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The spontaneous generation of inertia-gravity waves by balanced motion is inves-

tigated in the limit of small Rossby number ε� 1. Particular (sheared-disturbance)

solutions of the three-dimensional Boussinesq equations are considered. For these so-

lutions, there is a strict separation between balanced motion and inertia-gravity waves

for large times. This makes it possible to estimate the amplitude of the inertia-gravity

waves that are generated spontaneously from perfectly balanced initial conditions. It

is shown analytically using exponential asymptotics, and confirmed numerically, that

this amplitude is proportional to ε−1/2 exp(−α/ε), with a constant α > 0 and a pro-

portionality constant that are given in closed form. This result demonstrates the

inevitability of inertia-gravity-wave generation and hence the non-existence of an in-

variant slow manifold; it also exemplifies the remarkable, exponential, smallness of

the wave generation for ε� 1. The importance of the singularity structure of the bal-

anced motion for complex values of time is emphasised, and some general implications

of the results are discussed.
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1 Introduction

It has long been recognised that the large-scale dynamics of the atmosphere and

oceans is dominated by its low-frequency, nearly geostrophic, balanced component,

with comparatively little energy in the fast, inertia-gravity waves. The concept of

slow manifold (Leith 1980, Lorenz 1980) formalises this observation: in the state

space of the primitive equations (or of some more general equations), it introduces

a manifold of reduced dimensionality in the neighbourhood of which the dynamics

is thought to be confined. The initialisation procedures used for the integration of

the primitive equations can then be regarded as projections of initial conditions on

a slow manifold; and balanced models, which filter out inertia-gravity waves, can be

regarded as constrained systems obtained by projecting the dynamics of the primitive

equations on a slow manifold (see, e.g., Warn, Bokhove, Shepherd & Vallis (1995)).

There has been considerable debate about the slow manifold. Formally, this man-

ifold can be defined as the solution to Lorenz’ superbalance equation (Lorenz 1980),

obtained by assuming the existence of unknown functional relations slaving all the

dynamical variables in the primitive equations to a single variable. An exact solution

for these functional relations would imply the existence of an exactly invariant slow

manifold; as a consequence, a suitable initialisation would lead to a dynamics that is

entirely free of inertia-gravity waves and so may be described exactly by a balanced

model of reduced dimensionality.

Approximate solutions to the superbalance equation (geostrophic balance among

others), corresponding to approximately invariant slow manifolds, have been derived

perturbatively using the smallness of the Rossby number ε and Froude number F

which reflect the fast rotation and strong stratification of the atmosphere and oceans.

But, it has become gradually accepted that the superbalance equation does not admit
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an exact solution (Warn 1997, Lorenz & Krishnamurthy 1987). Thus, while solutions

of the primitive equations evolve in the neighbourhood of approximate slow manifolds,

they have full dimensionality and cannot be described exactly by any balanced model.

This is Warn’s picture of a fuzzy slow manifold (Warn 1997, Warn & Menard 1986) or

quasi-manifold (Ford, McIntyre & Norton 2000) in which the fuzziness results from

a fundamental physical process, the spontaneous generation of free inertia-gravity

waves by the balanced motion, and cannot be eliminated by initialisation.

This picture has emerged mostly from the study of low-order models of the prim-

itive equations (e.g. Lorenz (1986)): on the one hand, the divergence of perturbative

procedures for solving the superbalance equation suggested the non-existence of exact

solutions (Vautard & Legras 1986, Warn & Menard 1986); on the other hand, some

explicit solutions starting on a putative slow manifold were shown to develop inertia-

gravity waves (Lorenz & Krishnamurthy 1987, Camassa 1995, Bokhove & Shepherd

1996, Camassa & Tin 1996). There are fewer explicit results for partial-differential

equations. The recent ones due to Ford et al. (2000) concern the shallow-water equa-

tions in small-Froude-number limit F � 1, with a Rossby number ε = O(1). In

this limit, there is no frequency separation between the balanced motion and long

inertia-gravity waves (which are slow), and balance is found to break down at an

algebraic order in F , with the generation of O(F 2) inertia-gravity waves. In contrast,

in the rotation-dominated, quasi-geostrophic limit ε � 1, F = O(ε) � 1, there is

a formal frequency separation between balanced motion and inertia-gravity waves,

suggesting a much weaker gravity-wave generation and hence a greater accuracy of

balance. (See Saujani & Shepherd (2002) and Ford, McIntyre & Norton (2002) for a

discussion contrasting the two regimes.)

A number of arguments indicate that the inertia-gravity waves generated in the

quasi-geostrophic regime are, in fact, exponentially small in ε (e.g. proportional to
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exp(−α/ε) for some constant α > 0). Firstly, the superbalance equation can be

solved formally, order by order in ε, using series expansions or iterations, but the

procedures employed turn out to be asymptotic rather than convergent. Such lack of

convergence is very often the fingerprint of non-analytic, typically exponential, terms

which the formal procedures fail to capture. In fact, optimally truncated asymptotic

series can be shown to provide approximate solutions to the superbalance equations

with exponentially small residuals (see Gelfreich & Lerman (2002) for a treatment

of general finite-dimensional Hamiltonian systems with a single fast frequency, and

Wirosoetisno, manuscript in preparation, for a treatment of geophysical models). Sec-

ondly, a number of steady flows in geostrophic balance have been shown to be unsta-

ble to unbalanced instabilities involving gravity-wave-like perturbations, with growth

rates that are exponentially small in ε (Ford 1994, Nore & Shepherd 1997, Kushner,

McIntyre & Shepherd 1998, Yavneh, McWilliams & Molemaker 2001, Molemaker,

McWilliams & Yavneh 2001). Finally, Lorenz & Krishnamurthy (1987) provide an

example of a solution to a five-component model which exhibits the generation of

exponentially small inertia-gravity waves; although their work is mostly numerical,

it also contains an asymptotic estimate, a priori valid in the regime F � ε � 1,

which makes the exponential dependence on 1/ε explicit (see also Bokhove & Shep-

herd (1996)). The aim of the present paper is to present a similar asymptotic esti-

mate, but for the less contrived regime F = O(ε) � 1 and for solutions of the full

three-dimensional primitive equations, or more exactly of the (more general) non-

hydrostatic Boussinesq equations.

Such solutions are important because they allow to definitely rule out the possi-

bility of an exactly invariant slow manifold for the primitive equations. This cannot

be inferred from the corresponding result for the five-component model of Lorenz &

Krishnamurthy (1987): exponentially small phenomena are notoriously sensitive to
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perturbations of the models and are most probably affected by the drastic truncation

that leads to the five-component model. Our solutions, and the asymptotic technique

used to derive them, are also interesting because they illustrate how the generation

of exponentially weak inertia-gravity waves is associated with the non-analyticity of

the balanced motion for complex values of the time t. The role of singularities of

the balanced motion in the complex t-plane can be understood heuristically. These

singularities determine the exponential decay rate of the Fourier transform of the

balanced signal at large frequencies; they therefore determine the amplitude of the

balanced signal at the (large) frequencies of the inertia-gravity waves and hence con-

trol the excitation of these waves (Warn 1997). However, the precise amplitude of

the excited inertia-gravity waves cannot be determined in an immediate manner; as

the asymptotic technique we employ demonstrates, it depends on the structure the

inertia-gravity waves when analytically continued for complex values of t.

The particular solutions of the three-dimensional non-hydrostatic Boussinesq equa-

tions that we consider have been previously examined by McWilliams & Yavneh

(1998). They consist of the so-called sheared disturbances, obtained by superposing

a single plane wave to a horizontal Couette flow. For these solutions, which generalise

those originally found by Kelvin (Thomson 1887), the various dynamical fields have

the spatial structure of a plane wave, with constant streamwise and vertical wavenum-

bers, and with a cross-stream wavenumber which changes linearly with time. There

is then an exact nonlinear reduction of the primitive partial-differential equations

to a single second-order inhomogeneous ordinary differential equation for the time-

dependent amplitude of one of the dynamical variables. It is this ordinary differential

equation, previously solved numerically by McWilliams & Yavneh (1998) for Rossby

number ε = O(1), that we treat asymptotically for ε� 1 using the techniques of ex-

ponential asymptotics (see, e.g., Segur, Tanveer & Levine (1991) and Hakim (1998)
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for an introduction to these techniques). Such techniques are essentially formal, al-

though they have been proved to provide rigorous results in some applications (e.g.,

Byatt-Smith & Davie (1990)); we therefore confirm the validity of our asymptotic

results by a comparison with numerical results.

Besides the reduction from partial to ordinary differential equations, two proper-

ties of the sheared-disturbance solutions are crucial to our analysis. First, because

of the phase mixing associated with the reduction in horizontal scale that the dis-

turbance undergoes for large |t|, the dynamics becomes extremely simple in the limit

t→ ±∞; so simple in fact that there is, in this limit, an unambiguous separation be-

tween the balanced motion (which has a constant amplitude) and the inertia-gravity

waves (which correspond to a rapidly oscillating amplitude). This makes it possible

to consider a completely balanced “initial” condition for t → −∞ and evaluate the

amplitude of the (spontaneously generated) inertia-gravity waves for t→ +∞. This

property, similar to that of the perturbed homoclinic orbit considered by Lorenz &

Krishnamurthy (1987) in their five-component model, eliminates the conceptual dif-

ficulties that exist for most solutions for which a completely balanced state cannot

be defined. The second crucial property of the sheared-disturbance solutions is the

simple but non-trivial time dependence of the balanced motion, with simple poles

in the complex t-plane. This allows the amplitude of the inertia-gravity waves to

be evaluated analytically for ε � 1 using a straightforward exponential-asymptotic

technique.

The paper is structured as follows. Section 2 is devoted to a brief description

of the second-order ordinary differential equation which governs the evolution of

sheared-disturbance solutions in a Boussinesq fluid. In section 3 we consider the

small-Rossby-number limit and give the asymptotic expression for the amplitude of

the exponentially small inertia-gravity waves that are generated spontaneously from
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a balanced state. This expression is confirmed by numerical solutions of the ordinary

differential equation for a few different values of the parameters. A simplified asymp-

totic expression is also given for the geophysically relevant situation of a strongly

stratified fluid. The paper concludes with a Discussion in section 4. The analytic re-

sults are presented with only brief indications about their derivation. The interested

reader is referred to three Appendices for the details. Appendix B, in particular,

provides the details of the exponential-asymptotics calculation of the amplitude of

the inertia-gravity waves.

2 Model

Following McWilliams & Yavneh (1998) we consider the evolution of a perturbed

Couette flow (Σy, 0, 0) in a tri-dimensional Boussinesq fluid on an f -plane. An exact,

nonlinear reduction from the nonlinear partial-differential equations to linear ordinary

differential equations is possible for perturbations of the form

a(t)ei[k(x−Σyt)+ly+mz], (2.1)

with time-dependent amplitudes a(t) distinct for each dynamical field. Such pertur-

bations are the sheared disturbances first discussed by Kelvin (Thomson 1887). They

consist of plane waves with a wavevector (k, l − kΣt,m) which depends explicitly on

time through its second component.

The amplitude of the vertical component of the vorticity field, denoted by ζ(t),

can be shown to satisfy the linear equation

ζ̈ + b(t)ζ̇ + c(t)ζ = N2 k2 + (l − Σkt)2

k2 + (l −Σkt)2 +m2
, (2.2)

with

b(t) =
2Σkm2(l −Σkt)

[k2 + (l − Σkt)2][k2 + (l − Σkt)2 +m2]
,
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c(t) =
(f −Σ)m2

k2 + (l − Σkt)2 +m2

[
f − 2Σk2

k2 + (l −Σkt)2

]
+

N2[k2 + (l − Σkt)2]

k2 + (l − Σkt)2 +m2
,

where f > 0 is the Coriolis frequency and N the constant Brunt–Väisälä frequency.

See Appendix A for a derivation.

Rescaling time according to t 7→ t/|Σ|, choosing the origin of time so that l = 0,

we rewrite (2.2) in dimensionless form. Introducing the Rossby number

ε :=
|Σ|
f
� 1,

and the Prandtl and aspect ratios

S :=
N2

f 2
and δ :=

m

k
,

we obtain

ε2
[
ζ̈ + b(t)ζ̇

]
+ c(t)ζ = S

1 + t2

1 + δ2 + t2
, (2.3)

where

b(t) =
−2δ2t

(1 + t2)(1 + δ2 + t2)
,

c(t) =
δ2(1∓ ε)

1 + δ2 + t2

(
1∓ 2ε

1 + t2

)
+ S

1 + t2

1 + δ2 + t2
.

Here and in what follows, the ∓ signs distinguish the anticyclonic shear (Σ > 0, upper

sign) from the cyclonic shear (Σ < 0, lower sign). Henceforth, we assume that S > 1.

We are interested in the limit of a small Rossby number ε � 1, with the other

parameters δ and S formally of O(1). Correspondingly, the Froude number is small:

F :=
|Σ|δ
N

= ε
δ

S1/2
� 1.

The factor δ/S1/2 can be identified as the ratio of the horizontal scale k−1 to the

radius of deformation N/(fm) (its square is the inverse of the Burger number). In

the standard quasi-geostrophic scaling, δ/S1/2 = O(1) while both S and δ are large,

corresponding to a strong stratification and to a disturbance with small vertical scale;

we will consider this regime as a particular case of our more general results.
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3 Inertia-gravity-wave amplitude

We first obtain a formal solution of (2.3) using a regular perturbation expansion in

powers of ε. A straightforward calculation gives

ζ = ζbal := ζ(0) + εζ(1) + · · · , (3.1)

where

ζ(0) =
1 + t2

1 + δ2/S + t2
, ζ(1) =

±δ2(3 + t2)

S(1 + δ2/S + t2)2
, · · · .

This expansion provides the balanced approximation to the dynamics, i.e., the dy-

namics on a slow manifold, with ζ(0) corresponding to the quasi-geostrophic approx-

imation and higher-order terms to more accurate balance relations. The expansion

(3.1) is expected to be asymptotic rather than convergent as a result of exponentially

small terms which it cannot capture. These terms, which represent inertia-gravity

waves, could only vanish if an exactly invariant slow manifold existed; we show that

it is not the case by computing explicitly the amplitude of the inertia-gravity waves

generated for a solution that is initially gravity-wave free.

In general it is difficult to separate balanced motion and inertia-gravity waves

unambiguously, because there is not a single definition for a (non-invariant) slow

manifold. However, for the model under consideration, an unambiguous separation

is possible in the limit |t| → ∞. This is because in this limit the solution to (2.3)

simply becomes

ζ ∼ 1 + C≷ cos(S1/2t/ε+ ϕ≷), (3.2)

where C≷ and ϕ≷ are real constants, and the ≷ signs refer to the limits t → ±∞,

respectively. Clearly, the slow, balanced motion corresponds to the constant term

in (3.2) while the inertia-gravity waves correspond to the rapidly oscillating term.

(Note that this term describes pure buoyancy oscillations: the influence of rotation
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vanishes asymptotically for |t| → ∞.) A perfectly balanced condition can thus be

imposed for t → −∞ by choosing C< = 0. We show below that this choice leads to

a non-zero, albeit exponentially small, C>, i.e., non-vanishing inertia-gravity waves

for t→∞. This establishes the inevitable breakdown of balance or, equivalently, the

non-existence of an exactly invariant slow manifold.

Figure 1 shows a typical solution, with S = δ2 = 10 and ε = 0.25 (anticyclonic

shear). The dashed line is an approximate balanced solution,

ζ̃bal = ζ(0) + εζ(1) . (3.3)

The solid line is obtained by integrating (2.3) from −T to T for some large T (100 in

this example), with initial conditions

ζ(−T ) = ζ̃bal(−T ), ζ̇(−T ) = ˙̃ζbal(−T ). (3.4)

(Details of the numerical method are given in section 3.) It is easily verified that

ζ̃bal(t) = ζbal(t) + O(ε2t−4) for ε→ 0, |t| → ∞, so we can make the initial conditions

arbitrarily well balanced by choosing T sufficiently large. We find that the solution

remains exceptionally well balanced, even though ε is moderate, until t is close to zero.

At this point inertia-gravity waves are generated, and the solution eventually takes

the expected form of a regular inertia-gravity-wave oscillation about the balanced

solution.

The inertia-gravity waves are evidently absent from the perturbation expansion

(3.1) but they can be captured by a WKB solution: introducing a solution of the

form

ζ = ζigw = (g0 + εg1 + · · ·) eiε−1
R t
0 ω(t′)dt′

into the homogeneous version of (2.3) gives

ω2g0 − S
1 + δ2/S + t2

1 + δ2 + t2
g0 = 0, (3.5)
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at leading order, and, taking this into account,

2iωġ0 + iω̇g0 −
2iδ2t

(1 + t2)(1 + δ2 + t2)
ωg0 ∓

δ2(3 + t2)

(1 + t2)(1 + δ2 + t2)
g0 = 0 (3.6)

at the next order. Solving (3.5) yields two roots,

ω = S1/2

(
1 + δ2/S + t2

1 + δ2 + t2

)1/2

, (3.7)

and its negative. These can be recognised as the dimensionless frequencies of inertia-

gravity waves with wavevector (k,−kt,m). Solving (3.6) gives

g0 = A
1

ω1/2

(
1 + t2

1 + δ2 + t2

)1/2

eih(t),

where A is a complex constant, and

h(t) =
∓δ2

2

∫ t

0

3 + t′2

(1 + t′2)(1 + δ2 + t′2)ω(t′)
dt′. (3.8)

Note that the lower limit of integration in this integral can be chosen freely, because

of the presence of the arbitrary constant A in g0; we have chosen 0 for convenience.

The generation of exponentially small oscillations is associated with the break-

down of the regular perturbation expansion (3.1) near singularities of its terms in the

complex t-plane. Typically, if t0 ∈ C is such a singularity, one expects the appearance

of oscillations whose amplitude scales roughly like

exp

(
−1

ε

∣∣∣∣Im ∫ t0

0

ω(t) dt

∣∣∣∣) .
The largest contribution therefore is expected to come from the singularity t0 leading

to the smallest value of the absolute-value term. In the case of the expansion (3.1),

there is a pair of singularities at

t = ±t? := ±i
(
1 + δ2/S

)1/2
.

At first sight it might be expected from (2.3) that singularities in the balanced solution

ζbal also appear for t = ±i; however, this is not the case. This is first hinted at by the
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first few terms in ζbal, which are all regular at ±i, and can be confirmed by examining

the Frobenius solutions of (2.3) about ±i.1

To capture the exponentially small oscillations associated with ±t?, one proceeds

as follows. (For a clear introduction to the treatment of exponentially small effects,

see Hakim (1998).) Equation (2.3) is integrated not for real t between ±∞, but on a

path in the complex plane that comes close to t? (the contribution of −t? is simply

complex conjugate to that of t? and is added at the end). Away from t?, the regular

perturbation technique can be employed and the solution is given by ζ = ζbal + ζigw.

The amplitude of the inertia-gravity waves is zero to the left of t? and to be determined

to the right. Near t? the regular perturbation breaks down and one needs to rescale

the equation in an inner region. There, the oscillations, which are generated through

a Stokes phenomenon (Olver 1974, Ablowitz & Fokas 1997, Berry 1989), have the

same order as the balanced solution, so they can be determined, in fact by solving

a standard connection problem. Matching the inner solution with the outer solution

gives the connection between the amplitudes of the inertia-gravity waves on both

sides of t?; on the real axis this amplitude is exponentially small. This programme

is carried out in Appendix B. There the vorticity of the inertia-gravity waves to the

right of the singularities ±t? is found to be

ζigw ∼
2|K|e−α/ε

ε1/2
1

ω1/2

(
1 + t2

1 + δ2 + t2

)1/2

cos

[
1

ε

∫ t

0

ω(t′) dt′ + h(t)± π

2

]
, (3.9)

where

|K| = π1/2δ e±β

21/2(1 + δ2/S)1/4
, (3.10)

with the ± signs corresponding to the anticyclonic and cyclonic shears, respectively.

The parameters α and β are derived in Appendix B and given explicitly by (B.2) and

1The Frobenius solutions have indices 0 and 2 so that generically a logarithmic contribution

is expected to appear, with t = ±i as branch points; however, it turns out that this logarithmic

contribution vanishes for (2.3).
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(B.4). Taking the limit of (3.9) for t → ∞ and comparing with (3.2) we find that

the amplitude of the inertia-gravity waves that are generated spontaneously by the

balanced motion is

C> ∼ 2|K|
S1/4

e−α/ε

ε1/2
. (3.11)

This exponentially small, non-zero value establishes unambiguously the breakdown of

quasi-geostrophic balance for the sheared-disturbance solutions of the three-dimensional

Boussinesq equations.

Although we focus on the inertia-gravity-wave amplitude in the limit t→ ±∞, it

is worth recalling from the theory of the Stokes phenomenon (see, e.g., Berry (1989)

or Ablowitz & Fokas (1997)) that the exponentially small terms are in fact switched

on abruptly in a small (O(ε1/2)) neighbourhood of the intersection between the real

t-axis and a Stokes line. Here the relevant Stokes line is defined by Re
∫ t
t?
ω(t′)dt′ = 0

and is a segment of the imaginary axis, so that the inertia-gravity waves can be

predicted to appear suddenly in the neighbourhood of t = 0. This explains what is

observed in Figure 1.

The parameters α and β appearing in (3.9) both depend on δ and S, and both are

defined by elliptic integrals; α controls the exponential smallness of the inertia-gravity

waves, β the order-one prefactor |K|. Contour plots of α and β are shown in Figure

2. The logs are in base 10, and the values are shown for S ∈ (1, 100), δ2 ∈ (0.1, 100).

Note, in particular, that while α is always positive, β can have either sign. This

is interesting because the only asymmetry between anticyclonic and cyclonic shears

stems from the factor e±β in |K|. When β > 0, as is the case for realistic (large) values

of δ and S, the amplitude of the inertia-gravity waves is larger for the anticyclonic

shear than for the cyclonic shear; the opposite is true for β < 0.

Simple expressions for α and β in the limit of large S and δ are derived in Appendix

C. In the standard quasi-geostrophic scaling, with δ, S � 1 and a ratio of the
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horizontal scale to the radius of deformation

b :=
δ

S1/2
= O(1),

(i.e., an O(1) Burger number) we find

α ∼ π(1 + b2)

4b
and β ∼ πb

4
.

Note that α is minimised for b = 1, hence the amplitude of the waves is maximised

for δ2 ∼ S, i.e., for the aspect ratio m/k ∼ N/f . Another limit, mainly of academic

interest, namely S � 1, δ = O(1), is also considered in Appendix C. In this limit α

and β can be expressed as simple elliptic integrals, and it is possible to show that the

change in the sign of β occurs for δ = 0.953, consistent with Figure 2.

We have confirmed the analytic result (3.11) for the inertia-gravity-wave ampli-

tude by solving (2.3) numerically for several values of the parameters. We choose a

sufficiently large time T , and integrate (2.3) from −T to T , with initial conditions

(3.4). We estimate the final inertia-gravity-wave amplitude at time T using equation

(3.2):

C> ≈
{[
ζ(T )− ζ̃bal(T )

]2

+
ε2

S

[
ζ̇(T )− ˙̃ζbal(T )

]2
}1/2

.

We use a fourth-order Runge–Kutta integration scheme. T is chosen large enough,

and the resolution fine enough, such that the estimated C> remains unchanged to

five significant digits when the resolution and/or T are doubled.

Figure 3 shows C> as a function of 1/ε for δ2 = S = 10, both for an anticyclonic

and for a cyclonic shear. The figure compares the analytic and numerical estimates

for C>, revealing an excellent agreement even for moderate values of ε. Note that

with the logarithmic scale chosen for C>, a straight line corresponds to an exponential

dependence on 1/ε; the slight departure from a straight line noticeable for moderate

ε results from the factor ε−1/2 in (3.11). The values of C> in Figure 3 also emphasise
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the extreme smallness of the inertia-gravity waves that are emitted spontaneously.

Similar results were obtained for different values of δ and S.

Figure 4 shows the relative error in the analytic estimate for C>, i.e., the difference

between the analytically computed and the numerically estimated values, normalised

by the numerical value, again for δ2 = S = 10. Evidently, the error in the analytical

values tends to zero approximately linearly with ε, suggesting that C> is in fact given

by

C> =
2|K|
S1/4

e−α/ε

ε1/2
(1 + c1ε+ . . .).

Carrying out the asymptotic calculation of Appendix B to higher order would no

doubt confirm this numerical finding.

4 Discussion

This paper presents an example of the generation of inertia-gravity waves by balanced

motion in the small-Rossby-number regime ε � 1. Exponential-asymptotic calcula-

tions and numerical solutions provide a firm basis to the qualitative picture that has

emerged in recent years: the spontaneous generation of waves is unavoidable and no

exactly invariant slow manifold can be defined — in other words, the slow manifold

is inherently fuzzy — but the amplitude of the waves generated is extremely small,

in fact exponentially small in ε.

The model studied takes advantage of an exact reduction of the full three-dimen-

sional (non-hydrostatic Boussinesq) partial-differential equations to a linear ordinary-

differential equation. It is, however, not particularly realistic, notably because it in-

volves unbounded, infinite-energy solutions for which there is no meaningful energy

conservation. Nonetheless, we believe that the features of the inertia-gravity-wave

generation it reveals are generic. Among these features, the role played by the singu-
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larities of the balanced motion in the complex t-plane is noteworthy. In a sense, it is

at these singularities that the wave generation takes place (although for the usual real

values of t they appear at the intersection with the Stokes lines emanating from the

singularities). When deriving simplified models of the interactions between balanced

and inertia-gravity dynamics, it is therefore important that the approximations made

do not alter the singularity structure of the balanced motion.2

Our estimation of the inertia-gravity-wave amplitude is of course much simplified

by the special spatio-temporal structure (2.1) of the sheared-disturbance solutions

that we consider. For more general solutions of the Boussinesq equations, the loca-

tion of singularities of the balanced motion in the complex t-plane will depend on

space. One can therefore expect the inertia-gravity waves to be generated across

time-dependent front-like structures. An asymptotic theory providing the exponen-

tially small amplitude of the gravity waves in this general situation would be useful;

its derivation is likely to be challenging, however, since the study of the Stokes phe-

nomenon for partial-differential equations is still in its infancy.

In our analysis, we exploit the fact that dynamics of the model is asymptotically

simple for t→ ±∞. This makes it possible to separate balanced motion and inertia-

gravity waves unambiguously, and hence to estimate the amplitude of the waves

generated spontaneously. We note, however, that it is not crucial to consider, as we

do, initial conditions for t→ −∞ and diagnose the wave amplitude for t→∞. Since

the waves are switched on abruptly in a O(ε1/2) neighbourhood of t = 0 (where the

Stokes line is crossed, see Berry (1989)), there is a natural unique definition of the

balanced part of the motion, and hence of the inertia-gravity waves, for any finite

2As an illustration, we note that neglecting the term ∓2ε/(1 + t2) of c(t) in (2.3) — a reasonable

approximation for t real but not for t near ±i — introduces spurious singularities in ζbal at t = ±i. As

a result, the amplitude of the inertia-gravity waves is grossly overestimated: it remains proportional

to exp(−α/ε) but with the upper limit of integration in the definition (B.2) of α replaced by 1.
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t away from 0: for t < 0, the balanced motion is obtained by forward integration

of (2.3) from balanced initial conditions ζ = 1, ζ̇ = 0 for t → −∞; for t > 0 it

is obtained by backward integration from the same balanced initial conditions for

t → ∞. What this defines can be viewed as two disconnected parts of a manifold

which is not completely slow (although the oscillations are minuscule for ε−1/2t� 1)

and not globally invariant.

This construction does not generalise straightforwardly to more complicated situ-

ations in which there may be many Stokes lines intersecting the real t-axis. However,

the study of the Stokes phenomenon (Berry 1989) suggests an alternative separation

between balanced motion and inertia-gravity waves which, albeit not completely free

of arbitrariness, may prove useful. For a certain class of problems, Berry (1989) notes

that the subdominant term in an asymptotic expansion can be computed with an

asymptotically small error by subtracting from the full (typically numerical) solution

the series expansion of the dominant term, provided that this series be optimally

truncated. (The truncation error is then ε1/2 smaller than the subdominant term.)

Transposed to the context of balanced dynamics, this conclusion implies that the

inertia-gravity waves can be defined uniquely up to asymptotically small terms as the

difference between a full (unbalanced) solution and an optimally truncated (balanced)

series solution (cf. Warn & Menard (1986)). Whether this conclusion holds needs to

be verified for specific models; if it does, it provides a practical way of removing the

ambiguities in the separation between balanced and wave motions which have marred

the debate about the slow manifold.

To conclude, let us return to the important distinction mentioned in the Intro-

duction between the small-Rossby-number regime ε � 1 which is the focus of this

paper, and the small-Froude-number regime F � 1 with ε = O(1) studied by Ford

et al. (2000). As recently emphasised by Saujani & Shepherd (2002) and Ford et al.
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(2002), the inertia-gravity waves generated by the balanced motion are exponentially

small in ε in the first regime — because of the frequency separation between waves

and balanced motion, while they scale like some power of F in the second regime

— because of the absence of frequency separation for sufficiently long waves. It is

in this second regime, in which the balanced motion generates (slow) inertia-gravity

waves with a much larger spatial scale (Ford et al. 2000), that the mechanism of wave

emission is closely analogous to the Lighthill radiation of acoustic waves (Lighthill

1952).

In our model, the spatial scale of the inertia-gravity waves is by construction

that of the balanced motion; there is, therefore, no direct analogue of the Lighthill-

like radiation examined by Ford et al. (2000). There is, however, an asymptotic

regime in which the frequency separation between inertia-gravity waves and balanced

motion is not complete, so that a power-law dependence of the wave amplitude on

the asymptotic parameter might be expected. This regime corresponds to ε = O(1),

δ, S � 1 and δ/S1/2 = O(1). With this scaling, the inertia-gravity-wave frequency

found by a WKB analysis with S1/2 or S1/2/ε = N/|Σ| (to encompass the non-

rotating case ε = f = 0) as the large parameter is again ω(t)/ε with ω(t) given

in (3.7). It is large, specifically O(S1/2/ε), for t & O(δ) but of O(1), and hence

matching the balanced motion frequency, for t� δ. A boundary-layer analysis may

be carried out to relate the outer behaviour of the solution for t = O(δ) to the

inner behaviour for t = O(1) and deduce the amplitude of inertia-gravity waves that

are generated spontaneously from a balanced state at t → −∞. This analysis does

not appear to yield a closed form for the inertia-gravity-wave amplitude because

the inner dynamics is governed by an ordinary differential equation not significantly

simpler than (2.3), but it indicates that the amplitude scales like δ1/2 or, equivalently,

S1/4/ε1/2. (Note that the positive power appears because the time interval during
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which the inertia-gravity-wave frequency is O(1) increases with δ.) This scaling is

confirmed by numerical solutions of (2.3) whose results are shown in Figure 5.
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A Derivation of (2.2)

The equations of motion, employing the Boussinesq approximation, for an inviscid

stratified fluid in an environment rotating with a constant Coriolis frequency f are

DtU − fV = −Px
ρ̄
, (A.1)

DtV + fU = −Py
ρ̄
, (A.2)

DtW +
gρ

ρ̄
= −Pz

ρ̄
, (A.3)

Dtρ+Wρ0z = 0 , (A.4)

Ux + Vy +Wz = 0 , (A.5)

where (U, V,W ) are the usual Cartesian velocity components, P is the reduced pres-

sure, the fluid density has been written as ρ0(z) + ρ(x, y, z, t), with ρ̄ denoting its

(constant) mean value, and Dt := ∂t + U∂x + V ∂y + W∂z is the material derivative.

We denote the buoyancy by B := −gρ/ρ̄, and the geopotential by Φ := P/ρ̄.

Motivated by McWilliams and Yavneh (1998), we consider unbounded solutions
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which are a sum of a uniform shear flow and a finite-amplitude perturbation:

(U, V,W,Φ, B) =

[
Σy, 0, 0,−1

2
fΣy2, 0

]
+ [u(t), v(t), w(t), φ(t), b(t)] ei[k(x−Σyt)+ly+mz] , (A.6)

where −Σ is the constant vorticity of the uniform shear flow, and k, l,m are constant

wavenumbers. This form, together with the incompressibility condition (A.5), ensures

that the material derivatives of (U, V,W,Φ, B) in (A.1)–(A.5) simply transform into

the time derivatives of the corresponding amplitudes (u, v, w, φ, b). Substituting (A.6)

into (A.1)–(A.5) therefore produces the set of linear ordinary differential equations

u̇+ (Σ− f)v = −ikφ , (A.7)

v̇ + fu = −i(l −Σkt)φ , (A.8)

ẇ − b = −imφ , (A.9)

ḃ+N2w = 0 , (A.10)

ku+ (l − Σkt)v +mw = 0 , (A.11)

where N2 := −(g/ρ̄)dρ0/dz is the buoyancy frequency squared, which is assumed to

be constant, and the overdot denotes the time derivative. Taking ik(A.8) − il(A.7)

yields

ζ̇ + (f −Σ)D = 0 , (A.12)

where ζ := ikv−i(l−Σkt)u is the amplitude of the vertical component of the vorticity

of the finite perturbation, and D := iku+i(l−Σkt)v is the amplitude of the horizontal

velocity divergence. From (A.10), (A.11) and (A.12) we obtain

q̇ = 0 , (A.13)

where q = N2ζ+im(f−Σ)b is the amplitude of the Ertel potential vorticity associated

with the perturbation. Next, we take ik(A.7) + il(A.8) and obtain

Ḋ +
2Σk(l −Σkt)

λ2
D = λ2φ+

(
f − 2k2Σ

λ2

)
ζ , (A.14)
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where

λ2 := k2 + (l − Σkt)2. (A.15)

Elimination of φ from (A.14), using (A.9), (A.11) and the definitions of D and q,

yields after multiplication by m2,

(λ2 +m2)Ḋ +
2Σkm2(l −Σkt)D

λ2
=

[
m2

(
f − 2k2Σ

λ2

)
+
N2λ2

f −Σ

]
ζ − qλ2

f −Σ
. (A.16)

Finally, we combine (A.12) and (A.16) to obtain a single equation for ζ :

ζ̈ + b(t)ζ̇ + c(t)ζ =
qλ2

λ2 +m2
, (A.17)

where

b(t) =
2(l − Σkt)Σkm2

λ2(λ2 +m2)
,

c(t) =
m2(f −Σ) (f − 2k2Σ/λ2) +N2λ2

λ2 + m2
.

Since this equation is linear, ζ(t) is simply proportional to the constant potential-

vorticity amplitude q which can therefore be chosen arbitrarily. The choice q = N2 is

convenient. Introducing this into (A.17) and using the explicit form (A.15) of λ we

finally obtain (2.2).

B Exponential asymptotics

We start by considering the solution of (2.3) away from the singular point at t = t?,

in the outer region where |t− t?| = O(1). In this region the balanced part of ζ(t) is

captured by a regular perturbation expansion, while the inertia-gravity wave part is

captured by the WKB approximation. We then examine the solution of (2.3) in an

inner region near t? and carry out the necessary matching between inner and outer

solutions.
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B.1 Outer expansion |t− t?| = O(1)

From (3.1) and (3.7)–(3.8), we have the outer solution

ζ =
1 + t2

1 + δ2/S + t2
+ · · · (B.1)

+
1

ω1/2

(
1 + t2

1 + δ2 + t2

)1/2 {
A≷ei[ε−1

R t
0
ω(t′)dt′+h(t)] +B≷e−i[ε−1

R t
0
ω(t′)dt′+h(t)]

}
,

where the ≷ of the complex constants A≷, B≷ refer to the right and left of t?, re-

spectively. We assume A< = B< = 0 and want to compute A> and B>. (In fact

we know that A> = 0 since a non-zero value would correspond to an exponentially

large solution on the real axis — only subdominant, exponentially small terms may

be switched on through a Stokes phenomenon.) To match the outer solution (B.1)

to the inner solution to be derived, we need the asymptotic form of ζ when t is on

a path approaching t?. It is convenient to take this path to follow anti-Stokes lines

where

Im

∫ t

0

ω(t′) dt′ = const =
1

i

∫ t∗

0

ω(t′) dt′ =: α,

so that the WKB terms have a constant amplitude at leading order. Here, we have

defined the (positive) constant α which can also be rewritten explicitly using (3.7) as

the real integral

α = S1/2

∫ (1+δ2/S)1/2

0

(
1 + δ2/S − x2

1 + δ2 − x2

)1/2

dx (B.2)

and can be evaluated explicitly in terms of elliptic functions. It is easy to check that

the anti-Stokes lines, L≷ say for the line tending to ±∞, are tangent to

L< : arg(t− t?) = −5π

6
and L> : arg(t− t?) = −π

6

at t?. See Figure 6. On L<, the solution ζ has the following behaviour for ε2/3 �

|t− t?| � 1:

ζ =
iδ2

2S(1 + δ2/S)1/2

1

t− t?
+ · · · (B.3)
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To derive a similar result for L> we first note the following asymptotic behaviours

as t→ t?:

ω ∼ a1/2eπi/4(t− t?)1/2,

where

a :=
2S2(1 + δ2/S)1/2

δ2(S − 1)
,

and ∫ t

0

ω(t′) dt′ = iα+
2

3
a1/2eπi/4(t− t?)3/2 + · · · ,(

1 + t2

1 + δ2 + t2

)1/2

∼ eπi/2

(S − 1)1/2
.

Note that the factor eπi/2 (as opposed to e−πi/2) in (1 + t2)1/2 appears because we are

considering the limit t→ t? on L>, and the continuation of the square root is made

to the right of the branch point at i. See Figure 6. We also need the leading-order

approximation to h(t) defined in (3.8), which we write

h(t) ∼ h(t?) =: ∓i(β + iγ),

thus defining the real numbers β and γ. Some care is necessary to evaluate β and

γ since h(t) is not analytic between the real axis and t? because of the pole of the

integrand at t = i. In the definition of h(t), t describes L>. Taking, as before, a

path to the right of the singularity at t = i which we then reduce to a segment of the

imaginary axis indented to the right of t = i, we obtain

β =
δ2

2S1/2
P
∫ (1+δ2/S)1/2

0

3− x2

(1− x2)(1 + δ2 − x2)1/2(1 + δ2/S − x2)1/2
dx, (B.4)

where P denotes Cauchy-principal-value integral, and

γ = −πi

2
.
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Note that one could also choose a path to the left of t = i: if this is done consistently

our final results below are recovered unchanged; this reflects the single-valuedness of

the solution near t = i.

Introducing the asymptotic behaviours just deduced into (B.1), we find the outer

solution along L> when approaching t? in the form

ζ =
iδ2

2S(1 + δ2/S)1/2

1

t− t?
+ · · ·

+
e3πi/8

a1/4(S − 1)1/2

1

(t− t?)1/4

[
A>e−α/ε±β∓πi/2 e

2
3
a1/2e3πi/4(t−t?)3/2/ε (B.5)

+ B>eα/ε∓β±πi/2 e
2
3
a1/2e−πi/4(t−t?)3/2/ε

]
+ · · · .

The constants A> and B> are determined by matching (B.3) and (B.5) with the inner

solution which we now derive.

B.2 Inner expansion |t− t?| � 1 and matching

There is a turning point at t? where the regular-perturbation and WKB expansions

break down. The usual turning-point scaling holds, with an inner region of size ε2/3.

Consequently, we introduce the new independent variable τ defined by

t = t? + ε2/3a−1/3τ. (B.6)

We also expand ζ according to

ζ(t) = (εa)−2/3φ(τ) + · · · . (B.7)

Introducing into (2.3), we find at leading-order the inhomogeneous Airy equation

φ′′ + iτφ =
−S
S − 1

,

whose solution can be written in terms of Airy functions and, for the inhomogeneous

part, Scorer functions, with argument e−5πi/6τ , e−πi/6τ or eπi/2τ (Abramowitz & Ste-

gun 1965, Olver 1974). The solution that matches the outer solution (B.3) on L< can
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be written as

φ =
πSe−2πi/3

S − 1
Hi(e−πi/6τ), (B.8)

where Hi is a Scorer function (Olver 1974). To verify the matching, we use the large-z

asymptotic of Hi(z), valid when the argument of z is π as is the case for (B.8) on L<;

we find

Hi(z) ∼ −1

πz
. (B.9)

This gives

φ(τ) ∼ iS

S − 1

1

τ
,

for |τ | � 1 on L< which is seen to match (B.3) when (B.6)–(B.7) are taken into

account. To find the asymptotic behaviour of (B.8) on L> and match with (B.5), we

use the connection formula

Hi(z) = e−2πi/3Hi(e−2πi/3z) + 2eπi/6Ai(e2πi/3z)

(see F. W. J. Olver, http://dlmf.nist.gov/Contents/AI/) and obtain the alternative

representation for (B.8),

φ =
πS

S − 1

[
e2πi/3Hi(e−5πi/6τ) + 2eπi/2Ai(eπi/2τ)

]
. (B.10)

The behaviour for |τ | � 1 on L> is derived from (B.9) (again the argument of z is

π) and from the large-z asymptotic formula

Ai(z) ∼ e−
2
3
z3/2

2π1/2z1/4
.

Introducing into (B.10) gives the asymptotic expression

φ =
iS

S − 1

1

τ
+
π1/2Se−5πi/8

S − 1

1

τ1/4
e

2
3

e−πi/4τ3/2

+ · · · .

Comparison with (B.5) taking (B.6)–(B.7) into account yields A> = 0, as expected,

and

eα/ε∓β±πi/2e3πi/8

a1/4(S − 1)1/2
B> =

π1/2Se−5πi/8

ε1/2a3/4(S − 1)
.
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Using the definition of a we finally find the exponentially small gravity-wave amplitude

to be

B> = Kε−1/2 e−α/ε,

with the order-one prefactor K given by

K =
π1/2δ e±β±πi/2

21/2(1 + δ2/S)1/4
. (B.11)

This completes the asymptotic calculation of the inertia-gravity-wave amplitude. Tak-

ing into account the (complex conjugate) contributions of both turning points at

t = ±t?, we find from (B.1) the inertia-gravity-wave part of ζ(t) for positive t in the

form (3.9).

C Asymptotics of α and β

The regime most relevant to atmospheric and oceanic dynamics is characterised by

δ, S � 1 and b = δ/S1/2 = O(1). Substituting bS1/2 for δ and taking the limit S →∞

in (B.2) we find

α ∼ 1

b

∫ (1+b2)1/2

0

(1 + b2 − x2)1/2 dx =
π(1 + b2)

4b
.

Proceeding similarly in (B.4) gives

β ∼ b

2
P
∫ (1+b2)1/2

0

3− x2

(1− x2)(1 + b2 − x2)1/2
dx.

This integral can be evaluated analytically by first writing it as the sum of two

integrals using 3 − x2 = 1− x2 + 2, then changing the integration variable from x to

θ with x = (1 + b2)1/2 sin θ to obtain

β ∼ b

2

[∫ π/2

0

dθ + 2P
∫ π/2

0

dθ

1− (1 + b2) sin2 θ

]
∼ πb

4
,
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since the second integral vanishes. Note that β is positive in this regime, and that α

is minimised for b = 1, whereupon it tends to π/2.

Another asymptotic regime of interest, in particular regarding the change of sign

of β, corresponds to δ = O(1) and S � 1. Letting S →∞ in (B.2) yields

α ∼ S1/2

∫ 1

0

(
1− x2

1 + δ2 − x2

)1/2

dx = S1/2

∫ π/2

0

cos2 θ dθ

(1 + δ2 − sin2 θ)1/2
,

which can be expressed in terms of complete elliptic integrals. To derive the corre-

sponding result for β care needs to be exercised, because the limit S →∞ leads the

coalescence of the singularities at x = 1 and x = (1 + δ2/S)1/2 of the integrand in

(B.4). As before, we write β as the sum of two integrals:

β =
δ2

2S

{∫ (1+δ2/S)1/2

0

dx

(1 + δ2 − x2)1/2(1 + δ2/S − x2)1/2

+2

∫ (1+δ2/S)1/2

0

[
1

(1 + δ2 − x2)1/2
− 1

δ

]
dx

(1− x2)(1 + δ2/S − x2)1/2

}
.

In the second integral, the term proportional to 1/δ whose contribution can be shown

to vanish has been added to remove the singularity of the integrand at x = 1. The

limit S →∞ can now be taken. With x = sin θ, we find after some manipulations

β ∼ δ2

2S

{∫ π/2

0

dθ

(1 + δ2 − sin2 θ)1/2

−2

δ

∫ π/2

0

dθ

(1 + δ2 − sin2 θ)1/2[(1 + δ2 − sin2 θ)1/2 + δ]

}
which, again, can be expressed in terms of elliptic integrals. A numerical calculation

then shows that β > 0 for δ > 0.953 and β < 0 for δ < 0.953.
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Figure captions

Figure 1: The evolution of ζ(t) (solid line) is compared to ζ̃bal (dashed) for ε = 0.25,

δ2 = S = 10.

Figure 2: Contour plots of α and β as functions of S and δ2.

Figure 3: Inertia-gravity-wave amplitude C> as a function of 1/ε for δ2 = S = 10,

and for an anticyclonic and a cyclonic shear.

Figure 4: Relative error of the analytic estimate for C>, assuming the numerical

results to be exact. The parameters are the same as in Figure 3.

Figure 5: Inertia-gravity-wave amplitude as a function of S for ε = 0.25 and δ = S.

Figure 6: Integration in the complex t-plane: regular perturbation and WKB tech-

niques are used to solve (2.3) along the anti-Stokes lines L< and L>; the outer

solutions so obtained are matched with an inner solution found in a neighbour-

hood of the singular point t?. The segment of the imaginary axis Re t = 0

joining t? to its conjugate is a Stokes line.
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