂0(k, l, z
′)ei(kx+ly−kΛz′t)δ

(

kΛ

f
(z − z′)

)

dz′dkdl, (2.7)

where δ(ξ) is the Dirac function of the variable

ξ =
kΛ

f
(z − z′). (2.8)

Note that (2.7) can be interpreted as the expansion of the perturbation PV in the (singular)
normal modes of (2.3); these modes form a continuum, parameterised by the phase speed Λz′.
The scaling used in (2.8) places the inertial levels z = z′ ± f/(kΛ) of these modes at ξ = ±1
(Inverarity and Shutts 2000).

The expansion of the vertical velocity w′ corresponding to the expansion (2.7) of the PV
can be written as
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w′(x, y, z, t) =

∫ ∫ ∫

ŵ0(k, l, z
′)ei(kx+ly−kΛz′t)W

(

kΛ

f
(z − z′)

)

dz′dkdl, (2.9)

where ŵ0(k, l, z′) is the amplitude of the normal mode, and W (ξ) its vertical structure. Note
that this expansion describes the part of w′ slaved to the PV: an additional continuum of
singular modes, representing free sheared GWs, would need to be added to the expansion to
solve an arbitrary initial-value problem.

The velocities u′, v′ and the potential temperature θ′ have expansions analogous to (2.9),
with ŵ0 replaced by û0, v̂0, and θ̂0, and W replaced by U , V , and Θ, respectively. Introducing
these expansions into (2.1a)–(2.1e), and choosing

û0 = i
Λ

f
ŵ0, v̂0 = −

Λ

f
ŵ0, and θ̂0 = i

θrΛ2

fg
ŵ0 (2.10)

gives

U =
ξ − iν

ξ(1 + ν2)
Wξ +

ν2

ξ(1 + ν2)
W , V =

1− iνξ

ξ(1 + ν2)
Wξ +

iν

ξ(1 + ν2)
W , (2.11a)

and Θ =
1− iνξ

ξ2(1 + ν2)
Wξ +

(

iν

ξ2(1 + ν2)
+

J

ξ

)

W, (2.11b)

where ν = l/k. We now introduce (2.10)–( 2.11), into the expressions (2.3) and (2.7) for the
PV. Choosing the vertical-velocity amplitude

ŵ0(k, l, z
′) = −i

ρrg(1 + ν2)

θrΛ2
q̂0(k, l, z

′), (2.12)

then leads to the differential equation

1− ξ2

ξ2
Wξξ −

(

2

ξ3
−

2iν

ξ2

)

Wξ −
(

(1 + ν2)J

ξ2
+

2iν

ξ3

)

W = δ(ξ), (2.13)

for the structure function W (ξ). Note that W depends on J and ν in addition to ξ, and that we
use the notation W (ξ) as a shorthand for the more complete, but more cumbersome W (J, ν; ξ).

In Appendix A, we follow Yamanaka and Tanaka (1984), Plougonven et al (2005), and
LPV10 and solve this equation exactly using a change of variable that transforms the homoge-
neous part of (2.13) into the hypergeometric equation. The solution satisfies

W (ξ) ∼ Eξ1/2+i
√

J(1+ν2)−1/4 as ξ → +∞, (2.14)

and W (ξ) = W ∗(−ξ) for ξ < 0, (2.15)

corresponding to an upward- (downward-) propagating GW as ξ → +∞ (ξ → −∞). An explicit
expression for the amplitude E of this GW is given in (A.13).
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2.3 WKB approximation

In the limit J " 1, it is possible to derive an approximation to W (ξ) using a WKB approach.
This approximation, which we now derive, is more transparent than the exact solution in terms
of hypergeometric functions and proves remarkably accurate for moderately large J .

We focus on the region ξ > 0 since the solution for ξ < 0 follows immediately from (2.15).
The WKB approximation does not provide a single solution that is valid uniformly in ξ > 0;
instead, four regions, which we label (i)–(iv), need to be distinguished. The form of the solution
in each of these regions, given below, is derived in Appendix B.

In region (i), close to the PV anomaly and specifically for ξ = O(J−1/2) ' 1, the quasi-
geostrophic approximation applies, leading to

W (i)(ξ) ∼ A(i)
(

√

J(1 + ν2)ξ + 1
)

e−
√

J(1+ν2)ξ + B(i)
(

√

J(1 + ν2)ξ − 1
)

e
√

J(1+ν2)ξ. (2.16)

One solution is exponentially decaying away from the PV anomaly, consistent with the expec-
tation from the QG approximation. The other, exponentially growing solution, is absent in the
standard QG approximation but will need to be retained in order to derive the EP flux between
the inertial levels, as discussed below.

In region (ii), between the PV anomaly and the inertial level, and more precisely where
ξ = O(1) and ξ < 1,

W (ii)(ξ) ∼
ξ

(1− ξ)1/4−iν/2(1 + ξ)1/4+iν/2

×
(

A(ii)e−
√

J(1+ν2) sin−1 ξ + B(ii)e
√

J(1+ν2) sin−1 ξ
)

. (2.17)

In region (iii), close enough to the inertial level that |ξ − 1| = O(J−1), the solution is
expressed in terms of the scaled variable ζ = J(1 + ν2)(ξ − 1) as

W (iii)(ξ) ∼ ζ iν/2
(

A(iii)H(1)
iν (
√

2ζ) + B(iii)H(2)
iν (
√

2ζ)
)

, (2.18)

where H(1)
iν and H(2)

iν are Hankel functions (Abramowitz and Stegun 1964).
Finally, in region (iv) above the inertial level where ξ = O(1) and ξ > 1, the solution is

W (iv)(ξ) ∼
ξ

(ξ − 1)1/4−iν/2(ξ + 1)1/4+iν/2

×
(

A(iv)ei
√

J(1+ν2) ln(ξ+
√

ξ2−1) + B(iv)e−i
√

J(1+ν2) ln(ξ+
√

ξ2−1)
)

, (2.19)

The 8 constants A(i) · · ·B(iv) are fixed by imposing a jump conditions at ξ = 0 given in (A.1),
radiation condition as ξ → ∞, and continuity of the solution across the 4 regions. Starting
with the radiation condition, we obtain from (2.14) and (2.19) that

A(iv) = 2i
√

J(1+ν2)E and B(iv) = 0. (2.20)

Matching between regions (iv) and (iii) then gives

A(iv) = 21/2+iν/2π−1/2
(

J(1 + ν2)
)−1/4+iν/2

eνπ/2e−iπ/4A(iii) and B(iii) = 0 (2.21)
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(see Appendix B for details).
Some care needs to be exercised when matching from region (iii) to region (ii). Standard

matching as carried out in Lott et al. (2010) gives that B(ii) = 0, in agreement with the
expectation from quasi-geostrophic theory of a solution that decays exponentially with altitude
above ξ = 0. This solution is not entirely satisfactory, however, in that it fails to capture the
feedback that radiation (as ξ → ∞) has on the solution in regions (ii) and (i). In particular, a
single exponentially decaying solution (in regions (i) and (ii)) has a zero EP flux, inconsistent
with the non-zero flux from the exact solution. To resolve this apparent difficulty, we need to
recognise that B(ii) = 0 is only an approximation. In fact, B(ii) takes an exponentially small,
non-zero value, which can be captured using the more sophisticated matching procedure applied
in Appendix B. This procedure yields

A(iii) = 2−1/2−iν/2π1/2
(

J(1 + ν2)
)1/4−iν/2

e−π/2
√

J(1+ν2)−νπA(ii), (2.22)

B(ii) = −ie−
√

J(1+ν2)π cosh(νπ)A(ii). (2.23)

Eq. (2.23) implies that the exponentially decaying solution of quasi-geostrophic theory in regions
(i) and (ii) is always accompanied by an exponentially growing solution. The amplitude of this
solution is exponentially small in region (ii) but becomes comparable to the decaying solution
as ξ → 1. This combination of exponentially growing and decaying solutions is enforced by the
radiation condition and is consistent with the consequent non-zero EP flux. By retaining the
exponentially small B(ii) (in spite of the neglect of much larger, O(J−1/2) terms in the dominant
solution), we capture this important part of the physics of the problem. An comparable situation
arises for the Schrödringer equation in quantum mechanics, in the semi-classical study of wave
propagation through a potential barrier (e.g., Bender and Orszag 1999). In this context, a
wave-like solution radiating outside the barrier is associated with a combination of exponentially
decaying and exponentially growing solutions inside the barrier. While the solution that decays
towards the interior of the barrier (and corresponds to B(ii) in our problem) is usually neglected
(Bender and Orszag 1999), it can be retained, e.g. to obtain a direct estimate of the so-called
decay width (Shepard 1983).

The WKB solution is completed by matching regions (i) and (ii) to obtain

A(ii) =
√

J(1 + ν2)A(i) and B(ii) =
√

J(1 + ν2)B(i). (2.24)

Taking (2.15) into account and applying the jump conditions (A.1) at ξ = 0 yields

A(i) =
1

2(J(1 + ν2))3/2
, (2.25)

on neglecting an exponentially small term against O(1) terms. It then follows that

B(i) = −
i

2(J(1 + ν2))3/2
e−

√
J(1+ν2)π cosh(νπ), (2.26)

which provides the amplitude of the exponentially growing solution in the quasi-geostrophic
region.

The amplitude of the GW radiating at ξ → ±∞ is found by combining (2.20), (2.21), (2.22)
and (2.25). It is given by
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|E| ∼
e−νπ/2

2J(1 + ν2)
e−π

√
J(1+ν2)/2. (2.27)

This large-J approximation will be compared with the exact solution in Sec. 3 and found to
provide a reasonable estimate for J as small as 1.

2.4 EP flux

An important property of (2.13) is the conservation of the EP flux (Eliassen and Palm 1961),
or pseudomomentum flux. Multiplying (2.13) by J3/2(1 + ν2)3/2W ∗ and integrating by parts
results in a conservation for the non-dimensional EP flux,

F =
J3/2(1 + ν2)3/2

2
Re

{

i
1− ξ2

ξ2
WξW

∗ − ν
WW ∗

ξ2

}

= const (2.28)

that is valid away from ξ = 0,±1. The scaling factor on the left of the real part symbol is
introduced so that F coincides with the conventional definition

ρr

(

−u′w′ + f
v′θ′

θ0z

)

(2.29)

of the EP flux (e.g. Andrews et al. 1987) up to the J-independent dimensional factor (1.2).

Using the fact that W ∼ Eξ1/2+i
√

J(1+ν2)−1/4 for ξ → +∞ and the asymptotics in (A.14a)–
(A.14b) for ξ ' 1 gives

F =
J3/2(1 + ν2)3/2

2

{

3i(BA∗ − B∗A)|E|2/2 for |ξ| < 1,
√

J(1 + ν2)− 1/4|E|2 for |ξ| > 1,
(2.30)

where A, B and E are given explicitly in terms of Γ-functions in Appendix A. A more convenient
expression is obtained by using the WKB form of W . To compute F below the inertial level,
we introduce (2.16), (2.25) and (2.26) into (2.28); to compute F above the inertial level we
introduce (2.27) into (2.30). The result is the large-J approximation

F ∼ e−π
√

J(1+ν2)

{

cosh(νπ)/4 for |ξ| < 1,
e−νπ/8 for |ξ| > 1.

(2.31)

Note that the expression for |ξ| < 1 relies on our estimate (2.26) of the exponentially small
constant B(i).

Eq. (2.31) shows that inertial-level absorption results in a jump in the EP flux such that

F(1+)

F(1−)
∼

1

1 + e2νπ
. (2.32)

This formula extends LPV10’s result which showed that for ν = 0 half of the EP flux is deposited
at the inertial level.

3 Results for W (ξ)

In this section we examine the structure of W (ξ) and compare the exact solution with the WKB
approximation.
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3.1 Vertical structure

The four panels in Fig. 1 show W (ξ) for J = 4 and for four different orientations of the
horizontal wavector k = (k, l) = K(cosϕ, sinϕ), with ϕ = −45◦,−15◦, 15◦, 45◦, that is for
ν = −1, −0.267 · · · , 0.267 · · · , 1 and J = 4. In all cases, the real part of W is approximated
by its geostrophic estimate W (i) (2.16) some distance away from the neighbourhood of ξ = 0
where it is strictly valid. The imaginary part of W is substantially smaller than the real part, in
particular near and around ξ ≈ 0 where the quasi-geostrophic approximation predicts a purely
real W (i). The real and imaginary parts of W only become comparable near the inertial levels,
where balanced approximations do not apply.

Between (and away from) the inertial levels ξ = ±1, ImW follows in quadrature ReW when
ν < 0, but precedes ReW in quadrature when ν > 0. As discussed in the next subsection, this
behaviour implies that the solutions always tilt along the isentropes in the (y, z)-plane. Note
that this behaviour is well captured by the WKB solution in 2.17 but that can also be captured
by correcting the QG solution to higher order as in Plougonven et al. (2005). Beyond ξ = ±1
the solution almost behaves as a pure gravity wave solution, in agreement with the asymptotic
approximation in (2.14). The real part of the latter is shown by the grey dots in Fig. 1.

The most striking feature in Fig. 1 is the strong sensitivity of W to ν. According to the
WKB estimates, ν affects the amplitude of W in three ways. First near ξ = 0, W decreases with
increasing |ν|, according to the approximation W (0) = W (i)(0) ∼ (J(1 + ν2))−3/2/2 obtained
from (2.16) and (2.25). Second, the decay rate of W in region (ii), is given by

√

J(1 + ν2) (see
(2.17)) and thus increases with |ν|. Third, the amplitude of W in the GW region (iv) depends
strongly on ν through the factor e−νπ/2 in (2.27). The first two effects explain the decrease in
W between ξ = ±1 from Figs.1a,d to Figs.1b,c. The third effect depends on the sign of ν; this
introduces a meridional asymmetry and explains the changes from Fig. 1a to Fig. 1d and from
Fig. 1b to Fig. 1c. We discuss this effect further in the next section.

3.2 Meridional asymmetry and valve effect

A strong meridional asymmetry in absorption was highlighted by Grimshaw (1975) and Ya-
manaka and Tanaka (1984) in their studies of GWs propagating upward toward a critical level
surrounded by two inertial levels. The latter authors showed that there is a very strong ab-
sorption at the lowest inertial level if νΛ < 0. If νΛ > 0, the wave crosses the first inertial level
with little attenuation, but it is almost entirely reflected downward at a turning point located
between the critical level in ξ = 0 and the lowest inertial level in ξ = −1. The reflected wave is
then strongly absorbed as it returns to the lowest inertial level. Even though in both scenarios
the initial upward GW is ultimately absorbed at the lowest inertial level, this potential intrusion
of the GW signal between the inertial levels is quite remarkable and was referred to as a“valve”
effect by these authors. This effect was interpreted heuristically by Yamanaka (1985), who
analysed with detail the behaviour of two independent solutions near the lowest inertial level.
He pointed out that the phase lines of one of the solutions change direction rapidly around
the inertial level, and lie between the horizontal plane and the isentropes in a narrow region.
Applying a static-stability method to analyse the stability of the air parcels displaced along
phase lines leads to the conclusion that, for this solution, the region is baroclinically unstable
(Pedlosky 1987).

A similar heuristic argument can be invoked to explain why the absorption at the inertial
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levels is much stronger for Λν > 0 than Λν < 0 (recall that we assume Λ > 0). If we follow
Yamanaka and Tanaka (1985) and translate their description of the valve effect in our context,
this sensitivity is related to the mathematical fact that around the inertial level in ξ = 1, the
two independent solutions of (2.13),

W (1)
1 = (1 + ξ)−iνF (a, b; a+ b+ 1− c; 1− ξ2), (3.1a)

W (2)
1 = (ξ − 1)+iνF (c− b, c− a; c− a− b+ 1; 1− ξ2), (3.1b)

behave very differently. The first changes smoothly through ξ = 1 whereas the second varies
sharply and jumps by a multiplicative factor equal to eνπ in ξ = 1 (see the analytical continu-
ation in (A.8)).

Following Plougonven et al. (2005), a good way to assess the significance of these two
solutions is to visualize them in the (y, z)- plane (Figs. 2b,2c, 2f,2g). Fig. 2b indicates that the
smooth solution always tilts in the direction of the isentropes. In contrast, the other solution
also tilts in the direction of the isentropes for ξ < 1 but tilts in the other direction for ξ > 1.
The structure of the upward waves above ξ = 1, namely ξ1/2+iµeily, also tilts in the direction of
the isentropes when ν < 0 but in the opposite direction when ν > 0 (Figs. 2a, e). It is therefore
not a surprise that the smooth solution plays the greater role to match the PV anomaly and the
upward wave when ν < 0, and that the other, rapidly changing solution plays the greater role
when ν > 0. Of course this can be checked analytically since the parameter α′ and β′ in (A.6b)
exactly control the role of the rapidly changing and of the smooth solution in the connection
through the upper critical level respectively. It turns out that |α′/β′| = eνπ, consistent with
our argument.

Interestingly, the structure of the rapidly changing and smooth solutions are not much
different well below ξ = 1 (compare for instance the Figs 2b and 2g between ξ = 0.4 and
ξ = 0.6). In fact, the two solutions have the same Taylor expansion near ξ = 0 up to O(ξ3).
According to (A.14a) it means that as ξ → 0 both can equally be used to produce the δ-PV
anomaly, which is consistent with the fact that the exact solution around and above ξ = 0 are
not much sensitive to the sign of ν (see Figs 2d and 2h).

3.3 GW amplitude and EP flux

The combined effect of the two parameters J and ν on the GW emission is shown in Fig. 3
which compares the exact values of the GW amplitude |E| with the WKB approximation
(2.27). For a fixed value of ν, |E| decreases with J as in LPV10. For fixed values of J ,
the cases with ν > 0 and ν < 0 need to be distinguished. For ν > 0 and increasing, |E|
decreases monotonically as a result of increasing exponential decay in region (ii) and increasing
inertial-level absorption. When ν < 0 those two effects oppose: increasing |ν| increases the
exponential decay but decreases the inertial-level absorption. Accordingly, |E| is maximized
for some ν(J) < 0. Importantly, the WKB approximation (2.27) provide a good approximation
for |E| for J ! 1, thus well beyond the theoretical range of validity J " 1 of the asymptotics.

The EP flux within and outside the inertial levels are shown in the Figs. 4a and 4b re-
spectively. The exact and WKB solutions (2.31) are compared. Fig. 4a indicates that the
EP flux between the inertial levels is only weakly sensitive to the angle ϕ = tan−1 ν of the
wavevector. It remains almost constant, for instance, for −45◦ " ϕ " 45◦ when J ≈ 3, or for
−30◦ " ϕ " +30◦ and J ≈ 10. For larger values of ϕ, however, the EP flux decreases rapidly
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and vanishes for ϕ = ±π/2. An important aspect of Fig. 4a is that the EP flux between the
inertial levels is symmetric about the axis ϕ = 0.

This symmetry is broken outside the inertial levels, i.e. for |ξ| > 1, as a result of the
asymmetric absorption at the inertial levels. This is clear from Fig. 4b: when ϕ " −30◦ the
EP fluxes for |ξ| > 1 are almost equal to the fluxes for |ξ| < 1, but they are much smaller for
ϕ ! 30◦. This is well captured by the WKB approximation (2.31) which again provides a good
estimate for J ! 1 both for |ξ| < 1 and |ξ| > 1. In particular, it leads to the prediction

νM ≈ −
1√
J
, (3.2)

for the value of ν for which F is maximum for |ξ| > 1. The corresponding angle ϕM is shown
as a dotted line in Fig. 4b.

4 Application to localised PV distributions

4.1 Horizontally localised δ-PV

To gauge the significance of the directional effects discussed above on the structure of the GWs
associated with a 3D PV anomaly, we first consider the case of an infinitely thin PV distribution
with Gaussian distribution in the horizontal direction:

q′0(x, y, z) = σzqre
−(x2+y2)/(2σ2

H)δ(z), (4.1)

where σH gives the characteristic horizontal width of the PV anomaly, qr its characteristic
amplitude, and σz its characteristic depth. The introduction of the scale σz naturally follows
from the fact that δ(z) scales as an inverse length. For such a distribution, the vertical velocity
field in (2.9) reads

w′(x, y, z) = σz

∫ ∞

0

∫ 2π

0

ŵ0(K,ϕ)ei(kx+ly)W

(

ϕ;
kΛz

f

)

KdϕdK = σzw
′
0(x, y, z), (4.2)

where for clarity we have made explicit the dependence of W on the angle ϕ, and where

ŵ0(K,ϕ) = −i
ρrg(1 + tan2 ϕ)

θrΛ2

qrσ2
H

2π
e−

K2σ2
H

2 , (4.3)

according to the scaling in (2.12) and introducing the Fourier transform of (4.1). Note that w′
0

is defined in (4.2) to simplify the notation in the full 3D case treated at the end of the section.
To evaluate the double integral in (4.2) we next proceed numerically by tabulating in the

vertical direction the structure function W (ϕ; ξ) for 180 discrete values of the angle ϕ. This
yields an angular resolution ∆ϕ = 2o. We also consider 50 discrete values for the horizontal
wavenumber K, with a resolution ∆K = π/(10σH). For the physical grid we take for both
horizontal directions the resolution ∆x = ∆y = 0.2σH .

In the following, we express our results in dimensional form. We consider a σz = 1km-thick
layer of stratospheric air entering in the troposphere. We therefore take a PV amplitude of
ρrqr = 1PVU, and assume a horizontal width σH = 55km. Assuming that this air enters the
troposphere at midlatitudes, we take ρr = 1kgm−3, N = 0.01 s−1, θr = 300K, f = 10−4 s−1

and J = 4.
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4.2 Vertical velocity field

The vertical velocity calculated from (4.2) is shown in Fig. 5 for 6 different altitudes. Near the
PV anomaly, that is for z = 0 km (Fig. 5a), the vertical velocity is positive to the east of the
positive PV anomaly and negative to the west. This is of course consistent with the balanced
picture that the meridional geostrophic winds are toward the North on the Eastern flank of a
positive PV anomaly, and to the South on the Western flank (not shown). As the advective
terms are very small in the thermodynamic Eq. (2.1d) at this altitude, the vertical velocity
balances the meridional advection of the background potential temperature (fΛv′ ≈ N2w′).
At the higher altitude z = 1 km (Fig 5b), the signal in vertical velocity decays in magnitude
and spreads in horizontal scale, consistent with the QG predictions that all wavelengths decay
exponentially with altitude, with the long wavelengths decaying less rapidly than the short
ones. Note, however, the two large-scale lobes of opposite sign of the vertical velocity which
have moved slightly to the North, which is a first sign that the QG prediction starts to break
down (the QG prediction is insensitive to the sign of ν, see Appendix B). At z = 2 km (Fig. 5c),
the signal in vertical velocity has decayed further in magnitude and spread further horizontally
(note the contour-interval decrease between Fig. 5b and Fig. 5c), again somehow in agreement
with the QG prediction. Nevertheless, the two large scale lobes of vertical velocity start to
be modulated by a smaller scale oscillatory signal, clearly apparent aloft the PV disturbance.
Higher up in altitude this oscillatory signal entirely dominates the response, its lines of constant
phase make a positive angle with the longitude axis, because the waves with ν < 0 are less
absorbed at the inertial levels than those with ν > 0. Note also that the amplitude between
z = 3 km and z = 10 km increases in agreement with the z1/2 dependence predicted in
(2.27). Because of the superposition of wavenumbers, the transition between decaying and
wave-like perturbation does not occur sharply at a single inertial level but rather smoothly
across an inertial-layer region. The altitude of the centre of this region is given by the estimate
σHf/Λ ≈ 1.1 km, consistent with Fig. 5.

4.3 EP-flux vector

The EP flux in (2.29) is significant because its vertical derivative gives the x-component of the
force exerted by the GWs on the (transformed Eulerian) mean flow (Andrews et al. 1987).
Because our model (2.1) is both x- and y-independent and the GWs are plane waves in both
directions, the two horizontal components of the force can in fact be obtained from the EP-flux
vector (or, up to a sign, vertical pseudomomentum-flux vector)

−
(

u′w′ − f
v′θ′

θ0z
, v′w′ + f

u′θ′

θ0z

)

(4.4)

(see Bühler 2009, section 8.2, and the discussion on the angular momentum flux in Jones 1967).
The two components of this EP-flux vector are in proportion to k and l, since these are the
proportion of the x- and y-components of the corresponding pseudomomentum density (Bühler
2009). The non-dimensional EP-flux vector can therefore be written as (1, l/k)F .

This can be made transparent using Bretherton’s (1969) interpretation of the EP flux as
the wave stress exerted by pressure force on undulating isentropes:

F =
1

2σ2
H

∫ ∫

p′∇η′ dxdy =
2π2

σ2
H

∫ ∫

−ikp̂η̂∗dkdl, (4.5)
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where η′ denotes the vertical displacement satisfying Dtη′ = w′, and the factor 1/(2σ2
H) is

introduced in the definition of the average so that F has the dimension of a pressure. Using
that ikΛzη̂ = ŵ. and the disturbance equations (2.1), we obtain that

−ikp̂η̂∗ = −ρr

(

ûŵ∗ − f
v̂θ̂∗

θ0z
, v̂ŵ∗ + f

ûθ̂∗

θ0z
,

)

(4.6)

in agreement with (4.4). Using the scaling in (2.10) and the structure function (2.11a) this
relation leads to the EP-flux vector of a single plane wave,

−ikp̂η̂∗ =
k

k

ρrΛ

f

σ2
z |ŵ0|2

1 + ν2

(

i
1− ξ2

ξ2
WξW

∗ − ν
WW ∗

ξ2

)

=
ρrΛ4σ2

z |ŵ0|2

N3f(1 + ν2)2
k

K
F (4.7)

where F is the normalized EP flux (2.28). For the localised PV distribution (4.3) the EP-flux
vector then becomes

F = F0

∫ ∞

0

∫ 2π

0

σ2
Hke

−K2σ2
HF(ϕ,

kΛz

f
)dϕdK. (4.8)

The scaling factor F0 is given in (1.2) and is exactly the same as in LPV10. For the parameters
chosen, it is about

F0 = 10Pa (4.9)

and directly gives the amplitude of the EP-flux vector since the double integral in (4.8) is
non-dimensional.

The exact results for the EP-flux vector F in (4.8) is shown in Fig. 6 and for two different
values of the Richardson number J . For J = 4 (Fig. 6a), F at z = 0 is purely zonal, with a
magnitude near 5 mPa. The zonal orientation follows from the symmetry of the PV distribution
about the x−axis. A higher altitudes, F decreases in amplitude and changes direction. These
two effects result from the absorption of an increasingly large portion of the wave spectrum at
inertial levels, and from the fact that waves with ν < 0 are much less absorbed than those with
ν > 0. When J = 4 F as z → ∞ makes an angle close to ϕ ≈ −30◦ with the x-axis, almost the
angle for which the normalized EP flux has a maximum according to (3.2) (see also Fig. 4b.).
For J = 10 (Fig. 6b), F in the far field has an amplitude that is about half that at z = 0, and
makes an angle with the x-axis that is close to ϕ ≈ −15o, a value again consistent with (3.2).

For practical purposes it is useful to estimate the EP-flux vector near the PV anomaly and
in the far-field using the WKB form for F in (2.31). Introducing (2.31), (4.8) becomes

F(0+) ≈
F0

4

∫ π/2

−π/2

cosϕ x̂e−π
√

J(1+ν2)−νπdϕ (4.10a)

F(∞) ≈
F0

8

∫ π/2

−π/2

(cosϕ x̂+ sinϕ ŷ) e−π
√

J(1+ν2)−νπdϕ, (4.10b)

where x̂ and ŷ are the zonal and meridional unit vectors. Since the WKB approximation
assumes J " 1 is large, these expressions can be further simplified using Laplace’s method to
obtain
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F(0+) ≈
F0

2
√

2
√
J
e−π

√
J x̂, F(∞) ≈

F0

4
√

2
√
J
e−π

√
J
(

x̂− J−1/2ŷ
)

. (4.11)

These formula give very good approximations for the EP-flux vector for z ' 1 and z " 1 when
J " 1 as in Fig. 6b, but underestimate it by a factor of almost 2 when J ≈ 1.

Comparing (4.11) to the 2D results in LPV10 (see also (1.1)–(1.2)) shows that the orders
of magnitude of F are comparable in 2D and 3D (the F0 term), and that in both cases about
half of the EP flux in the direction of the shear is deposited in the inertial layer. The most
remarkable difference is that the EP-flux vector rotates with altitude. Consider for example a
westerly shear in the Northern Hemisphere: the EP-flux vector tends, for large z, to an angle
close to ϕM = −1/

√
J to the right of the shear. As a consequence, the disturbance produced

by the PV anomaly exerts a south-westward drag on the large-scale flow in the upper inertial
layer and, assuming dissipation at high altitude, a north-westward drag in the far field aloft.
Both drags are almost equal in the direction of the shear (as in the 2D case) and opposite in the
transverse direction. More generally, the transverse component of the drag in the inertial layers
are to the right of the wind (e.g. northward at the lower inertial layer in the above example),
and to the left in the Southern Hemisphere.

4.4 Horizontally localised, finite depth PV

The PV distributions used so far were infinitely thin and thus neglected the effect of the vertical
shear on the PV distribution itself and consequent time evolution of the wave field. As this
aspect has been detailed in the 2D case by LPV10, we only describe it briefly here. As in
LPV10, we consider a PV distribution at t = 0 that is separable in the horizontal and the
vertical directions and that has the same vertical integral as (4.1):

q′0(x, y, z) = qre
−(x2+y2)/(2σ2

H)

{

cos2 (πz/(2σz)) for |z| < σz

0. |z| > σz
(4.12)

To compute the vertical integral in the response at a low numerical cost, we take full advantage
of the preceding calculations and discretize q′0 as

q′0 ≈ qre
−(x2+y2)/(2σ2

H)
M−1
∑

−M+1

cos2 (πzm/(2σz))∆zδ(z − zm) (4.13)

where zm = m∆z and ∆z = σz/M . In this case, the vertically discretized equivalent of the
vertical velocity in (2.9) reduces to

w′(x, y, z, t) ≈
M−1
∑

−M+1

cos2
(

πzm
2σz

∆z

)

w′
0(x− Λzmt, y, z − zm) (4.14)

where w′
0 is the function introduced in (4.2). Because x and t enter (4.14) only in the combina-

tion x− Λzmt the computation of the sum over the indices m involves straightforawrd vertical
and horizontal translations of w′

0.
Fig. 7 shows the evolution of the integral of the disturbance PV,

∫ +∞

−∞
q′(x, y, z, t)dz, and

of the vertical velocity at the altitude z = 10 km, for σz = 1 km, and J = 4. All the other
parameters are as in the previous sections. The solution is only shown for negative values of t:
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for positive t it is almost symmetric to that at negative t. The background velocity shears the
PV whose horizontal extent therefore decreases with time until t = 0 before increasing again.
When it is more spread out horizontally (that is at large negative or positive time) its vertical
integral is also relatively small compared to its value at t = 0. As a result, the vertical velocity
increases as t increases towards 0.

Comparing the four panels in Fig. 7 to the time-independent disturbance produced by the
δ-PV of Fig. 5 indicates that the amplitude of the GW patterns are comparable at t = 0 h and
t = ±6 h but substantially smaller at t = ±12 h and t = ±18 h. Accordingly, it is only in time
intervals of half a day or so that the values for GWs emission and for the associated EP flux
given in the previous sections apply.

5 Conclusion

The linear motion associated with 3D localized potential vorticity (PV) anomalies in the pres-
ence of an unbounded vertical shear Λ has been analysed in the linear approximation. Exact
and approximate solutions were obtained analytically for PV anomalies that are monochromatic
in x and y, and vary as a Dirac delta-function, δ(z), in the vertical. Combinations of these
yield solutions for more general PV anomalies.

A PV anomaly of horizontal scale σH , at z=0, induces two inertial critical layers at z =
±σHf/Λ. Through these levels, the intrinsic frequency of the disturbance increases from subin-
ertial to superinertial. Correspondingly, there is a transition from balanced near z = 0 (where
the solutions can be described as quasi-geostrophic) to sheared GW for |z| > σHf/λ. The
amplitude of the GW is approximately

exp(−
√

J(1 + ν2)π/2− νπ)/J/(1 + ν2),

where J = N2/Λ2 is the Richardson number, and ν = l/k the ratio of the y- and x-components
of the wave vector. As previously noted (Lott et al 2010), these waves can be substantial
for moderate Richardson numbers, say J between 1 and 10. The present analysis reveals a
new, remarkable result: the emitted waves have a strong meridional asymmetry, with larger
amplitudes for waves with ν < 0. For example, in a westerly shear in the northern hemisphere,
waves aloft having their wave vector pointing southeast will be larger than waves with wave
vector pointing northeast (see Figs. 5 and 7). Using the exact analytical solutions we show
how this asymmetry, in a symmetric background flow, is related to the meridional slope of the
isentropes (see Fig. 2). This asymmetry has been identified previously in studies of gravity
waves propagating toward critical levels in a constant shear (the “valve effect”, Yamanaka and
Tanaka 1984).

One implication consists in a strong sensitivity to orientation (i.e. to ν) of the absorption of
the Eliassen–Palm flux through the inertial levels: almost no jump when ν is large and negative,
in contrast to nearly complete absorption when ν is large and positive (see Eqs. (2.31)–(2.32)
and Fig. 4). Hence the drag due to the waves absorbed within the upper inertial layer has a
substantial component oriented to the right of the shear in the Northern Hemisphere (southeast
in the above example). The WKB solutions provide simple expressions for the fluxes, the angle
maximizing them and the drag, in very good agreement with the exact analytical solutions (see
Fig. 4).
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The relevance of this emission in real flows remains to be assessed. Nonetheless, two points
are worth noting: first, it has been noted from satellite observations (Wu and Eckermann, 2008)
and from high-resolution NWP (Numerical Weather Prediction) models (Shutts and Vosper,
2011) that gravity waves in the mid-latitudes have a favored orientation: phaselines with a
North-East to South-West tilt in the Northern Hemisphere, and with a North-West to South-
East tilt in the Southern Hemisphere. Waves with these orientations are conspicuous in the
stratospheric polar night jets of both hemisheres, i.e. in regions with strong, positive vertical
shear. The reasons for this favored orientation are not clear1. It is noteworthy that this
orientation is consistent with that expected in the case of emission from sheared PV anomalies.
Whether this emission is occurring or this is only a coincidence due to a more fundamental
property of GW in shear remains to be investigated. Second, at smaller scales, we can expect
this mechanism to play a role where the breaking of intense orographic gravity waves produces
small-scale PV anomalies (Plougonven et al 2010).

As discussed in LPV10, our results could be used for parameterizations in GCMs of the
GWs emission by fronts at the tropopause (Charron and Manzini 2002, Richter et al. 2010),
where substantial intrusion of stratospheric air occurs and where strong shears are common.
In this context the predictor given in LPV10 seems adapted, providing we add the transverse
component of the EP flux as in (4.11). The factor 1/4 for the flux emitted by 2D PV disturbance

in (1.1) should more accurately be 1/(2
√

2
√
J) (see (4.11)), but they should probably be

replaced by a tuning factor of order 1. In all cases the along-shear component of the EP-flux
vector should decrease by a factor 2 at the inertial levels and the transverse component in the
far field should be oriented to the right of the shear with magnitude 1/

√
J times the along-shear

component.
To summarize, the present paper has shown that the formula given in LPV10 and that are

recalled here in (1.1)– (1.2) applies quite well in the 3D case. To take directional effects into
account one should use (4.11) rather than (1.1) keeping unchanged the dimensional factor (1.2).

Acknowledgments. FL was supported by the EU-FP7 project EMBRACE (Grant agree-
ment 282672), RP and JV by the Alliance programme of the French Foreign Affairs Ministry
and British Council. JV also acknowledges the support of a NERC grant. We also thank Oliver
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A Exact solution for W (ξ)

To find a solution to (2.13), we first derive its homogeneous solutions for ξ > 0, and impose
a radiation condition for ξ " 1 to obtain a solution which represents an upward-propagating
GW. We deduce from this a solution valid for ξ < 0 which represents a downward-propagating
GW for ξ ' −1. The amplitudes of these two solutions are then chosen to satisfy the jump
conditions

[W ]0
+

0− = 0, and

[

Wξ

ξ2

]0+

0−
= 1. (A.1)

1Shutts and Vosper (2011) suggested that this tilt could be tied to the orientation of surface cold fronts,
but gravity waves generated in idealized baroclinic lifecycles (O’Sullivan and Dunkerton 1995, Plougonven and
Snyder 2007) show the opposite tilt.
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A.1 Homogeneous solution for ξ > 0

The changes of variables W = (1+ ξ)−iνY and η = ξ2, transform (2.13) into the canonical form
of the hypergeometric equation (Eq. 15.5.1 in Abramowitz and Stegun 1964, hereafter AS):

η (1− η)Yηη + (c− (a+ b+ 1) η)Yη − ab Y = 0, (A.2a)

where a = −
1

4
−

i

2
ν +

i

2
µ, b = −

1

4
−

i

2
ν −

i

2
µ, c = −

1

2
(A.2b)

and µ =
√

J(1 + ν2)− 1/4. (A.2c)

For ξ > 1 the two solutions of the hypergeometric equation (A.2a) are given by (15.5.7) and
(15.5.8) in AS. We retain the second solution

W (u)(ξ) = (1 + ξ)−iνξ−2bF (a′, b′; c′; ξ−2), (A.3)

where F is the hypergeometric function and a′ = b, b′ = b − c + 1, c′ = b − a + 1, because its
asymptotic form

W (u)(ξ) ∼ ξ1/2+iµ as ξ → ∞, (A.4)

corresponds to an upward propagating GW (Booker and Bretherton, 1967).
For 0 < ξ < 1 the solution to (A.2a) is best written as a linear combination of the two

independent solutions (15.5.3)–(15.5.4) in AS,

W (u)(ξ) = (1 + ξ)−iν
[

AF (a, b; c; ξ2) + B ξ3 F (a′′, b′′; c′′; ξ2)
]

(A.5)

where a′′ = a− c+ 1, b′′ = b− c+ 1, c′′ = 2− c, and A and B are two complex constants.
To connect (A.5) to (A.3), we use the transformation formula for F (15.3.6 in AS) and

obtain the asymptotic approximations

W (u)(ξ) ∼ α′(ξ − 1)iν + β′ as ξ → 1+, (A.6a)

W (u)(ξ) ∼ (αA+ α′′B) (1− ξ)iν + βA+ β′′B as ξ → 1−. (A.6b)

In these expressions,

α = 2iν
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
and β =

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (A.7)

where Γ is the gamma function (see AS, chapter 6). The other coefficients (α′, β′) and (α′′, β′′)
are defined by the same formulas with (a, b) replaced by (a′, b′) and (a′′, b′′) respectively.

To continue the solution (A.6a) below the inertial level at ξ = 1, we follow Booker and
Bretherton (1967) and introduce a infinitely small linear damping which shifts the real ξ-axis
into the lower half of the complex plane so that

ξ − 1 = (1− ξ)e−iπ for ξ < 1. (A.8)

Thus, (A.6a) matches (A.6b) provided that

αA+ α′′B = α′eνπ and βA+ β′′B = β′. (A.9)

This determines A and B and completes the evaluation of W (u)(ξ).
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A.2 Solution over the entire domain

The solution for ξ < 0 can be deduced from W (u)(ξ) by noting that (2.13) applies to W ∗ when
ξ is changed in −ξ. A possible solution is simply

W (d)(ξ) = W (u)(−ξ)∗. (A.10)

This satisfies the radiation condition for ξ → −∞ since

W (d)(ξ) ∼ |ξ|1/2−iµ, (A.11)

which represents a downward-propagating GW.
The two solutions W (u) and W (d) can be combined to obtain a solution valid over the entire

domain which satisfies the jump condition (A.1). This is given by

W (ξ) =

{

EW (u)(ξ) for ξ > 0
E∗W (d)(ξ) for ξ < 0

, (A.12)

where the constant E is found by imposing the jump condition (A.1) and given by

E =
A∗

3(AB∗ + A∗B)
. (A.13)

To verify this, we note that when |ξ| ' 1, the upper and lower solutions in (A.12) have the
asymptotic expansions

EA

(

1− iνξ −
(

µ2

2
+

1

8

)

ξ2 − iν

(

ν2

3
−

µ2

2
+

5

24

)

ξ3
)

+ EBξ3, (A.14a)

E∗A∗

(

1− iνξ −
(

µ2

2
+

1

8

)

ξ2 − iν

(

ν2

3
−

µ2

2
+

5

24

)

ξ3
)

− E∗B∗ξ3 (A.14b)

for ξ > 0 and ξ < 0 respectively. For the value of E in (A.13), EA is real which implies that the
first terms on the left-hand sides of (A.14a)–(A.14b) are identical, they ensure that [W ]0

+

0− = 0
and they do not contribute to the jump [Wξ/ξ2]0

+

0− = 1 in (A.1); the second terms combine so
that Wξ/ξ2 jumps by 1 at ξ = 0 as required. Note also that near |ξ| = 0, W (ξ) approaches the
value

W (0) =
A∗A

3(AB∗ + A∗B)
. (A.15)

B WKB approximation

In this Appendix, we derive the WKB approximations (2.16)–(2.19) for W in regions (i)–(iv)
and provide details of the matching procedure.

For region (i), we introduce ζ =
√

J(1 + ν2)ξ = O(1) into (2.13) to obtain at leading order
the geostrophic approximation

Wζζ

ζ2
− 2

Wζ

ζ3
−

W

ζ2
=

δ(ζ)

(J(1 + ν2))3/2
. (B.1)
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The solution is readily found and given in terms of ξ > 0 by (2.16).
For regions (ii) and (iv), the standard WKB expansion

W (ξ) =
(

W0 + J−1/2W1 + ··
)

e
√

J(1+ν2)
∫ ξ φ(ξ′)dξ′ (B.2)

gives at O(J) and O(J1/2)

φ =
±1

√

1− ξ2
and W0 =

ξ

(ξ − 1)1/4−iν/2(ξ + 1)1/4+iν/2
, (B.3)

respectively. The forms (2.17) and (2.19) of the solution follow immediately.
For the region (iii), finally, we introduce the variable ζ = J(1 + ν2)(ξ − 1) = O(1). To

leading order (2.13) then reduces to

2ζWζζ + 2(1− iν)Wζ +W = 0 (B.4)

whose solution is given in terms of Hankel functions in (2.19). The following asymptotic for-
mulas (9.2.3–4 in AS) are needed to match this solution to the solutions in regions (ii) and
(iv):

H(1)
iν (x) ∼

√

2

πx
eνπ/2ei(x−π/4) as |x| → ∞ for − π < arg x < 2π, (B.5)

and H(2)
iν (x) ∼

√

2

πx
e−νπ/2e−i(x−π/4) as |x| → ∞ for− 2π < arg x < π. (B.6)

Using these, we find from (2.18) that

W ∼
21/4√

πζ1/4−iν/2

[

A(iii)eνπ/2ei(
√
2ζ−π/4) +B(iii)e−νπ/2e−i(

√
2ζ−π/4)

]

(B.7)

as ζ → ∞. Matching with the limiting behaviour of (2.16) as ξ → 1 gives (2.21).
To match the solutions between regions (ii) and (iii), we need to consider the limit of the

Hankel functions for ζ = |ζ|e−iπ with |ζ| → ∞, in accordance with the analytic continuation
(A.8). Proceeding in similar fashion as above using (B.5) yields relation (2.22) between A(ii)

and A(iii), but B(ii) = 0. As mentioned, B(ii) = 0 is inconsistent with the non-zero EP flux
expected because of the wave radiation as ξ → ∞. To resolve this difficulty, we need to employ
a more sophisticated matching which recognises that B(ii) takes in fact a non-zero exponentially
small value and provides an estimate for this value.

The non-zero value of B(ii) arises as a result of a Stokes phenomenon (e.g. Ablowitz and Fokas
1997): the line ζ < 0 (arg ζ = −π) is a Stokes line, where one solution (here that multiplied by
A(ii)) is maximally dominant over the other, recessive solution (that multiplied by B(ii)). Across
this Stokes line, the dominant solution switches on the recessive solution with an amplitude
given by an exponentially small Stokes multiplier. Thus, below the Stokes line the amplitude
B(ii) = 0, and above it B(ii) += 0 is given by the Stokes multiplier; on the Stokes line itself,
B(ii) is half the Stokes multiplier (Berry 1989). To obtain the Stokes multiplier, we need a
large-|ζ| formula for (2.18) that is valid for −3π < arg ζ < −π so that it holds immediately
above the Stokes line and also on the anti-Stokes line arg ζ = −2π where the two solutions have
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the same order and hence can be identified unambiguously. Such a formula is obtained using
the connection formula (9.1.37 in AS) to obtain

H(1)
iν (
√

2ζ) = 2 cosh(νπ)H(1)
iν (eiπ

√

2ζ) + eνπH(2)
iν (eiπ

√

2ζ). (B.8)

For −3π < arg ζ < −π, −π/2 < arg(eiπ
√
2ζ) < π/2, and the formulas (B.5)–(B.6) can be

applied to obtain the large-|ζ| asymptotics

H(1)
iν (
√

2ζ) ∼
21/4√
πζ1/4

eνπ/2
[

2 cosh(νπ)e−3iπ/4e−i
√
2ζ + e−iπ/4ei

√
2ζ
]

. (B.9)

Introducing this into (2.18) with B(iii) = 0 and using that ζ = J(1 + ν2)(1− ξ)e−iπ leads to

W ∼
21/4eνπ(J(1 + ν2))−1/4+iν/2

√
π(1− ξ)1/4−iν/2

A(iii)
[

e
√

J(1+ν2)
√

2(1−ξ) − 2i cosh(νπ)e−
√

J(1+ν2)
√

2(1−ξ)
]

.

(B.10)
Matching with the limit of (2.17) as ξ → 1 gives (2.22), and (2.23) on taking into account that
Stokes multiplier on the Stokes line is half its value away from it.

The matching between regions (i) and (ii) yielding (2.25)–(2.26) is straightforward.
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Figure 1: Structure function W (ξ) associated with a monochromatic PV distribution propor-
tional to δ(ξ) for a Richardson number J = 4, and for different values of the wavenumber angle
ϕ = tan−1(ν), (a) −45◦, (b) −15◦, (c) 15◦, and (d) 45◦. The thick black curves and thick dashed
curves show the real and imaginary parts of W (ξ), respectively. The grey dotted curves show
the real part of the far-field gravity-wave approximation Eξ1/2+iµ, and the thick grey curves
show the quasi-geostrophic approximation W (i). The location of ξ = 0 and of the inertia levels
ξ = ±1 is also indicated.
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Figure 2: Meridional structures of various solutions and approximations used to analyse W (ξ)
at the transition through the inertial level, for J = 2, and ν = ±0.5. (a), (e): GW asymp-

totics ξ1/2+iµeily; (b), (f): smooth solution (3.1a) W (1)
1 (ξ)eily ; (c), (g): sharp solution (3.1b)

W (2)
1 (ξ)eily; (d), (h): exact solutions (A.12). The contour intervals are arbitrary but are iden-

tical between the panels (d) and (h). In all panels, the slope of the isentropes is indicated by
the gray dashed lines.
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Figure 3: Amplitude |E| of the GW associated with a monochromatic Dirac PV anomaly as
a function of J and (a) ν = l/k, or (b) ϕ = tan−1 ν. The exact solution (solid contours) is
compared with the WKB approximation (dashed contours).
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Figure 4: EP flux associated with a monochromatic Dirac PV anomaly for (a) |ξ| < 1 and (b)
|ξ| > 1. The exact solution (solid contours) is compared with the WKB approximation (dashed
contours). The dotted line in (b) shows the WKB prediction of the angle maximising F .
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Figure 5: Vertical velocity at various altitudes above a PV anomaly with a Gaussian distribution
in the horizontal and Dirac distribution in the vertical. Solid (dashed) contours correspond to
positive (negative) values. The grey shading indicates that the disturbance PV ρrq′0(x, y) > 0.2
PVU.
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Figure 6: EP-flux vector as a function of altitude for the PV distribution used in Fig. 5 for (a)
J = 4 and (b) J = 10. The dashed lines represent the vector every 200m typically; the bold
vectors correspond to the altitudes indicated in panel (a).
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Figure 7: Vertical velocity at z = 10 km above a PV anomaly with a Gaussian distribution in
the horizontal and a finite depth in the vertical. Solid (dashed) contours correspond to positive
(negative) values. The 3 shades of grey indicates vertical integrals of the PV disturbance greater
than 0.1, 0.45 and 0.9 PVU km.
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