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The elliptical instability of a rotating stratified fluid is examined in the regime of small Rossby

number and order-one Burger number corresponding to rapid rotation and strong stratification.

The Floquet problem describing the linear growth of disturbances to an unbounded, uniform-

vorticity elliptical flow is solved using exponential asymptotics. The results demonstrate that

the flow is unstable for arbitrarily strong rotation and stratification; in particular, both cyclonic

and anticyclonic flows are unstable. The instability is weak, however, with growth rates that

are exponentially small in the Rossby number. The analytic expression obtained for the growth

rate elucidates its dependence on the Burger number and on the eccentricity of the elliptical

flow. It explains in particular the weakness of the instability of cyclonic flows, with growth

rates that are only a small fraction of those obtained for the corresponding anticyclonic flows.

The asymptotic results are confirmed by numerical solutions of Floquet problem.

1 Introduction

Elliptical instability, the three-dimensional instability of two-dimensional flows with elliptical

streamlines, has been the focus of a great deal of research activity. The review by Kerswell1

discusses the main results up to 2002 and emphasises the relevance of elliptical instability to a

broad range of applications. One of these is the instability of two-dimensional vortices that are

deformed elliptically by a large-scale strain flow. This is especially important for the dynamics

of the atmosphere and ocean, since this is characterised by an abundance of vortices that are

deformed through either mutual interactions or the effect of large-scale flows. In this context,

however, the planetary rotation and density stratification need to be taken into account.

Rotation and stratification clearly exert a strong influence on elliptical instability: since

this stems from the parametric resonance between the periodic fluctuations associated with
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the elliptical motion and the free waves supported by the flow, the dispersion relation of these

waves is critical. In the presence of rotation and stratification, the waves are inertia-gravity

waves whose frequency is bounded from below by the minimum of the Coriolis parameter f and

Brunt–Väisälä frequency N . As a consequence, a vortex of fixed vorticity ceases to be unstable

by the subharmonic instability responsible for the simplest form of elliptical instability when f

and N exceeds a certain threshold. As these parameters increase further, instabilities are limited

to resonances of higher and higher order, leading to decreasing growth rates. This was clearly

demonstrated by Miyazaki2 on the basis of numerical solutions of the Floquet problem that

models elliptic instability. Further numerical results were obtained by McWilliams and Yavneh3

who concentrated on the regime of rapid rotation and strong stratification with N > f most

relevant to the atmosphere and ocean. Their broad motivation was the role that instabilities play

in the generation of inertia-gravity-wave-like motion, and the resulting breakdown of the nearly

geostrophic and hydrostatic balance that is typical of much of the atmosphere and ocean. The

present paper shares the same motivation. It re-examines the elliptical instability of a rotating

stratified fluid and derives explicit analytical results in the limit of fast rotation f ≫ Ω and

strong stratification N ≫ Ω, where Ω denotes the (relative) vorticity of the flow.

Several recent papers4–7 have demonstrated in specific examples that instabilities of well-

balanced basic flows to inertia-gravity-wave perturbations (or perturbations related to similar

fast waves) have growth rates that are exponentially small in the Rossby number, here pro-

portional to Ω/f ≪ 1.1 Theoretical arguments8;9 indicate that this is a generic property, and

the elliptical instability examined in this paper is no exception. In this case, the exponential

smallness can be roughly understood by noting that, in the manner typical of parametric insta-

bilities10, the growth rates of the elliptical instability can be expected to be proportional to Ωn,

where n is the order of the resonance. Since, as pointed out by Miyazaki2, the minimum n is of

the order f/Ω (for N > f), this leads to the conclusion that growth rates are beyond all orders

in the Rossby number. To go further than this rough argument and provide an estimate for the

growth rate requires the exponential-asymptotics analysis of the Floquet problem relevant to

the elliptical instability. We carry out this analysis and, rather than relying on general asymp-

totic results for Hill’s equations11, directly relate the growth of solutions to the occurrence of a

Stokes phenomenon12 which we capture using a combination of WKB expansion and matched

asymptotics in complex time. The analytical results are confirmed by the numerical solutions

of the Floquet problem.

1Note that we use the convential form of Rossby number rather than its inverse as used in Ref.2.
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One of the issues which our treatment clarifies is the difference between the instability

of cyclonic and anticyclonic vortices. Cyclones have been recognised as less unstable than

anticyclones, to the extent that McWilliams and Yavneh3 considered only the instability of the

latter. We show that the cyclones are in fact linearly unstable, with growth rates that have

the same exponential dependence on the Rossby number as the corresponding anticyclones but

differ by a factor which, although formally of order one, turns out to be numerically very small.

The plan of this paper is as follows. In section 2, we formulate the problem of elliptical

instability in a rotating stratified fluid modelled using the Boussinesq approximation. We use

the simplest instance of elliptical instability, that of an unbounded elliptical vortex with uniform

vorticity. This makes it possible to seek global solutions in the form of plane waves with time-

periodic wavevector and an amplitude that satisfies a Hill’s equation. (Results for this particular

case have a much broader appeal, however, since an identical Hill’s equation arises when the

stability of more general elliptical vortices is examined locally using the geometric-optics tech-

nique.13;14) The Floquet problem associated with the Hill’s equation is solved asymptotically

in section 3 in the limit of fast rotation and strong stratification, with the eccentricity of the

elliptical streamlines assumed of order one. For simplicity, we also make the hydrostatic approx-

imation assuming that N ≫ f and an order-one Burger number. The asymptotic derivation

is only sketched in section 3, with technical details relegated to Appendix A. The asymptotic

results are confirmed by direct numerical solution of the Floquet problem in section 4. The

effect of a finite N/f is also briefly examined there.

2 Formulation

We consider the stability of a horizontal elliptical flow in a three-dimensional stratified fluid,

with constant Brunt–Väisälä frequency N , rotating about the vertical axis at rate f/2 > 0.

The flow’s streamfunction, velocity and vorticity are written as

Ψ = −1

2

(

bx2 + ay2
)

, U = (ay,−bx, 0) and Ω = a+ b, (2.1)

where ab > 0. We define

ς = sgn a = sgn b

and note that the flow is anticyclonic for ς = 1, and cyclonic for ς = −1. Three dimensionless

parameters characterise the flow, namely

e =
√

a/b, ǫ =
√
ab/f and f/N, (2.2)
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which are recognised as the aspect ratio of the elliptical flow, a Rossby number and the Prandtl

ratio. We assume that e > 1 without loss of generality.

Perturbations to the flow (2.1) take the form of plane waves with time-dependent wavevector,

with each field written as

u(x, t) = û(t)eik(t)·x,

where the wavevector k = (k, l,m) satisfies

k̇ = bl, l̇ = −ak and ṁ = 0, (2.3)

the overdot denoting differentiation with respect to t. In what follows, we use a dimensionless

time variable obtained by taking (ab)−1/2 as a reference time. In terms of this variable, the

solutions to (2.3) have the simple form

k = k0 cos t, l = −ςek0 sin t and m = m0, (2.4)

where k0 and m0 are constant. The stability of (2.1) depends on the behaviour of the amplitudes

û(t), v̂(t), etc. as t→ ∞. These satisfy a set of ordinary differential equations with time-periodic

coefficients. Following McWilliams and Yavneh3, this set can be conveniently reduced to a single

second-order equation for the amplitude of the vertical component of the vorticity ζ̂ = i(lv̂−kû).
Assuming that the perturbation potential vorticity vanishes, this equation reduces to

ζ̈ +
2ςklm2(e− e−1)

κ2(k2 + l2)
ζ̇ +

1

ǫ2

[

(

1 − ςǫ(e+ e−1
)

(

1 − 2ςǫek2
0

k2 + l2

)

m2

κ2
+
N2(k2 + l2)

f2κ2

]

ζ = 0, (2.5)

where κ2 = k2 + l2 +m2 and we have omitted the hat on the amplitude ζ. Four dimensionless

parameters appear in this equation: the three flow parameters (2.2), and the initial aspect

ratio m0/k0 of the perturbation. Note that anticyclonic flows (with ς = 1) are susceptible to

centrifugal instability (e.g. Ref.15) when the relative vorticity exceeds f , that is, for ǫ(e+e−1) >

1. Since we focus on the regime ǫ≪ 1 we do not this consider this instability further.

Most of this paper focuses on a limiting case of (2.5) obtained by making the hydrostatic

approximation. This assumes that m0 ≫ k0 and N ≫ f while

µ =
fm0

Nk0
= O(1). (2.6)

This is the regime most relevant to the dynamics of the atmosphere and oceans since the

condition N ≫ f is verified while, as we demonstrate below, the largest growth rates of the

elliptical instability correspond to µ = O(1). The parameter µ can be recognised as the inverse
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square root of a Burger number; it can be interpreted as the aspect ratio of the perturbation

scaled by f/N as is natural in rapidly rotating, strongly stratified fluids.

In the hydrostatic approximation, κ2 is approximated by m2, and (2.5) reduces to

ζ̈ +
2ςkl(e − e−1)

k2 + l2
ζ̇ +

1

ǫ2

[

(

1 − ςǫ(e+ e−1
)

(

1 − 2ςǫek2
0

k2 + l2

)

+
N2(k2 + l2)

f2m2

]

ζ = 0. (2.7)

Using (2.4) and defining ψ > 0 by

e2 = 1 + ψ2, (2.8)

we rewrite this equation as

ζ̈ − p(t)ζ̇ +
1

ǫ2
[

ω2(t) − ǫq(t) + ǫ2r(t)
]

ζ = 0. (2.9)

Here

ω2 = 1 +
N2(k2 + l2)

f2m2
= 1 + µ−2(1 + ψ2 sin2 t), (2.10)

can be recognised as the square of the inertia-gravity-wave frequency (non-dimensionalised by

f). We have also introduced

p(t) =
ψ2 sin(2t)

1 + ψ2 sin2 t
, q(t) = ς

(

e+ e−1 +
2e

1 + ψ2 sin2 t

)

and r(t) =
2(e2 + 1)

1 + ψ2 sin2 t
. (2.11)

Equation (2.9) is a Hill equation, with coefficients that are π-periodic in t. Its stability is

determined using the Floquet theory for Hill equations10. Briefly, if ζ(t) = (ζ1(t), ζ2(t))
T is a

column vector of independent solutions,

ζ(t+ π) = Mζ(t)

for some constant matrix M . The eigenvalues λ of M are then the Floquet multipliers, and two

fundamental solutions can be found for which

ζ(t) = eσtφ(t), (2.12)

where

σ =
1

π
log λ (2.13)

is the Floquet exponent, and φ(t) is π-periodic. Note that the form of the coefficient of ζ̇

ensures that the two multipliers satisfy λ1λ2 = 1. Instability occurs when one of these is such

that |λ| > 1 or, equivalently, Reσ > 0. The matrix M is computed by relating ζ and ζ̇ at two

times t and t+ π. Here we choose t = −π/2 and compute M as

M = [ζ(π/2), ζ̇(π/2)][ζ(−π/2), ζ̇(−π/2)]−1. (2.14)
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Our aim is to determine the largest values of the growth rate Reσ for (2.9) analytically

in the fast-rotation regime ǫ ≪ 1, with N ≫ f , µ = O(1) and ψ = O(1). In this regime

(2.9) ressembles the Hill equations with large parameters whose stability has been studied by

Weinstein and Keller11 using a mapping to parabolic cylinder functions. However, there are

difficulties in applying their results directly, related to the presence of a first derivative term

that is singular for the complex values of t such that k2 + l2 = 0. We have therefore found it

simpler to develop a different approach, combining WKB analysis with complex-time matching.

This approach, which has the advantage of demonstrating the link between the instability and

the Stokes phenomenon12;16, is described in the next section and in Appendix A. The analytic

results obtained there are confirmed and extended to finite N/f in section 4 by solving (2.9)

numerically.

3 WKB analysis

A WKB solution of the form

ζ = A(t)eiθ(t)/ǫ (3.1)

can be introduced into (2.9), and the (real) functions A(t) and θ(t) can be derived by expansion

in powers of ǫ. At leading order, we find that

θ0(t) =

∫ t

−π/2
ω(t′) dt′. (3.2)

At the next order, we have

Ȧ0

A0
= − ω̇

2ω
+
p

2
, (3.3)

θ̇1 = − q

2ω
. (3.4)

We note that A0(t) is π-periodic; this is also true for higher-order corrections, so that there

is no instability to any algebraic order in ǫ: the fundamental solutions are given by ζ in (3.1)

and its complex conjugate, and the Floquet multipliers are simply λ = ± exp(iθ(π/2)) (taking

θ(−π/2) = 0). Instability is necessarily an exponentially small effect; furthermore, it can only

occur for values of the parameters such that λ is exponentially close to ±1. This is because the

condition for instability |λ| > 1 requires the two multipliers to be purely real; however, they

are complex conjugate to all orders in ǫ, a property which persists in the presence of a small

perturbation in the non-degenerate cases λ 6= ±1.
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Computations detailed below show that the solution defined by (3.1) for −π/2 ≤ t < −δ,
with δ ≪ 1, switches on an exponentially small term as the Stokes line Re t = 0 is crossed.

Denoting by S the corresponding Stokes multiplier, which is exponentially small in ǫ, this

implies that the pair of solution

ζ = A(t)eiθ(t)/ǫ and ζ̄ = A(t)e−iθ(t)/ǫ (3.5)

valid for −π/2 ≤ t < −δ (for some ǫ1/2 ≪ δ ≪ 1) becomes

ζ = A(t)
[

eiθ(t)/ǫ + Se−iθ(t)/ǫ
]

and ζ̄ = A(t)
[

e−iθ(t)/ǫ + S̄eiθ(t)/ǫ
]

(3.6)

for δ < t ≤ π/2. Taking ζ = (ζ, ζ̄)T, we compute the matrix M in (2.14). We first have that

[ζ(π/2), ζ̇(π/2)] =





A(eiθ/ǫ + Se−iθ/ǫ) (iǫ−1θ̇A+ Ȧ)eiθ/ǫ + S(−iǫ−1θ̇A+ Ȧ)e−iθ/ǫ

A(e−iθ/ǫ + S̄eiθ/ǫ) (−iǫ−1θ̇A+ Ȧ)e−iθ/ǫ + S̄(iǫ−1θ̇A+ Ȧ)eiθ/ǫ



 ,

where A, Ȧ, θ and θ̇ are evaluated at t = π/2. Similarly,

[ζ(−π/2), ζ̇(−π/2)] =





A iǫ−1θ̇A+ Ȧ

A −iǫ−1θ̇A+ Ȧ



 .

Here A, Ȧ and θ̇ can be evaluated at t = π/2, as above, since their values at t = ±π/2 coincide.

Computing (2.14) gives the simple result

M =





eiθ/ǫ Se−iθ/ǫ

S̄eiθ/ǫ e−iθ/ǫ



 . (3.7)

Here θ = θ(π/2) or, more generally, θ = θ(π/2)−θ(−π/2) which accommodates any convention

for the arbitrary choice of θ(−π/2).

Suppose now that the parameters are such that

eiθ/ǫ = ±(1 + iT ) +O(T 2) (3.8)

for some T ∈ R of a similar order of magnitude as S. The Floquet multipliers obtained from

(2.14) are then given by

λ = ±
(

1 +
√

|S|2 − T 2
)

+O(|S|2) and λ = ±
(

1 −
√

|S|2 − T 2
)

+O(|S|2). (3.9)

Clearly, one of these multipliers satsifies |λ| > 1, and the flow is unstable, provided that −|S| ≤
T ≤ |S|, that is, in exponentially narrow instability bands. The corresponding growth rate
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Figure 1: Parameters α and β governing the maximum growth rates according to (3.10)–(3.11)

as functions of e and µ.

σ =
√

|S|2 − T 2/π +O(|S|2) is maximum at the centre of these bands, for T = 0, and is given

by

σmax ∼ |S|
π
. (3.10)

The computation of S is carried out in Appendix A. There we show that

|S| = e−α/ǫ+ςβ , (3.11)

where

α =
2

µ

∫

√
1+µ2/ψ

0

√

1 + µ2 − ψ2x2

1 + x2
dx and (3.12)

β = µ−
∫

√
1+µ2/ψ

0

(

e+ e−1 +
2e

1 − ψ2x2

)

dx
√

(1 + µ2 − ψ2x2)(1 + x2)
. (3.13)

Here −

∫

denotes the Cauchy principal value of the integral, whose integrand is singular at x =

1/ψ.

Figure 1 shows the values of α and β as functions of e and µ. Some conclusions can be drawn

from the figure and the examination of the explicit expressions (3.12)–(3.13). First, α → ∞ in

the limits of both small and large µ; specifically α = O(µ−1) as µ → 0 and α = O(log µ) as

µ → ∞. This suggests, as is confirmed by Figure 1, that the largest growth rates are attained

for µ = O(1). Thus, the aspect ratio of the perturbations that grow as a result of the elliptical

instability of vortices should be expected to be the Prandlt ratio: m0/k0 = O(N/f). Second,

8



the behaviour of α for small and large eccentricity is given by

α ∼ −2
√

1 + µ2

µ

(

logψ + 1 − 2 log 2 − 1

2
log(1 + µ2)

)

as ψ → 0, (3.14)

α ∼ (1 + µ2)π

2µψ
as ψ → ∞. (3.15)

The large-ψ expression (3.15) can actually be used to estimate α for values of ψ as small as 1,

which makes it very useful. (For µ = 1, for instance, the error in (3.15) is 15%, 10% and 5%

for ψ = 1, 1.5 and 2, respectively.) This expression shows in particular that the largest growth

rates are attained precisely for µ ∼ 1 when ψ is large. Third, the obvious fact that β > 0 shows

that anticyclonic flows (ς = 1) are more unstable than cyclonic flows (ς = −1). According to

(3.11), the growth rate in an anticyclonic flow is a factor exp(2β) larger than the growth rate

of the corresponding cyclonic flow. Formally, this is an O(1) factor, but the typical values of β

are such that it is numerically very small, so that the instability of cyclones is exceedingly weak

and probably negligible in most circumstances. Note that because β is a decreasing function of

e, the asymmetry between cyclones and anticylones is the largest for small eccentricity.

The formulas (3.10)–(3.13) give completely explicitly expressions for the maximum growth

rates of the elliptical instability in terms of the three parameters ǫ, µ and e (recall that ψ =
√
e2 − 1). These growth rates are achieved when the three parameters are related in such a way

that exp(iθ/ǫ) = ±1, that is,

θ = nπǫ, n = 1, 2, · · · . (3.16)

This condition can be recognised as a resonance condition between the phase of the inertia-

gravity oscillations and the period of rotation around the elliptical vortex (2π in the dimension-

less time used here).

The growth rates can be written more directly in terms of ǫ, µ and e by solving (3.16)

peturbatively, with θ = θ0 + ǫθ1 + · · ·, and θ0 and θ1 obtained from (3.2) and (3.4). This gives

the approximate position of the instability bands as well as their width. To leading order, the

instability bands are centred at values of e and µ satisfying

θ0 =
1

µ

∫ π/2

−π/2

√

1 + µ2 + ψ2 sin2 t dt =
2

µ

∫ 1

0

√

1 + µ2 + ψ2x2

1 − x2
dx = nπǫ, n = 1, 2, · · · . (3.17)

The computation of the correction ǫθ1 is more involved. Note that it is in principle needed

to obtain a leading-order approximation to the growth rate Reσ as a function of e and µ.

This is because the error on α needs to be o(ǫ), which requires to approximate the resonance

values of e and µ with an o(ǫ) error also. We do not pursue these detailed computations here:
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since the values of e and µ satisfying the resonance condition (3.16) are ǫ-close together, (3.10)

provides a useful approximation to the growth rates of the instability without the need to

locate the resonances accurately. This is demonstrated in the next section where we compare

the prediction (3.10) with numerical solutions of the Floquet problem associated with (2.7).

Note that the band width can be deduced directly from the expression (3.17) for θ0. For

fixed ǫ and e, for instance, T in (3.8) can be written as T = ǫ−1∆µ∂µθ, where ∆µ is the distance

between µ and the resonant values, and the derivative is evaluated at resonance. According to

(3.9), the instability-band width is therefore ∆µ = 2ǫ|S|/∂µθ where θ can be approximated by

θ0.

4 Comparison with numerical results

We have solved the Floquet problem associated with equation (2.9) for the amplitude ζ nu-

merically using Matlab’s standard Runge–Kutta solver. The growth rates Re σ obtained in this

manner are compared with the asymptotic estimate (3.10) for σmax. To emphasise the exponen-

tial dependence on the inverse Rossby number 1/ǫ, it is convenient to display Reσ as a function

of 1/ǫ for fixed values of µ and of e. Figure 2 shows the results obtained in case of anticyclonic

vortices (with ς = 1) for several values of e and µ. Similar results for cyclonic vortices (ς = −1)

are displayed in Figure 3.

The figures confirm the validity of our asymptotic estimate. They also suggest that this

estimate remains useful for moderately small values of ǫ, say ǫ . 1/2. Note that the dimensional

growth rates are obtained by multiplying σ by
√
ab which is related to the relative vorticity

Ω = a + b of the flow by
√
ab = Ω/(e + e−1). As expected from our asymptotics, the growth

rates in the case of cyclonic flows are exceedingly small for ǫ≪ 1 even for the large eccentricities

used in Figure 3. Nonetheless, our results clarify the fact that all elliptical flows are unstable,

regardless of the sense of the rotation, of its strength, and of the strength of the stratification.

Note that the match between asymptotic and numerical results for cyclonic flows appears to

degrade for small ǫ (i.e., large 1/ǫ); this is because the smallness of both the growth rate and

instability-band width makes the maximum growth rate delicate to estimate numerically.

The separation between instability bands can be estimated from the asymptotic formula

(3.17): in terms of the varying 1/ǫ used in the figures, it is given by

γ =
πµ

2

∫ 1

0

√

1 + µ2 + ψ2x2

1 − x2
dx

.
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Figure 2: Growth rates Reσ in anticyclonic flows as functions of the inverse Rossby number

1/ǫ for (a) e = 1.5, µ = 1; (b) e = 2, µ = 1; (c) e = 2, µ = 0.5; and (d) e = 4, µ = 1. The

growth rates computed numerically (solid lines) are compared with the asymptotic estimate of

the maximum growth rates σmax (dashed lines).

Evaluating this quantity for the parameters chosen for the figures gives γ = 0.62, 0.54, 0.31 and

0.34 for the parameters of Figure 2 (a)–(d), and γ = 0.18 and 0.12 for the parameters of Figure

3 (a) and (b), in good agreement with the numerical results.

Our derivation of an asymptotic expression for the growth rate makes the hydrostatic ap-

proximation, which assumes that N ≫ f , m0 ≫ k0 and µ = fm0/(Nk0) = O(1). This assump-

tion, which could be relaxed, is made because it corresponds to the regime most relevant to

atmospheric and oceanic flows; it is consistent in the sense that the growth rates obtained are

maximized for µ = O(1) and decay rapidly for µ ≫ 1 or µ ≪ 1. To test the sensitivity of the
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Figure 3: Growth rates Reσ in cyclonic flows as functions of the inverse Rossby number 1/ǫ for

(a) e = 4, µ = 0.5; and (b) e = 6, µ = 0.5. The growth rates computed numerically (solid lines)

are compared with the asymptotic estimate of the maximum growth rates σmax (dashed lines).

results to the hydrostatic approximation, we have solved the Floquet problem numerically for

the full, unapproximated equation (2.5) for moderately large values of N/f and m0/k0. The

results obtained for µ = 1 and e = 4 are displayed in Figure 4. This compares the growth rate

obtained in the hydrostatic approximation with those obtained for N/f = m0/k0 = 3 and 6.

Except for ǫ & 1, there is relatively little difference between the results: the maximum growth

rates fall on the same curve, well described by the hydrostatic asymptotics. Of course, the

location of the instability bands changes depending on S, but this is not significant, since they

would also change if m0/k0 was varied independently of N/f , as is physically relevant.
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search Council.

A Exponential asymptotics

In this Appendix, we compute the (exponentially small) Stokes multiplier S which quantifies

the switching on of one branch of the WKB solution by the other (see (3.5)–(3.6)) through a

Stokes phenomenon12;16. The Stokes phenomenon is associated with the presence of complex

turning points, that is, complex times where ω = 0. From (2.10), these are located at

tn = i sinh−1

√

1 + µ2

ψ
+ nπ, n = 0,±1,±2, · · ·
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Figure 4: Effect of the hydrostatic approximation: the growth rate Re σ is plotted as a function

of the inverse Rossby number 1/ǫ for an anticyclonic flow with e = 4 and µ = 1, in the

hydrostatic limit N/f → ∞ (solid lines), for N/f = 6 (dashed lines), and for N/f = 3 (dotted

lines).

and t̄n. The Stokes phenomenon occurs as t ∈ R crosses one of the Stokes lines joining tn to t̄n.

In the interval [−π/2, π/2] of interest, the only Stokes line is the segment of Re t = 0 joining t0 to

t̄0. We compute S using matched asymptotics, examining how the solution ζ = A(t) exp(iθ(t)/ǫ)

connects to the solution ζ = A(t)[exp(iθ(t)/ǫ) + S exp(−iθ(t)/ǫ)] as this segment is crossed.17

To analyse the behaviour of the solution in the neighbourhood of t0, we first note that

ω ∼ a1/2eiπ/4(t− t0)
1/2, where a =

√

2(1 + µ2)(1 + ψ2 + µ2)/µ2, (A.1)

as t→ t0. We then rescale the evolution equation for ζ near t0 by defining the inner variables

τ = ǫ−2/3a1/3(t− t0) and Z(τ) = ζ(t).

Retaining only the leading order terms, this transforms (2.9) into the equation

d2Z

dτ2
+ iτZ = 0. (A.2)

Solutions can be written in terms of the Airy functions Ai(e−iπ/6τ) and Bi(e−iπ/6τ). We claim

that the solution of interest is

Z ∼ C
[

Ai(e−iπ/6τ) + iBi(e−iπ/6τ)
]

. (A.3)

We verify that this solution matches A(t) exp(iθ(t)/ǫ) to the left of the Stokes line Re t = 0; in

doing so we find an expression for the constant C. It is convenient to verify the matching along

13



the line ph τ = −5π/6; this is an anti-Stokes line along which the two independent solutions of

(A.2) have similar orders of magnitudes. Along this line, we can use the asymptotic formulas18

Ai(−z) ∼ 1√
πz1/4

cos(2z3/2/3 − π/4), (A.4)

Bi(−z) ∼ − 1√
πz1/4

sin(2z3/2/3 − π/4), (A.5)

with z = − exp(−iπ/6)τ = exp(5iπ/6)τ → +∞. Thus we have

Z ∼ Ceiπ/24

√
πτ1/4

e2ieiπ/4τ3/2/3. (A.6)

On the other hand, using (3.3)–(3.4) the solution ζ = A(t) exp(iθ(t)), valid in the outer region

away from t0 and to the left of the Stokes line Re t = 0, can be written as

ζ ∼ 1

ω1/2
e

R t
−π/2

p(t′) dt′/2
e
iǫ−1

R t
−π/2

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′

∼ e−iπ/8

(ǫa)1/6τ1/4
e

R

Γ
−

p(t′) dt′/2
e
iǫ−1

R

Γ
−

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′
e2ieiπ/4τ2/3/3, (A.7)

after using (A.1). Here Γ− denotes a contour joining −π/2 to t0 while remaining to the left

of the Stokes line Re t = 0. Comparing (A.7) with (A.6) shows that ζ correctly matches Z

provided that

C =

√
πe−iπ/6

(ǫa)1/6
e

R

Γ
−

p(t′) dt′/2
e
iǫ−1

R

Γ
−

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′
. (A.8)

We now match Z with the outer solution valid to the right of the Stokes line Re t = 0. A

connection formula for Airy functions18 gives the alternative form

Z ∼ 2Ceiπ/3Ai(e−i5π/6τ), (A.9)

for (A.3). Carrying out the matching on the anti-Stokes line ph τ = exp(−iπ/6), we can use

the asymptotic formula for Ai in (A.4) to write that

Z ∼ Ceiπ/24

√
πτ1/4

(

e2ieiπ/4τ3/2/3 + ie−2ieiπ/4τ3/2/3
)

(A.10)

for |τ | → ∞. This should be matched with the form ζ(t) = A(t)[exp(iθ(t)/ǫ) +S exp(−iθ(t)/ǫ)]

of the solution to the right of the Stokes line. Using (A.1) gives the asymptotics

ζ ∼ 1

ω1/2
e

R t
−π/2

p(t′) dt′/2
[

e
iǫ−1

R t
−π/2

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′
+ Se

−iǫ−1
R t
−π/2

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′
]

∼ e−iπ/8

(ǫa)1/6τ1/4
e

R

Γ+
p(t′) dt′/2

[

e
iǫ−1

R

Γ+
[ω(t′)−ǫq(t′)/(2ω(t′))] dt′

e2ieiπ/4τ3/2/3

+Se
−iǫ−1

R

Γ+
[ω(t′)−ǫq(t′)/(2ω(t′))] dt′

e−2ieiπ/4τ3/2/3
]

,
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where Γ+ denotes a contour joining −π/2 to t0. This contour crosses the Stokes line Re t = 0

below the singular point tp of p(t) and q(t), given by tp = i sinh−1(1/ψ). Taking (A.8) into

account, the matching with (A.10) gives the two equations

e
R

Γ
−

p(t) dt/2
e
−i

R

Γ
−

q(t)/ω(t) dt/2
= e

R

Γ+
p(t) dt/2

e
−i

R

Γ+
q(t)/ω(t) dt/2

, (A.11)

ie
R

Γ
−

p(t′) dt′/2
e
iǫ−1

R

Γ
−

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′
= Se

R

Γ+
p(t′) dt′/2

e
−iǫ−1

R

Γ+
[ω(t′)−ǫq(t′)/(2ω(t′))] dt′

.(A.12)

We can now deform the integration contours. The difference
∫

Γ+
−

∫

Γ−

reduces to an integral

along a closed contour encircling tp. Computing the corresponding residues using (2.11) gives

Res tpp = 1 and Res tp
q

ω
= −iς,

Taking this into account confirms that (A.11) is an identity. Using Res tpp = 1 in (A.12) gives

the Stokes multiplier as

S = −ie
2iǫ−1

−

R t0
−π/2

[ω(t′)−ǫq(t′)/(2ω(t′))] dt′
,

where the Cauchy principal value integral, denoted by −

∫

, is necessary because q(t) has a pole

at t = tp. It follows that |S|, giving the instability growth rate, can be written as

|S| = e−α/ǫ+ςβ ,

where the two constants

α = −2i

∫ t0

0
ω(t) dt and β = −i−

∫ t0

0

ςq(t)

ω(t)
dt

are real, positive and independent of ς. Using (2.10) and (2.11), they can be given the more

explicit forms

α =
2

µ

∫ sinh−1(
√

1+µ2/ψ)

0

√

1 − ψ2 sinh2 u+ µ2 du,

and

β = µς−
∫ sinh−1(

√
1+µ2/ψ)

0

(

e+ e−1 +
2e

1 − ψ2 sinh2 u

)

du
√

1 − ψ2 sinh2 u+ µ2
,

and further transformed into the convenient expressions (3.12)–(3.13).
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