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Abstract

We consider the evolution of an incompressible two-dimensional perfect fluid as the
boundary of its domain is deformed in a prescribed fashion. The flow is taken to
be initially steady, and the boundary deformation is assumed to be slow compared
to the fluid motion. The Eulerian flow is found to remain approximately steady
throughout the evolution. At leading order, the velocity field depends instanta-
neously on the shape of the domain boundary, and it is determined by the steadi-
ness and vorticity-preservation conditions. This is made explicit by reformulating
the problem in terms of an area-preserving diffeomorphism gΛ which transports the
vorticity. The first-order correction to the velocity field is linear in the boundary
velocity, and we show how it can be computed from the time-derivative of gΛ.

The evolution of the Lagrangian position of fluid particles is also examined.
Thanks to vorticity conservation, this position can be specified by an angle-like
coordinate along vorticity contours. An evolution equation for this angle is derived,
and the net change in angle resulting from a cyclic deformation of the domain
boundary is calculated. This includes a geometric contribution which can be ex-
pressed as the integral of a certain curvature over the interior of the circuit that is
traced by the parameters defining the deforming boundary.

A perturbation approach using Lie series is developed for the computation of
both the Eulerian flow and geometric angle for small deformations of the boundary.
Explicit results are presented for the evolution of nearly axisymmetric flows in
slightly deformed discs.
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1 Introduction

This paper examines the dynamics of a two-dimensional (2d) fluid inside a
container whose boundary is deformed slowly. The fluid is assumed to be
perfect and incompressible; consistent with the latter assumption, the area of
the container is constant. Beyond potential applications such as the control
of fluid flows, we use the problem as a paradigm for the study of Hamiltonian
fluid models depending on slowly varying parameters. This is an obvious first
step: the 2d Euler equations governing incompressible perfect fluids are indeed
Hamiltonian (e.g., [17,19]), and imposing boundary deformations is arguably
the most natural way of introducing a parameter dependence. As is well-known
in finite dimensions, Hamiltonian systems are strongly constrained; as a result,
slow changes of parameters lead to a remarkable behaviour encapsulated in
the theory of adiabatic invariance (see, e.g., [3,12]) and geometric angles [9,5].
In 2d Euler, the material invariance of vorticity (e.g., [18]) similarly imposes
a strong contraint on the system, which we exploit extensively to derive what
can be interpreted as fluid-dynamical versions of adiabatic invariance and
geometric angle.

The problem we consider here is rather involved in its full generality. To make
progress, we make a number of assumptions and consider the following sce-
nario. At an initial time, a steady flow is given in some simply-connected
domain D0. The streamlines have the simplest topology, that of nested closed
curves, and the flow is Arnold stable (see section 2 below). We then assume
that this continues to hold throughout the evolution as the domain is being
deformed. With these hypotheses, we use an asymptotic approach, based on
the separation between the timescale of the boundary deformation and that
of the flow, characterised by a small parameter ε. We consider the dynamics
over timescales of O(1/ε) so that deformations of order one are achieved. We
ask two questions: (i) what is the (Eulerian) flow at any time; and (ii) what
is the (Lagrangian) position of the fluid particles?

The first question is answered by first showing that the leading-order flow is
steady at all times. We then recast the problem in terms of an area-preserving
diffeomorphism gΛ mapping the vorticity in the initial domain D0 to the
leading-order vorticity in the deformed domain. This diffeomorphism coin-
cides with that studied in a previous paper [25, henceforth WV]. In that
paper, we considered a static problem, regarding steady solutions of the 2d
Euler equations as fixed points of a dynamical system, and examining their
persistence as the parameters defining the shape of their domain are varied.
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The persistence of steady flows was established under certain hypotheses by
showing that a diffeomorphism analogous to gΛ exists and is unique. This ex-
istence and uniqueness can be used here to show that, at any stage in the
deformation, the leading-order flow is completely determined by the instan-
taneous shape of the boundary (i.e. it is independent of the history of past
shapes). We gain further insight into this property by examining the effect of
infinitesimal domain deformations. This is naturally described using the lan-
guage of differential forms: in particular, a (connection) one-form, expressing
the changes in gΛ that are associated with infinitesimal domain deformations,
is given a central role in this paper.

We also go beyond the leading-order approximation to the flow and examine
formally higher-order approximations. Of particular interest is the first-order,
O(ε) correction, which is linear in the boundary velocity and admits an inter-
esting geometric interpretation. The higher-order approximations are found
to depend on the instantaneous values of the boundary velocity and its time
derivatives, again independent of past values. This situation is analogous to
that encountered for finite-dimensional Hamiltonian systems with slowly vary-
ing parameters, such as the pendulum with varying length. For this system,
the adiabatic invariance of the action can be used to show that the amplitude
of the motion depends only instantaneously on the various derivatives of the
length.

To answer the second question, we use the first-order correction to the ap-
proximate velocity field obtained in (i). This O(ε) accuracy in the velocity
field is necessary to integrate the particle motion over the O(1/ε) time scale
considered. Having computed the velocity field, the particle-position problem
reduces to the solution of (independent) one-degree-of-freedom Hamiltonian
systems with slowly varying parameters. Since particles remain on vorticity
contours, only the position along each contour, regarded as an angle variable,
needs to be determined. The value of this angle is found to depend on the
history of the boundary shape. It includes a geometric contribution, similar to
the Hannay–Berry angle, which possesses a nice interpretation [9,5,16,20,14].
We note that the geometric angle has been studied in fluid dynamics in [22,23]
where point-vortex solutions of the 2d Euler equation are considered, and in
[21] for Stokes flow; here it appears in the context of smooth inviscid flows.

In the following section, we present a short description of the 2d Euler equa-
tion in a deforming domain in order to fix the notation, and we consider the
behaviour of the leading-order Eulerian flow. The problem is formulated in
terms of the diffeomorphism gΛ, and the effect of infinitesimal domain defor-
mations is described. Next, in §3 we compute the first-order correction to the
Eulerian flow, which depends only on the instantaneous shape of the bound-
ary and its velocity. Using these results, we study the Lagrangian flow in §4,
where the geometric angle of the particle position is derived. In these sections,
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Fig. 1. Parameterization of the shape of the domain DΛ by Λ: as the parameter Λ
moves from Λ(0) = 0 to Λ(εt) in L, the fluid domain changes its shape from D0

to DΛ, inducing a change in the leading-order Eulerian flow whose streamlines are
indicated.

we consider general domains and arbitrary boundary deformations, requiring
only that the boundary deformation be slow. The results are given as solu-
tions of partial (pseudo)differential equations, which in general will have to
be solved numerically. In §5 we develop a perturbative approach for the so-
lution of these equations, based on the assumption of small (total) boundary
deformation. We carry out the calculation to second order, but the Lie series
formulation that we employ is well suited for systematic extensions to higher
orders. An application to nearly axisymmetric flows in a slightly deformed
disc is presented in §6, followed by a Discussion. Technical details and further
developments are relegated to the Appendices.

As mentioned, it proves convenient to express our derivation in the language of
differential forms in the space of the parameters defining the boundary shape.
This makes explicit the linear dependence of several important quantities on
the boundary velocity, and it gives a natural description of the geometric angle
in terms of a curvature form in the parameter space. We use this language
mainly as a notational tool, but it is clear that a more abstract geometric
interpretation of the results could be given. The interested reader will find
some details of this interpretation in the second part of the Discussion.

2 Eulerian Flow: Adiabatic Invariance

We begin by studying the behaviour of the Eulerian flow.
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2.1 Formulation

Let DΛ(εt) ⊂ R
2 be a simply-connected, bounded and smooth domain which is

slowly evolving in time t in a prescribed fashion while keeping its area fixed.
Here Λ denotes the set of parameters defining the shape of the boundary, and
the slowness of their time dependence is made explicit by the introduction of
the asymptotic parameter ε≪ 1. Denoting the (generally infinite-dimensional)
space in which Λ lives by L, we can think of the evolution of the domain shape
as the tracing of a curve Λ(εt) ⊂ L; see Figure 1. An example that can be
kept in mind is the case where the domain boundary ∂DΛ can be described in
polar coordinates (r, σ) as a graph r = r(σ; Λ). When it is sufficiently smooth,
this can be written as the Fourier series

r(σ; Λ) =
∞
∑

m=−∞

Λm eimσ, (2.1)

with Λ−m = Λ∗
m, where ∗ denotes the complex conjugate. This gives an explicit

form for the set of independent parameters Λ = (Λm)∞m=0. AsDΛ deforms, each
of the parameters Λm traces a curve in the complex plane, and the deformation
is represented as a path in L = CN.

We can describe the evolution of a perfect fluid flow in DΛ(εt) using the
vorticity–streamfunction formulation

∂tω + [ψ, ω] = 0, (2.2)

ω = ∆ψ. (2.3)

The velocity is given by v = (u, v) = ∇
⊥ψ := (−∂yψ, ∂xψ), ω = ∇

⊥ · v :=
∂xv − ∂yu is the vorticity, and [f, g] := ∇

⊥f · ∇g = ∂xf ∂yg − ∂xg ∂yf is the
Jacobian. Steady flows satisfy [ψ, ω] = 0.

A convenient way of of defining the domain boundary ∂DΛ(εt) is as the level set
B(x, y; Λ(εt)) = 0 of some prescribed function B. Since ∂DΛ(εt) is a material
curve,

∂tB + [ψ,B] = 0 for B(x; Λ(εt)) = 0. (2.4)

Assuming that ∇B 6= 0 on ∂DΛ, this can be inverted to give the boundary
condition

ψ(x) = ε b(x; εt) for x ∈ ∂DΛ(εt). (2.5)

Here

εb(x; εt) =
∫

x

x0

∂tB(x′; Λ(εt))
dl′

|∇B| , (2.6)

where the integral is taken along the boundary ∂DΛ and dl denotes arclength.
(The fact that the area of DΛ is constant ensures that b(·; εt) is single valued.)

5



We choose x0 in (2.6) such that

∮

∂DΛ(εt)

b(εt) dl = 0. (2.7)

It is clear from (2.4)–(2.6) that ψ is proportional to dΛ/dt on ∂DΛ.

In this paper, our concern is the behaviour of the flow for slow boundary
deformations, which correspond formally to the limit ε → 0. Long, O(ε−1)
time scales are considered, so that O(1) deformations are achieved. We make a
blanket assumption that all functions are sufficiently smooth for our purposes,
and we denote by C(DΛ) the space of smooth real-valued functions in DΛ.
Exploiting the smallness of ε, we expand the vorticity and streamfunction in
powers of ε as

ω = ω(0) + ε ω(1) + · · · and ψ = ψ(0) + ε ψ(1) + · · · . (2.8)

Our aim in this section is to compute the leading-order flow ψ(0), given its
initial value and the boundary deformation b(εt), and to show that it depends
only on the boundary shape Λ and not on its time history.

First we note that the boundary conditions (2.5) imply that on ∂DΛ,

ψ(0) = 0 and ψ(1) = b. (2.9)

Since the total vorticity ω is advected by the flow, the boundary ∂DΛ is a
vorticity contour and thus on it we can take

ω = ω(0) and ω(n) = 0 for n = 1, 2, · · · (2.10)

on ∂DΛ .

Substituting (2.8) into (2.2), we find

[ψ(0), ω(0)] + ∂tω
(0) + ε [ψ(1), ω(0)] + ε [ψ(0), ω(1)] + ε ∂tω

(1) +O(ε2) = 0. (2.11)

If the fluid flow is stable in the absence of boundary deformation, we expect
that the flow will evolve only slowly when the boundary is deforming. We
therefore introduce the slow time

τ = εt, (2.12)

in terms of which (2.11) becomes

[ψ(0), ω(0)] + ε∂τω
(0) + ε [ψ(1), ω(0)] + ε [ψ(0), ω(1)] +O(ε2) = 0. (2.13)

At leading order we obtain

[ψ(0), ω(0)] = 0. (2.14)
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Taking into account the fact that ψ(0) = 0 on ∂D, we find that the leading-
order flow ψ(0) is instantaneously steady . The relation (2.14) implies that there
exists a scalar function G relating ω(0) and ψ(0),

ψ(0) = G(ω(0); τ). (2.15)

As noted, the function G depends on the slow time τ , regarded here as a
parameter. We define F as the inverse of G: G(F (u; τ); τ) = u for every u and
τ . With an abuse of notation, we will often writeG′ forG′◦ω(0) = ∇ψ(0)/∇ω(0)

and F ′ for F ′ ◦ ψ(0) = ∇ω(0)/∇ψ(0); what is meant will be clear from the
context.

At O(ε) we have

∂τω
(0) + [ψ(1), ω(0)] + [ψ(0), ω(1)] = 0. (2.16)

Using (2.15), the second term can be written as

[ψ(0), ω(1)] = G′[ω(0),∆ψ(1)] = [ω(0), G′∆ψ(1)], (2.17)

with which (2.16) becomes

∂τω
(0) + [φ, ω(0)] = 0, (2.18)

φ = [1 −G′∆]ψ(1). (2.19)

These two equations imply that the leading-order vorticity ω(0) is rearranged
by a divergence-free velocity field ∇

⊥φ with φ related to the first-order stream-
function ψ(1) by (2.19). Note that (2.16)–(2.18) determine φ only up to the
addition of a function of ω(0). Our reason for making the particular choice
(2.19) will be clear in section 3 below.

2.2 Determination of the Eulerian flow

We now show how the leading order flow ψ(0) can be determined from (2.15)
and the fact that ω(0)(t) is a rearrangement of its initial value ω(0)(0). We
make the following two assumptions on ψ(0):

H1. The leading-order streamfunction ψ(0) is such that it has only one critical
point in DΛ (which is necessarily elliptic) and is nonlinearly stable in the sense
of Arnold.

We recall that Arnold stability (see, e.g., [10,4]) requires that the steady
streamfunction ψ(0) satisfies either (i) 0 < c1 ≤ G′ ≤ c2 < ∞, or (ii) 0 <
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1/cpoi < c1 ≤ −G′ ≤ c2 < ∞. In the second condition, cpoi is the Poincaré
constant for the domain DΛ, namely the smallest eigenvalue µ of the problem

(∆ + µ) u = 0 in DΛ with u = 0 on ∂DΛ. (2.20)

These conditions ensure that the steady flow is either a minimum or a maxi-
mum of the energy for fixed vorticity distribution. Note that H1 implies that

−cpoi < F ′ <∞, (2.21)

a condition which will be useful below. The assumption H1 is stronger than
that made in WV but it considerably simplifies the solution of (2.43)–(2.45)
below.

For the second assumption, we need a little more notation. Let s denote a
variable conjugate to ψ(0) in DΛ, satisfying [ψ(0), s] = 1. Denoting the differ-
ential arclength along the curve ψ(0) = const by dl, we have ds = dl/|∇ψ0|.
We then assume:

H2. There exists a cψ > 0 such that, for all values of c assumed by ψ(0),

∮

ψ(0)=c
ds ≤ 1

cψ
. (2.22)

In the context of adiabatic invariance, this condition is natural: the left-hand
side of (2.22) gives the period of rotation of fluid parcels along the streamline
ψ(0) = c; its boundedness ensures that a time-scale separation between this
period and the time scale of the boundary deformation exists for sufficiently
small ε. As noted in WV, H2 holds if ω(0) 6= 0 at the fixed point of ψ(0).

For concreteness, we henceforth assume that, at t = 0, our domain is param-
eterised by Λ0 and we choose our coordinates in L such that Λ0 = 0. Fur-
thermore, we fix in DΛ0 ≡ D0 a steady leading-order flow ψ(0)(x, 0) = ψ0(x)
satisfying H1–H2. Considering only the leading-order flow ψ(0)(x, t) for the
moment, we then claim that, assuming H1–H2:

P1. The flow ψ(0) is uniquely determined by (i) the shape of the deformed
domain DΛ, (ii) the steadiness condition (2.15), and (iii) the fact that the
vorticity ω(0) = ∆ψ(0) is obtained by rearrangement of the initial vorticity
ω0 = ∆ψ0.

As a result, the leading-order flow at a fixed time t depends only on the shape
of the deformed domain at t (parameterized by Λ(εt)), and not on the history
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of shapes at intermediate times (parameterized by the path Λ(τ), 0 < τ <
εt). One may draw an analogy with adiabatic invariance in finite-dimensional
Hamiltonian systems with slowly-varying parameters such as the pendulum of
varying length: here the amplitude of the oscillations is completely determined
to leading order by the instantaneous value of the length, not by its time
history.

To emphasize the fact that the leading-order flow depends on Λ instanta-
neously, we introduce the notation

ψ(0) = ψΛ and ω(0) = ωΛ (2.23)

for the leading-order streamfunction and vorticity. We also write G(·; τ) =:
GΛ(τ)(·) and F (·; τ) =: FΛ(τ)(·). These define the scalar functions GΛ and FΛ,
both of which have Λ as a parameter. When no confusion may arise, we will
write GΛ ◦ ωΛ as GΛ, G′

Λ ◦ ωΛ as G′
Λ, and similarly for FΛ and F ′

Λ.

We emphasize that the claim P1 is only local: it holds only for sufficiently
small domain deformations. A similar result is proved in WV with a precise
functional setting and a weaker set of hypotheses. The main idea, which we
repeat here as parts of it is used throughout the paper, is to reformulate the
problem in terms of the area-preserving diffeomorphism

gΛ : D0 → DΛ : x 7→ gΛx, (2.24)

which effects the vorticity rearrangement, that is, such that

ωΛ = ω0 ◦ g−1
Λ . (2.25)

Since composition of this type will appear frequently, it is convenient to in-
troduce the pull-back notation and write this as

ωΛ = (g−1
Λ )∗ω0. (2.26)

Note that, for fixed ω0 and ωΛ, gΛ is not defined uniquely by (2.26): rearrange-
ments along the lines of constant vorticity clearly have no effect. Correspond-
ingly, the time derivative of gΛ is not necessarily the divergence-free velocity
field ∇⊥φ appearing in (2.18)–(2.19), but the equality

d

dt
gΛx = ∇⊥[φ(gΛx; Λ) +̟(ωΛ(gΛx))] (2.27)

holds, where ̟ is an arbitrary function of one variable. This non-uniqueness,
of no importance as far as ψΛ and ωΛ are concerned, will play a crucial role
when particle positions are examined in §4.

The map gΛ satisfies a nonlinear partial differential equation obtained as fol-
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lows. Since ωΛ is a steady flow in DΛ, we have using (2.15),

ωΛ = ∆(GΛ ◦ ωΛ), (2.28)

so applying g∗Λ, we find

ω0 = g∗Λ∆(g−1
Λ )∗(GΛ ◦ ω0). (2.29)

The associated boundary conditions are

gΛ(∂D0) = ∂DΛ and GΛ(ωb) = G0(ωb) (2.30)

where ω = ωb on ∂DΛ, which follows from (2.10) and the fact that ψΛ = ψ0 =
0.

The partial differential equation (2.29), with gΛ and GΛ as unknowns, is ex-
actly that obtained in WV in the context of the static problem. It involves
the gΛ-dependent operator g∗Λ∆(g−1

Λ )∗ which can be interpreted as the pull-
back of the Laplacian ∆ from the domain DΛ to the initial domain D0 and
is computed by expressing the partial derivatives ∂x in terms of the trans-
formed coordinates X = g−1

Λ x. An explicit expression for (2.29) is given in
WV (see (2.7)–(2.10) in that paper). There, this equation is shown to have
a locally unique solution (modulo translations along vorticity contours) using
a contraction mapping argument. This establishes P1 and provides a way of
computing gΛ and GΛ, and hence ωΛ and ψΛ, in a manner that is clearly inde-
pendent of the deformation history. Alternatively, P1 can be established using
the stability assumption H1: the associated characterisation of steady flows as
energy extrema makes it clear that the steady flow ψΛ is the (locally unique)
extremum in DΛ with vorticity distribution fixed by ω0.

We now consider the infinitesimal version of (2.29), that is, we consider the
change in gΛ corresponding to an infinitesimal deformation of the domain.
This yields a different construction for gΛ, based on integration over Λ, and an
alternative perspective on its path-independence. Furthermore, the infinites-
imal formulation provides all the ingredients needed for the computation of
the first-order and higher-order corrections to ψΛ and of the Lagrangian flow.

2.3 Infinitesimal deformations

In what follows, we will often make use of the fact that many important
quantities are linear in the boundary deformation rate Λ̇ := dΛ/dτ . To factor
out this dependence explicitly, we will regard these quantities as resulting
from the pairing between vectors Λ̇, which live in the tangent space TΛL, and
differential forms, which live in the dual space T ∗

ΛL. For instance, since the
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function b in (2.6) is linear in Λ̇, we can write it as

b = β · Λ̇, (2.31)

where β is a one-form and · denotes its pairing with the vector Λ̇. By definition,
β is a linear map from TΛL to the space C(∂DΛ) of real-valued functions
defined on the boundary ∂DΛ:

β(·; Λ) : TΛL → C(∂DΛ). (2.32)

With (Λm) as coordinates in L, (∂/∂Λm) as coordinates in TΛL and (dΛm) as
coordinates in T ∗

ΛL, we can write

Λ̇ = Λ̇m∂/∂Λm, β = βmdΛm and b = βmΛ̇m . (2.33)

Here and henceforth, summation over repeated indices is implied. The Λm

are scalar coefficients while the βm are functions defined on ∂DΛ. An explicit
expression for βm is found directly from (2.6) as

βm =
∫

x

x0

∂

∂Λm
B(x′; Λ)

dl′

|∇B| . (2.34)

Working with differential forms like β gives a compact notation, factoring out
the dependence on Λ̇. At the same time, it allows for a geometric interpretation
of our results as explained in the Discussion.

Let d be the exterior derivative in L, so for any function of Λ (i.e. zero-form)
f , we have df = (∂f/∂Λm)dΛm. Since

d

dτ
gΛ =

∂gΛ

∂Λm

Λ̇m = dgΛ · Λ̇, (2.35)

and gΛ is area preserving, we can define a one-form Φ with values in C(DΛ)
by

dgΛ = ∇
⊥Φ ◦ gΛ. (2.36)

The one-form Φ plays a central role in what follows; it encodes the manner
in which an infinitesimal domain deformation (displacement in L) induces a
corresponding infinitesimal change of diffeomorphism dgΛ. The initial domain
Λ0 ≡ 0 and initial flow ψ0 having been fixed, Φ depends only on Λ and takes
its value in the space of functions in DΛ; explicitly,

Φ(·; Λ) : TΛL → C(DΛ). (2.37)

In the coordinates (dΛm) in T ∗
ΛL, Φ takes the more explicit form Φ = Φm dΛm

where the Φm ∈ C(DΛ) satisfy

∂gΛ

∂Λm
= ∇

⊥Φm ◦ gΛ (2.38)
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Using the correspondence between functions on DΛ and divergence-free vector
fields afforded by the operator ∇

⊥, Φ can be identified with a vector(-field)-
valued one-form. Differential forms of this type arise in many contexts in
geometry, where they define connections (see, e.g., [7, ch. 18] and [20]); we
shall henceforth refer to Φ as a connection, leaving the more detailed geometric
interpretation to the Discussion.

Taking the exterior derivative of (2.26) and using the definition (2.36) gives

dωΛ + [Φ, ωΛ] = 0, (2.39)

which reads in components,

∂ωΛ

∂Λm
+ [Φm, ωΛ] = 0. (2.40)

Pairing (2.39) with Λ̇, we recover

∂τωΛ + [Φ · Λ̇, ωΛ] = 0, (2.41)

which is equivalent to (2.18)—the relationship between Φ · Λ̇ and φ will be
made clear in section 3 below. Unlike ωΛ, the leading-order streamfunction ψΛ

is not simply rearranged as Λ changes. Applying d to ψΛ = GΛ(ωΛ) and using
(2.39) show that

dψΛ + [Φ, ψΛ] = dGΛ ◦ ωΛ. (2.42)

Here and elsewhere, in dGΛ ◦ ωΛ the exterior derivative is taken with respect
to the (parametric) dependence of GΛ on Λ, so d(GΛ ◦ωΛ) = dGΛ ◦ωΛ +(G′

Λ ◦
ωΛ)dωΛ.

We next obtain a dynamical equation for Φ. Taking the derivative d of (2.29)
and after a little algebra, we can write the result in the form

(∆ − F ′
Λ) [Φ, ψΛ] − ∆(dGΛ ◦ ωΛ) = 0. (2.43)

The corresponding boundary conditions are

Φ = β on ∂DΛ, (2.44)

which follows from (2.5), (2.31) and (2.19), taking into account that

dGΛ ◦ ωΛ = 0 on ∂DΛ, (2.45)

which follows from the fact ψΛ = 0 on ∂DΛ. The system (2.43)–(2.45), which is
the infinitesimal version of (2.29), is central to this paper. Its solution tells us
how a steady flow ωΛ changes as a result of boundary deformation Λ̇ through
the infinitesimal rearrangement [Φ · Λ̇, ωΛ]. As we shall see shortly, the term
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∆(dGΛ ◦ ωΛ) can be regarded as arising from a constraint. In components,
(2.43) takes the form

(∆ − F ′
Λ) [Φm, ψΛ] − ∆

(

(∂GΛ/∂Λm) ◦ ωΛ

)

= 0 (2.46)

with boundary conditions

Φm = βm and (∂GΛ/∂Λm) ◦ ωΛ = 0. (2.47)

We can solve (2.43)–(2.45) for [Φ, ψΛ] and dGΛ as follows. For any function
u ∈ C(DΛ), we define PΛu as the part of u with zero mean. Explicitly,

(PΛu)(x) := u(x) −
{

∮

ψΛ=ψΛ(x)
u ds

}/{

∮

ψΛ=ψΛ(x)
ds

}

, (2.48)

where, as before, ds = dl/|∇ψΛ|. It follows from this definition that if u is
constant on a contour of constant ψΛ, PΛu = 0. Note that since the contours
of ωΛ and ψΛ coincide, an equivalent definition of PΛ could have been given in
terms of integrals along vorticity contours ωΛ = c, but this is less convenient
since we may have ∇ωΛ = 0 while ∇ψΛ 6= 0 by hypothesis. By H2, the
denominator in (2.48) is never zero, so PΛu is smooth if u is. Letting ϕ =
[ψΛ,Φ]−dGΛ ◦ωΛ, and using the facts that PΛ[ψΛ,Φ] = [ψΛ,Φ] and PΛ(dGΛ ◦
ωΛ) = 0, we then have

[ψΛ,Φ] = PΛ ϕ and dGΛ ◦ ωΛ = (1 − PΛ)ϕ. (2.49)

Hence we can write (2.43) as

(∆ − F ′
Λ PΛ)ϕ = 0, (2.50)

which is a linear pseudodifferential equation involving ϕ only. Following (2.44)
and (2.45), the boundary conditions for ϕ are

ϕ = [ψΛ,β] on ∂DΛ. (2.51)

It is shown in Appendix A that (2.50)–(2.51) can be solved uniquely for ϕ.
Using (2.49), we recover [ψΛ,Φ] and dGΛ.

From [ψΛ,Φ], Φ can be solved up to the addition of a one-form Π ◦ ωΛ, which
depends on space through ωΛ only; here Π is an arbitrary one form whose
values Π · Λ̇ are real functions of a single variable. The zero-mean part PΛΦ,
on the other hand, can be solved from [ψΛ,Φ] in a unique fashion. We can
therefore write

Φ = PΛΦ + Π ◦ ωΛ, (2.52)

where Π is arbitrary. The non-uniqueness of Φ simply reflects at the infinites-
imal level the non-uniqueness of gΛ, which is only defined up to displacements
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along contours of ωΛ. The freedom in choosing a particular function Π can be
thought of as a gauge freedom in the definition of Φ. A natural choice for the
gauge Π will appear in the next section.

Once we solve the linear problem (2.43), the solution of the nonlinear problem
(2.29) for gΛ can be obtained by integration (or by the iterative approach in
WV), at least in a neighbourhood of Λ = 0 and subject to sufficient smoothness
of the flow and the domain. Given a sequence of boundary deformation, that
is, given a path τ 7→ Λ(τ) ∈ L, one can in principle solve (2.43) and find Φ
for each Λ as long as the flows ψΛ encountered along the path satisfy H1–H2.

We conclude this section by discussing how the fact that gΛ is independent
of the path in L (modulo translations along contours of ωΛ) is reflected at
the infinitesimal level. Assuming that the connection form Φ is known, we
consider the non-integrability of the diffeomorphism gΛ that Φ generates. In
other words, we consider two distinct paths γ1 and γ2, both connecting the
same two points in parameter space L, and examine how the two diffeomor-
phisms gγ1 and gγ2 , generated along these paths, differ. By taking the two
paths to be infinitesimal, it can be shown as detailed in Appendix B.1 that
the non-integrability is encoded in the curvature of Φ. This is given by

κ := dΦ + 1
2
[Φ ∧ Φ], (2.53)

where the bracket [· ∧ ·] is defined in coordinates by

[α ∧ η] = [αm, ηn]dΛm ∧ dΛn (2.54)

for any two one-forms α = αm dΛm and η = ηn dΛn with values in C(DΛ).
(Note that in contrast with [f, f ] = 0 for any function f , [α ∧ α] 6= 0 in
general.) The curvature κ is a two-form over the parameter space L with
values in C(DΛ); it is expressed in coordinates as κ = κmn dΛm ∧ dΛn, where
κmn = −κnm. Its integral over the area enclosed by the curves γ1 and γ2 is the
diffeomorphism gγ1g

−1
γ2

which quantifies the difference between gγ1 and gγ2.

In Appendix B.2, we deduce from (2.39) that

[κ, ωΛ] = 0. (2.55)

This is the infinitesimal expression of the independence of ωΛ on the deforma-
tion history. Equation (2.55) implies that the curvature κ depends on x only
through the vorticity ωΛ: explicitly,

κ = w ◦ ωΛ (2.56)

for some two-form w whose values are functions of a single variable. This
integrability condition, an infinitesimal version of the statement that gΛ is a
unique function of Λ modulo displacements along lines of constant ωΛ, turns
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out to be important when we consider the Lagrangian particle trajectories in
section 4. Note that (2.55) is consistent with the dynamical equation (2.43) for
Φ in the sense that it can also be derived directly from (2.43). This is verified
in Appendix B.3.

3 Eulerian Flow: First-Order Correction to the Streamfunction

We now turn to the derivation of the first-order correction ψ(1) to the leading-
order flow ψΛ as this is needed to determine the trajectories of fluid particles
over the O(ε−1) time scales of interest. Remarkably, ψ(1) can be derived from
the knowledge of Φ alone. In the process, the gauge of Φ is fixed in what
we argue is a natural manner. Higher-order corrections can also be obtained
through a systematic iterative procedure which we set out in Appendix C;
there we show that these corrections are local in Λ in the sense that they
depend only on Λ̇, Λ̈, etc. and not on the history of the domain deformation.

We start by deriving an integral constraint imposed by the material conserva-
tion of vorticity. Since ωΛ and ω = ωΛ + εω(1) + · · · are both rearrangements
of the initial vorticity ω0, the areas inside the contours of ωΛ and ω are the
same, namely,

∫

D
Θ(ωΛ + εω(1) + · · · − Ω) d2x =

∫

D
Θ(ωΛ − Ω) d2x (3.1)

for any Ω in the range of values taken by Ω. Here Θ(s) = 1 if s ≥ 0 and
Θ(s) = 0 otherwise is the Heaviside function. Expanding in ε gives to leading
order

∫

D
δ(ωΛ − Ω)ω(1) d2x =

∮

ω(1) dl

|∇ωΛ|
= G′

Λ

∮

ω(1) ds = 0. (3.2)

In terms of the projection PΛ, this constraint on ω(1) can be written as

(1 − PΛ)ω(1) = (1 − PΛ)∆ψ(1) = 0. (3.3)

Turning now to the computation of ψ(1), we note that (2.27) and (2.36) imply
that φ and Φ · Λ̇ differ by a function of ωΛ only. Thus we can write

φ = Φ⋆ · Λ̇, (3.4)

where
Φ⋆ = PΛΦ + Π⋆ ◦ ωΛ. (3.5)

Here Φ⋆ is a particular choice of the connection Φ which corresponds to the
unique choice of the gauge Π = Π⋆ in (2.52) that ensures that (3.4) holds.
In this sense Φ⋆ can be seen as a natural choice of the connection Φ. The
computation which follows shows how it can be obtained from PΛΦ.
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Since ψ(1), like φ, is linear in Λ̇, we can write

ψ(1) = Ψ(1) · Λ̇, (3.6)

where, Ψ(1), like Φ, is a function-valued form; their relationship follows from
(2.19) as

(1 −G′
Λ∆)Ψ(1) = PΛΦ + Π⋆ ◦ ωΛ. (3.7)

Applying F ′
ΛPΛ to this and using (3.3b), we find

(∆ − F ′
ΛPΛ)Ψ(1) = −F ′

ΛPΛΦ, (3.8)

which, along with the associated boundary condition [cf. (2.9)]

Ψ(1) = β on ∂DΛ , (3.9)

determines Ψ(1) uniquely. More explicitly, (3.8)–(3.9) is well posed, with the
right-hand side that is uniquely defined in spite of the gauge freedom in Φ.
The operator on the left-hand side is the same as that in (2.50) and hence
its invertibility can be established using the same arguments, detailed in Ap-
pendix A.

Applying (1 − PΛ) to (3.7), we find

Π⋆ ◦ ωΛ = (1 − PΛ)Ψ(1). (3.10)

This gives us Π⋆, and thus the natural connection Φ⋆, once Ψ(1) is determined
from (3.8). Note that (3.5) and (3.10) imply that it satisfies

(1 − PΛ)Ψ(1) = (1 − PΛ)Φ⋆ ⇔
∮

ψΛ=c
Ψ(1) ds =

∮

ψΛ=c
Φ⋆ ds. (3.11)

This relation turns out to be crucial for the computation of fluid particle
trajectories in the next section.

4 Lagrangian Flow: Geometric Angle

In this section we study the evolution of fluid (or tracer) particles in our flow
over a timescale τ = O(1).

4.1 Hamiltonian Formulation

Up to this point, our description of the Eulerian dynamics has been (mostly)
coordinate-independent. But in order to study particle positions, we need to
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introduce explicit coordinates (x, y) in DΛ; (x, y) is chosen to coincide with
the fixed coordinates in the ambient space R2 through which DΛ(εt) moves.

The evolution of a particle with position (x(t), y(t)) moving with the fluid is
governed by the Hamiltonian system

dx

dt
= −∂ψ

∂y
and

dy

dt
=
∂ψ

∂x
, (4.1)

with the streamfunction ψ acting as the Hamiltonian. Our aim here is to
obtain an estimate of (x(t), y(t)) with an error of O(ε) for τ = O(1), so in the
rest of this section we put

H(x, y, t) = ψΛ(εt)(x, y) + εΨ(1)(x, y; Λ(εt)) · Λ̇ (4.2)

in place of ψ in (4.1), keeping in mind the validity of this approximation.

For ε = 0 and hence Λ constant, the Hamiltonian (4.2) is integrable. For ε 6= 0,
two types of perturbations make it non-integrable: the slow time dependence
of ψΛ introduced by the time dependence of Λ, and the O(ε) change introduced
by the addition of ψ(1) = Ψ(1) · Λ̇. We examine the combined effect of these
two perturbations following closely the approach of [5].

Since the leading-order Hamiltonian ψΛ is integrable for fixed Λ, we first
change to action–angle variables (e.g., [3, p. 297ff]). At each (x, y), we de-
fine the action I by

I(x, y) =
1

2π

∫

int{ψΛ=ψΛ(x,y)}
d2x =:

1

2π
A(ψΛ). (4.3)

The angle θ is defined as the variable conjugate to I, [I, θ] = 1. It is 2π-
periodic since the contours of ψΛ are closed and it is related to the variable s
used earlier by

2π ds = A′(ψΛ) dθ. (4.4)

The canonical transformation (x, y) 7→ (I, θ) is obtained by a generating func-
tion S(I, y; Λ), with

x =
∂S

∂y
and θ =

∂S

∂I
. (4.5)

Solving these implicit equations, we can write

x = X(I, θ; Λ) and y = Y (I, θ; Λ). (4.6)

With these and (4.3), we define

ψ̂Λ(I; Λ) = ψ(0)(X(I, θ; Λ), Y (I, θ; Λ); Λ) = A−1(2πI; Λ),

Ψ̂(1)(I, θ; Λ) = Ψ(1)(X(I, θ; Λ), Y (I, θ; Λ); Λ).
(4.7)
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Here and in the rest of this section, we denote by a hât quantities considered
as functions of (I, θ), except for Ĥ defined in (4.9).

So far we considered a fixed value of Λ. Now let Λ evolve slowly in time,
Λ = Λ(εt). The equations of motion in (I, θ) variables are

dI

dt
= −∂Ĥ

∂θ
and

dθ

dt
=
∂Ĥ

∂I
, (4.8)

where the new Hamiltonian Ĥ(I, θ; Λ) is related to H(x, y; Λ) by

Ĥ(I, θ; Λ) = H(X(I, θ; Λ), Y (I, θ; Λ); Λ) +
∂S

∂t
. (4.9)

We note an abuse of notation here: properly speaking H = H(x, y, t), but
since the t-dependence only enters through Λ(εt) and its derivative, we have
written H = H(x, y; Λ(εt)). Differentiating the definition

Ŝ(I, θ; Λ) = S(I, Y (I, θ; Λ); Λ) (4.10)

with respect to t at fixed (I, θ) gives

dŜ · dΛ

dt
=
∂S

∂t
+
∂S

∂y

∂Y

∂t
=
∂S

∂t
+XdY · dΛ

dt
(4.11)

Upon substituting ∂S/∂t into (4.9), we obtain that

Ĥ(I, θ; Λ) = ψ̂Λ(I) + εΨ̂(1)(I, θ; Λ) · Λ̇
+ ε

{

dŜ(I, θ; Λ) −X(I, θ; Λ)dY (I, θ; Λ)
}

· Λ̇.
(4.12)

Since particles are attached to contours of vorticity ω = const, which only
deviate by O(ε) from the corresponding contours of ωΛ, the action can only
vary by O(ε) over timescales τ ∼ O(1). This is also evident from direct com-
putation: since Ĥ is independent of θ at leading order and is periodic in θ at
the next order,

dI

dt
= −ε ∂

∂θ

{

Ψ̂(1) + dŜ −XdY
}

· Λ̇, (4.13)

and the principle of averaging (e.g., [3, §52]) implies that I changes only by
O(ε) for τ = O(1).

The behaviour of the angle variable is more interesting. From (4.8) we have

dθ

dt
=
∂ψ̂Λ

∂I
+ ε

∂

∂I

{

Ψ̂(1) + dŜ −XdY
}

· Λ̇. (4.14)

The change in the angle ∆θ := θ(τ) − θ(0) can then be expressed as ∆θ =
∆θdyn +∆θgeo. The dynamic phase ∆θdyn simply arises from the instantaneous
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frequency of the particle, which is the first term in (4.14) above,

∆θdyn =
1

ε

∂

∂I

∫ τ

0
ψ̂Λ(τ ′)(I) dτ ′. (4.15)

The other terms make up the geometric angle ∆θgeo.

4.2 Geometric angle ∆θgeo

In this subsection we show that, as in the finite-dimensional cases of [9] and
[5], the angle ∆θgeo can be understood in geometric terms as the (an)holonomy
of a connection as a closed path is traversed in a parameter space.

From (4.14), the geometric angle ∆θgeo can be written as

∆θgeo =
∫ τ

0

∂

∂I

{

Ψ̂(1)(I, θ; Λ(τ ′)) + dS(I, θ; Λ(τ ′))

−X(I, θ; Λ(τ ′))dY (I, θ; Λ(τ ′))
}

· dΛ

dτ ′
dτ ′

(4.16)

This form suggests that ∆θgeo depends only on the path traversed in L and
not on its time parametrisation. The terms inside the braces do depend on I
and θ, but as shown earlier, the total variation of the action I is of O(ε) over
the timescale of interest. The dependence on the periodic variable θ can be
removed by averaging. For any function f periodic in θ, let

〈f〉 :=
1

2π

∫ 2π

0
f(θ) dθ. (4.17)

We note that by (4.4) this is essentially equivalent to the projection 1 − PΛ.
Applying 〈·〉 to (4.16) and replacing I(t) by I(0), we find

∆θgeo =
∂

∂I

∫

CΛ

〈

Ψ̂(1) + dS −X dY
〉

+O(ε), (4.18)

where CΛ is the path traversed in L and where the integrand depends only on
I and Λ.

Because of the arbitrariness in the angle coordinates (depending on our choice
of θ = 0 for each Λ), the geometric angle is only unambiguously defined when
the path CΛ is closed, that is, when Λ(τ) = Λ(0) = 0. Following [9] and
[5], we consider this scenario, which is illustrated in Figure 2. Since dS is
exact, it vanishes when integrated around CΛ. Using Stokes’ theorem in L,
the remaining terms in (4.18) can be written as

∆θgeo =
∂

∂I

∫

SΛ

〈

dΨ̂(1) − dX ∧ dY
〉

(4.19)
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Fig. 2. Angle change for a cyclic domain deformation. As Λ(τ) describes the closed
loop CΛ ⊂ L, with interior DΛ, the fluid domain DΛ is deformed and returns to
its original shape. Fluid particles remain on vorticity contours which approximately
coincide with streamlines. The position of the particles along vorticity contours is
defined by the angle-like variable θ whose total change ∆θ includes the geometric
contribution ∆θgeo which depends only on the geometrical properties of DΛ.

where SΛ is a two-dimensional surface bounded by CΛ. The second term is
identical to that obtained in [5, Eq. (18)] for general Hamiltonian systems
depending slowly on time; the first term results from the O(ε) change to the
Hamiltonian induced by the boundary deformation.

Now 〈Ψ̂(1)〉 = 〈Φ̂⋆〉 by (3.11), so the first term in the integral can be written
as

〈dΨ̂(1)〉 = 〈dΦ̂⋆〉. (4.20)

As for the second term, we use the fact that gΛ is a canonical transformation
(since it is area-preserving) to write

X(I, θ; Λ) = gΛX(I, θ; 0), (4.21)

thus defining the transformation to action–angle coordinates for all values of
Λ in terms of the transformation at Λ = 0.

Returning to (4.21), it follows from this and (2.36) that

dX(I, θ; Λ) = ∇
⊥Φ

∣

∣

∣

X(I,θ;Λ)
. (4.22)

We then have

dX ∧ dY =
∂X

∂Λm

∂Y

∂Λn
dΛm ∧ dΛn = −∂Φm

∂Y

∂Φn

∂X
dΛm ∧ dΛn

= 1
2
[Φm,Φn] dΛm ∧ dΛn = 1

2
[Φ ∧ Φ] = 1

2
[Φ⋆ ∧ Φ⋆],

(4.23)

where the last equality follows from the fact that the bracket is independent
of the gauge choice for Φ. Furthermore, the fact that the transformation to
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action–angle variables is canonical implies that

1
2
[Φ⋆ ∧ Φ⋆] = 1

2
[Φ̂⋆ ∧ Φ̂⋆], (4.24)

where the second bracket is in terms of (I, θ). We can therefore write (4.19)
as

∆θgeo =
d

dI

∫

SΛ

〈

dΦ̂⋆ − 1
2
[Φ̂⋆ ∧ Φ̂⋆]

〉

. (4.25)

A last step, detailed in Appendix B.4, shows that

dΦ̂⋆ − 1
2
[Φ̂⋆ ∧ Φ̂⋆] = dΦ⋆ + 1

2
[Φ⋆ ∧ Φ⋆] =: κ⋆. (4.26)

This two-form can be recognised from (2.53) as the curvature of the connection
Φ⋆. According to (2.56), it depends on space through ωΛ or, equivalently,
through I only. This property stems from the constraints of area and vorticity
preservation imposed on the particle motion along vorticity contours. The
average in (4.25) is therefore superfluous, and we obtain the result:

P2. The geometric angle of a particle caused by the slow deformation of the
boundary is given by

∆θgeo =
d

dI

∫

SΛ

κ⋆, (4.27)

where κ⋆, given in (4.26), is the curvature of Φ⋆ and depends only on the
action I of the particle and on the domain shape parameterised by Λ.

5 Small boundary deformation

As a concrete illustration of the developments so far, we consider the case
where the total boundary deformation is small. In general, computing gΛ in
(2.24) requires either solving (2.29) or integrating the differential equation
(2.18) with boundary condition φ = b [cf. (2.44)], which would have to be done
numerically. Analytic progress is possible, however, if one considers boundary
deformations that are sufficiently small for a perturbative approach to be
applicable. In this section we develop such an approach systematically using
Lie series (e.g., [13]).

Let δ be a formal small parameter characterising the smallness of the boundary
deformation. The function B(x; Λ) defining DΛ can then be expanded as

B(x; Λ) = B0(x) + δB1(x; Λ) + δ2B2(x; Λ) + · · · , (5.1)

where B0 is independent of Λ (recall that Λ0 = 0), B1 is linear in Λ, B2

quadratic, etc. Since gΛ is close to the identity and area-preserving, it may
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be regarded as the flow at ‘time’ δ of an associated δ-dependent divergence-
free vector field given by ∇⊥ρ for some function ρ(x, δ), with ρ ∈ C(R2 × R).
Correspondingly, the pull-back of gΛ defined in (2.26) satisfies

dg∗Λ
dδ

= g∗Λ[ρ, ·]. (5.2)

Expanding ρ in powers of δ as

ρ = ρ1 + δρ2 + · · · (5.3)

and introducing into (5.2) lead to the expansions

g∗Λ = 1 + δ[ρ1, ·] +
δ2

2

(

[ρ2, ·] + [ρ1, [ρ1, ·]]
)

+ · · · , (5.4)

(g−1
Λ )∗ = 1 − δ[ρ1, ·] −

δ2

2

(

[ρ2, ·] − [ρ1, [ρ1, ·]]
)

+ · · · . (5.5)

Computing g∗Λf for an arbitrary Λ-independent f using (5.4), taking the ex-
terior derivative and noting that

dg∗Λf = [Φ, g∗Λf ] (5.6)

lead to

Φ = δdρ1 +
δ2

2

(

dρ2 + [dρ1, ρ1]
)

+ · · · , (5.7)

up to an arbitrary function of ωΛ, after using the Jacobi identity.

Introducing (5.4)–(5.5) into (2.29) leads to a sequence of partial differential
equations for the coefficients of ρ. The first two read

(∆ − F ′
0)[ρ1, ψ0] − ∆χ1 = 0, (5.8)

(∆ − F ′
0)[ρ2, ψ0] − 2∆χ2 = −2[ρ1,∆[ρ1, ψ0]] + [ρ1, [ρ1, ω0]] (5.9)

+ ∆[ρ1, [ρ1, ψ0]] + 2[ρ1,∆χ1] − 2∆[ρ1, χ1],

where F ′
0 is shorthand for F ′

0 ◦ ψ0, and we have introduced the expansion

GΛ ◦ ω0 = ψ0 + δχ1 + δ2χ2 , · · · , (5.10)

with χn, n = 1, 2 · · · , depending on x through ω0(x). These equations are
supplemented by the boundary conditions

[ρ1, B0] = −B1, (5.11)

[ρ2, B0] = −2B2 − 2[ρ1, B1] − [ρ1, [ρ1, B0]], (5.12)

to be applied on the curve B0(x) = B(x; 0) = 0. The formulation is then
relatively simple, with all the equations to be solved in the original domain
D0. The functions χn, n = 1, 2, · · · are found from solvability conditions. These
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can be made explicit using the same method as in the treatment of (2.43). For
instance, using the projection operator P0 associated with lines of constant
ψ0, (5.8) can be rewritten as

(∆ − F ′
0P0)ϕ = 0 (5.13)

where ϕ := [ρ1, ψ0] − χ1, implying that

[ρ1, ψ0] = P0ϕ and χ1 = (1 − P0)ϕ. (5.14)

Once the ρn, n = 1, 2, · · · , are computed, the leading-order vorticity and
streamfunction follow readily from

ωΛ = ω0 − δ[ρ1, ω0] −
δ2

2

(

[ρ2, ω0] − [ρ1, [ρ1, ω0]]
)

+ · · · , (5.15)

ψΛ = ψ0 − δ
(

[ρ1, ψ0] − χ1

)

− δ2

2

(

[ρ2, ψ0] − [ρ1, [ρ1, ψ0]] − 2χ2

)

+ · · · . (5.16)

To find the first-order correction to the Eulerian flow, (3.8) needs to be solved
by expansion in powers of δ. This is conveniently done by pulling back this
equation to the original domain D0. To do this, we define the pull-backs (de-
noted by overbars) and their expansions as

Ψ̄(1) := g∗ΛΨ(1) = δΨ̄
(1)
1 + δ2Ψ̄

(1)
2 + · · · , (5.17)

Φ̄ := g∗ΛΦ = δΦ̄1 + δ2Φ̄2 + · · ·

= δdρ1 +
δ2

2

(

dρ2 − [dρ1, ρ1]
)

+ · · · , (5.18)

where the last equality follows from (5.4) and (5.7). Introducing these pull-
backs into (3.8) and noting that

(g−1
Λ )∗(F ′

Λ ◦ ψΛ) = F ′
Λ ◦ ψ0 = 1/(G′

Λ ◦ ω0)

= F ′
0 ◦ ψ0 − δ(F ′

0 ◦ ψ0)
2∇χ1

∇ω0
+ · · ·

leads to

(∆ − F ′
0P0)Ψ̄

(1)
1 = −F ′

0P0Φ̄1, (5.19)

(∆ − F ′
0P0)Ψ̄

(1)
2 = −F ′

0P0Φ̄2 + ∆[ρ1, Ψ̄
(1)
1 ] − [ρ1,∆Ψ̄

(1)
1 ]

− F ′
0

∇χ1

∇ω0

∆Ψ̄
(1)
1 . (5.20)

These equations, involving the same invertible operator as (5.13), can be solved
to find Ψ̄(1), with Ψ(1) deduced after application of (g−1

Λ )∗. The natural gauge
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Φ⋆ of Φ then follows from (3.5) and (3.10). Alternatively, one can first compute
the pull-back Φ̄⋆, which is obtained from the relations

Φ̄⋆ = P0Φ̄ + Π⋆ ◦ ω0 and Π⋆ ◦ ω0 = (1 − P0)Ψ̄
(1) (5.21)

inferred from (3.5) and (3.10), and then deduce Φ⋆ by pushing forward with
(g−1

Λ )∗.

To compute the curvature κ⋆ and the geometric angle, there is in fact no need
to push forward Ψ̄(1) and Φ̄⋆: indeed, from (4.7) and (4.21), we see that Ψ̂(1)

and Ψ̄(1) are related by the Λ-independent transformation

Ψ̂(1)(I, θ; Λ) = Ψ̄(1)(X(I, θ; 0); Λ) (5.22)

defining the action–angle variables in the original domain D0. Since Φ̂⋆ and
Φ̄⋆ obey an analogous relation, they are essentially equivalent: in particular,
dΦ̂⋆ = dΦ̄⋆ and [Φ̂⋆∧ Φ̂⋆] = [Φ̄⋆∧ Φ̄⋆]. The curvature κ⋆ in (4.26) can therefore
be computed directly from Φ̄⋆ in a straightforward manner as

κ⋆ = dΦ̄⋆ − 1
2
[Φ̄⋆ ∧ Φ̄⋆]. (5.23)

Note that, in principle, the first two terms in the expansion of Φ̄⋆ or Φ⋆ need to
be computed in order to obtain a leading-order approximation to the geometric
angle. This is because Φ̄⋆

1 is independent of Λ, dΦ̄⋆
1 = 0 and hence κ⋆ = O(δ2).

The computation can however be shortened by observing that the average of
Φ̄⋆

2 along streamlines, that is, (1−P0)Φ̄
⋆
2, is the only O(δ2) quantity genuinely

needed if the averaged form (4.25) of κ⋆ is used. In turn, (1 − P0)Φ̄
⋆
2 can be

approximated by (1 − P0)Ψ̄
(1)
2 , as the pull-back of (3.8) indicates. The latter

quantity satisfies a relatively simple equation, obtained by applying (1 − P0)
to (5.20) to find

(1 − P0)∆Ψ̄
(1)
2 = (1 − P0)

{

∆[ρ1, Ψ̄
(1)
1 ] − [ρ1,∆Ψ̄

(1)
1 ]

}

, (5.24)

after using (1 − P0)∆Ψ̄
(1)
1 = 0 which follows from (3.3) at leading-order in δ.

6 Nearly axisymmetric flow

We now consider a simple example where the computations of gΛ and other
relevant quantities can be carried out explicitly to O(δ2). We assume that
for Λ = 0, the fluid domain is the disc (r, σ) ∈ [0, 1] × [0, 2π]. The deformed
domain is defined in the form (2.1) by

r = 1 + δ
∑

m

Λmeimσ − δ2

2

∑

m

|Λm|2 +O(δ3), (6.1)
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where the Λm ∈ C satisfy Λ∗
m = Λ−m. Area preservation at O(δ2) requires

that Λ0 = 0 and the introduction of the O(δ2), σ-independent terms.

6.1 Arbitrary axisymmetric flow

The initial flow is taken to be axisymmetric, with vorticity

ω0(r) =
1

r

(

rψ′
0(r)

)′
,

where the prime denotes differentiation with respect to r. For this flow, (5.8)
reduces to

ψ′
0

r
∆∂σρ1 + 2

(

ψ′
0

r

)′(

∂2
rσρ1 −

1

r
∂σρ1

)

+
1

r

(

rχ′
1

)′
= 0, (6.2)

with χ1 a function of r only. The corresponding boundary condition is obtained
from (5.11) in the form

∂σρ1 = −
∑

m

Λmeimσ at r = 1. (6.3)

The solvability condition for (6.2), found by integration with respect to σ ∈
[0, 2π], imposes that (rχ′

1)
′ = 0; boundedness of χ1 then implies that χ1 is a

constant which we can take equal to zero: χ1 = 0.

The solution of (6.2) for ρ1 is then found as the Fourier series

ρ1(r, σ) =
∑

m

Λmρ1,m(r) eimσ, (6.4)

with ρ∗1,m = ρ1,−m. Equation (6.2) does not constrain the m = 0 mode ρ1,0;
this is the result of the gauge freedom for gΛ. A convenient choice is

ρ1,0 = 0. (6.5)

Introducing (6.4) into (6.2) gives a second-order equation for ρ1,m, namely

ψ′
0

(

ρ′′1,m − 1

r
ρ′1,m +

2 −m2

r2
ρ1,m

)

+ 2ψ′′
0

(

ρ′1,m − 1

r
ρ1,m

)

= 0, (6.6)

with associated boundary condition

ρ1,m =
i

m
at r = 1. (6.7)

There is a close connection between this equation and the Rayleigh equation
for the normal modes of axisymmetric flows (e.g., [6]): (6.6) can be recast as the
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Rayleigh equation for zero-frequency modes, with r−1ψ′
0ρ1,m as the unknown

function. Of course the non-homogeneous boundary condition for ρ1,m differs
from the homogeneous boundary condition usually considered for the Rayleigh
equation. The connection is useful nevertheless: the absence of zero-frequency
normal modes that can be established from the Rayleigh equation when ψ′

0 6= 0
(as guaranteed by the hypothesis H2) implies the existence of a unique solution
to (6.6).

We note that the solution for the m = 1 mode, which describes a rigid trans-
lation of the disc, is independent of ψ0 and given by ρ1,±1 = iΛ±1r. Not
surprisingly, this corresponds to a uniform displacement field ∇⊥ρ1.

The vanishing of χ1 indicates that the vorticity–streamfunction relationship
is unchanged at leading order in δ. This is a particularity of axisymmetric
flows which makes it worthwhile to carry out the calculation to O(δ2) so as to
demonstrate how a non-zero χ2 is obtained; this is described in Appendix D.

With ρ1 determined by its Fourier series (6.4), Φ̄1 is given by

Φ̄1 =
∑

m

ρ1,m(r)eimσdΛm. (6.8)

Because ρ1,0 = 0 and 1−P0 is simply the average along circles, (5.19) indicates

that (1 − P0)Ψ̄
(1)
1 = 0. Equations (5.21) then imply that Φ̄⋆

1 = Φ̄1. In other
words, our choice (6.5) provides the leading-order connection with its natural
choice of gauge which corresponds to vanishing average along the circles r =
const. Expanding Ψ̄

(1)
1 in Fourier series as

Ψ̄
(1)
1 =

∑

m

Ψ̄
(1)
1,m(r) eimσdΛm, (6.9)

(5.19) is reduced to the set of ordinary differential equations

ψ′
0

[

1

r

(

rΨ̄
(1)
1,m

′
)′ − m2

r
Ψ̄

(1)
1,m

]

− ω′
0Ψ̄

(1)
1,m = −ω′

0ρ1,m (6.10)

with Ψ̄
(1)
1,0 = 0. The associated boundary conditions are found from (3.9) as

Ψ̄
(1)
1,m =

i

m
at r = 1. (6.11)

Solving (6.10) gives the first-order correction Ψ
(1)
1 to the Eulerian flow to

leading order in δ.

As discussed at the end of §5, the computation of the geometric angle to
leading order requires not only Φ̄⋆

1 but also Φ̄⋆
2 or, to minimise computations,

(1 − P0)Ψ̄
(1)
2 . This is deduced from (5.24) which reduces to the ordinary dif-
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ferential equation

1

r

d

dr

{

r
d

dr
(1 − P0)Ψ̄

(1)
2

}

= (1 − P0)
{

∆[ρ1, Ψ̄
(1)
1 ] − [ρ1,∆Ψ̄

(1)
1 ]

}

. (6.12)

Solving this equation leads to an expression for (1 − P0)Ψ̄
(1)
2 . Taking the dif-

ferential yields the first term of the curvature κ⋆ in (5.23) as

〈dΦ̄⋆〉 = (1 − P0)dΨ̄
(1)
2 +O(δ3). (6.13)

Note that since ρ1 is linear in Λm and Ψ̄
(1)
1 is Λ-independent, (1 − P0)Ψ̄

(1)
2 is

linear in Λm; furthermore, because the averaging 1−P0 along circles eliminates
all products in the right-hand side of (6.12) except for those of complex-

conjugate Fourier modes, (1 − P0)Ψ̄
(1)
2 is a linear combination of terms of the

type ΛmdΛ∗
m. Therefore, 〈dΦ̄⋆〉 is given by a Λ-independent linear combination

of the two-forms dΛm ∧ dΛ∗
m.

The second term in (5.23) is also O(δ2) and is readily computed from (6.8).
Averaging along circles gives it the same form as that of 〈dΦ̄⋆〉. This leads to
the geometric angle in the form

∆θgeo = δ2
∑

m>0

fm(r)Am +O(δ3), (6.14)

for some functions fm(r). Here we have defined

Am = − i

2

∫

DΛ

dΛm ∧ dΛ∗
m

which be recognised as (minus) the oriented area enclosed by the path de-
scribed by Λm in the complex plane. (A positive Am is associated with a
rotation of the fluid domain in the positive sense.) Unsurprisingly, at leading
order, the geometric angle is the sum of separate contributions of each Fourier
mode of the boundary deformation.

6.2 An example: flow with power-law radial dependence

As a simple example of an axisymmetric flow, consider the streamfunction

ψ0(r) = Arα with 0 < α < 2, (6.15)

for which (6.6)–(6.7) can be solved explicitly, leading to

Φ̄1,m = ρ1,m =
irβm

m
, (6.16)
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m = 0 m = 2

m = 3 m = 4

m = 5 m = 6

Fig. 3. Vorticity ωΛ (grey scale) and streamfunction ψΛ (white lines) of the lead-
ing-order (steady) flow in a slightly deformed disc. The top left panel m = 0 shows
the undeformed flow, with ψ0 = r1/2; the other panels show the flows obtained when
deforming the disc by a single Fourier mode m according to (6.1) with δ|Λm| = 0.05.

where

βm = αm − α + 2 and αm =
√
m2 + α2 − 2α.

The leading-order vorticity in the deformed domain is then found to be

ωΛ(r, σ) = ω0(r) − δ ω′
0(r)

∑

m

Λmr
βm−1eimσ +O(δ2), (6.17)
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with a similar expression for ψΛ. Figure 3 shows these approximations to ωΛ

and ψΛ in domains deformed by a single Fourier mode m, with m ranging
from 2 to 6, in the case α = 1/2.

Equation (6.10) can also be solved explicitly, with the result

Ψ̄
(1)
1,m =

i

m

[

γmr
βm + (1 − γm)rαm

]

where γm =
α

αm + βm
. (6.18)

Introducing into (6.12) gives

(1 − P0)Ψ̄
(1)
2 = −i

∑

m

1

m
ΛmdΛ∗

m

[

γmF (βm, βm)r2βm−2

+ (1 − γm)F (αm, βm)rαm+βm−2
]

, (6.19)

where we have defined

F (αm, βm) :=
E(αm, βm)

αm + βm − 2
:=

2αmβm + β2
m − 2αm − 2βm +m2

αm + βm − 2
. (6.20)

From this and (6.13) we deduce the first component of κ⋆, namely

〈dΦ̄⋆〉 = −2iδ2
∑

m>0

1

m

[

γmF (βm, βm)r2βm−2

+ (1 − γm)F (αm, βm)rαm+βm−2
]

dΛm ∧ dΛ∗
m +O(δ3).

(6.21)
Using (6.16), the second component of κ⋆ is found directly to be

〈[Φ̄⋆ ∧ Φ̄⋆]〉 =
δ2

2π

∫ 2π

0
[Φ̄1 ∧ Φ̄1] dσ +O(δ3)

= −4iδ2
∑

m>0

βm
m
r2βm−2 dΛm ∧ dΛ∗

m +O(δ3).
(6.22)

Combining these results with (4.25), and noting that the action–angle variables
in the undeformed domain are simply (I, θ) = (r2/2, σ), leads to the geometric
angle in the form (6.14) with

fm(r) =
4

m

(

pmr
2βm−4 + qmr

αm+βm−4
)

, (6.23)

where

pm = γmE(βm, βm) − 2βm(βm − 1) and qm = (1 − γm)E(αm, βm). (6.24)

Figure 4 shows the functions fm(r) for m = 2, 3, · · · , 6 in the case α = 1/2.
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Fig. 4. Functions fm(r) giving the geometric angle in (6.14) for the axisymmetric
flow with streamfunction ψ0 = r1/2 in a disc deformed by a Fourier mode m.

A spot check for our results is provided by the limit α→ 2, corresponding to
a flow with a uniform vorticity 4A. Assuming that Λm = 0 if m 6= ±2 and
that Λ±2 trace the unit circle in the complex plane, the domain deformation
is simply the rotation of a small-eccentricity ellipse with semi-axes 1 + 2δ and
1 − 2δ. There is an exact analytic solution for such a uniform-vorticity flow
in a rotating ellipse; both the direct use of this solution and (6.14) yield the
same r-independent value for the leading-order geometric angle that appears
for one full rotation of the ellipse, namely 16πδ2. See Appendix E for details.

7 Discussion

In this paper, we have developed a framework to study the dynamics of two-
dimensional perfect fluids as the boundary of their domain is deformed slowly.
The main results are given in propositions P1 and P2 which characterise the
leading-order evolution of the Eulerian and Lagrangian flows. The framework
makes explicit use of the fact that the leading-order vorticity is a rearrange-
ment of the initial vorticity. This is done by introducing the diffeomorphism
gΛ which effects this rearrangement. The differential of gΛ with respect to the
parameters which define the shape of the boundary, identified as the connec-
tion form Φ, is then shown to play a central role in the Lagrangian problem.
Although our formulation is in principle valid for arbitrary domain deforma-
tions, as long as the hypotheses H1–H2 continue to hold, explicit computations
are most easily carried out when the deformations are small and when the ini-
tial domain (or a reference domain) is a disc. Simplified formulations, taking
advantage of these two features in succession, are also developed.

We emphasize that our results are local in nature: the prediction of an in-
stantaneously steady Eulerian flow, for instance, holds only if the domain
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deformation is such that H1 and H2 are always satisfied. This is necessarily
the case if they are satisfied initially and the domain deformation is sufficiently
small, but it may well continue to hold for larger deformations. It is nonethe-
less interesting to speculate about the dynamics when either H1 or H2 fails
in the course of the evolution. If H1 fails, the flow ceases to be Arnold stable
and likely becomes spectrally unstable. We can then expect the flow to be-
come highly unsteady and, in the absence of dissipative mechanisms, remain
so regardless of subsequent deformations of the domain.

The failure of H2, on the other hand, corresponds to the appearance of stream-
lines for which the orbiting period of particles becomes large. When the pe-
riod becomes comparable with the time scale of the domain deformation, our
asymptotic approach clearly breaks down. This can happen when the flow is
driven by the domain deformation towards a change in topology, with the cre-
ation of hyperbolic stagnation points and separatrices. How the flow evolves in
this situation is unclear, but some understanding could be gained by investi-
gating the problem where the initial steady flow ψ0 has a hyperbolic stagnation
point (and satisfies H1—the Kelvin–Stuart vortex in [10] is just one example).
This problem can be viewed as a generalisation of the classical critical-layer
problem for parallel shear flows (e.g., [24,15] and references therein). In this
generalisation, the separatrix plays the role of the zero-velocity critical line
(along which H2 is obviously violated); by analogy, it can be expected to be
also surrounded by a narrow critical layer where complicated nonlinear dy-
namics occurs. We plan to investigate this problem in future work.

A few remarks are in order on the possible extension of our results to flows in
three dimensions. In three dimensions, the dynamics of an inviscid and incom-
pressible fluid is determined, as in two dimensions, by a form of conservation
of vorticity, although in this case it is as a vector that the vorticity is trans-
ported (e.g., [4]). This suggests that our approach for the determination of
the leading-order Eulerian flow in deforming domains can be adapted to the
three-dimensional setting. The technical conditions for the well-posedness of
the equations for gΛ are however likely to be significantly more complicated
than in two dimensions.

The evolution of the fluid-particle position seems, at first sight, to pose a
very different problem in three than in two dimensions, since the velocity
field is divergence-free and not Hamiltonian. However, particle trajectories
for (non-Beltrami) steady solutions of the Euler equations are known to be
integrable [1,2] because they are confined to surfaces of constant Bernoulli
function (Lamb surfaces). There is, therefore, a simple characterisation of the
fluid-particle positions in steady flows, analogous to the action–angle charac-
terisation in two dimensions. This could be used for slowly time-dependent
flows to quantify the effects of a cyclic boundary deformation as was done to
obtain the geometric angle in this paper.
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A general difficulty with three-dimensional flows, however, is the absence
of general stability results similar to those obtained by the energy–Casimir
method [10]. Instabilities cannot therefore be excluded (on the contrary, they
are the rule rather than the exception), and the effect of their competition
with the slow evolution of the leading-order flow would need to be assessed
carefully.

In this paper, we have used differential geometry mostly as a notational tool,
its main application being to make explicit the linear dependence of various
quantities on Λ̇. It is nonetheless clear that the objects we are dealing with can
be given an interpretation in a more abstract geometric setting and that the
problem may be placed in the framework of geometric mechanics. This would
be a valuable undertaking, but one which is probably quite involved due to
the infinite-dimensional nature of the problem, and which is certainly beyond
the scope of the present paper. In the rest of this section, we discuss briefly
and informally the geometric context of our results in order to elucidate the
meanings of the connection one-form Φ⋆, the form of its curvature κ⋆, etc.

Central to our development is the group G = SDiff(R2) of area-preserving
diffeomorphisms on the plane. Taking the initial domain D0 as a reference
domain, the subgroup H ⊂ G which maps D0 to itself, viz.,

H = {g ∈ G : gD0 = D0}, (7.1)

is of particular importance. In terms of G and H , our parameter space L,
the space of all possible shapes Λ of the domain DΛ, can be realised as the
quotient G/H . Indeed, each right coset of H in G contains all diffeomorphisms
mapping D0 to DΛ for a particular Λ, since any two such diffeomorphisms g
and g′ are related by g′ = gh for some h ∈ H . We can therefore identify L
with G/H . Another important subgroup is

H0 = {h ∈ H : ω0 ◦ h = ω0} (7.2)

containing all area-preserving diffeomorphisms in D0 which leave the initial
vorticity distribution invariant. A rearrangement ω0 ◦ g of the initial vorticity
ω0 can be identified with an element of G/H0.

Armed with this setup, we can interpret our results geometrically. The key
point is to regard G and G/H0 as principal bundles, both with G/H ≃ L
as base manifold. Finding the (leading-order) Eulerian flow for each domain
shape Λ then amounts to finding a lift from G/H to G/H0; finding the La-
grangian particle position amounts to finding a lift from G/H to G. 1 Propo-
sition P1, stating that the leading-order Eulerian flow depends only on the

1 In our geometric description the interior and exterior of DΛ are treated on the
same footing; this can be done because our formulas, with suitable boundary con-
ditions as |x| → ∞, would also apply to a fluid flow outside DΛ.
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domain shape, says that the lift from G/H to G/H0 is path-independent; in
other words, it defines a section of G/H0.

2 In contrast, the lift from G/H
to G, which gives an approximation to the particle position, depends on the
path in G/H and in fact on the speed with which the path is traced. There
is, however, a contribution that is independent of speed; for cyclic domain
deformations, it is quantified by the geometric angle given in P2.

It is worth commenting on the meaning of the one-form Φ⋆ that appears in the
geometric angle. One way of defining a lift in a principal bundle is by means of
a vector-valued one-form, i.e. a linear map from T (G/H) to TG, describing the
vertical (along-fibre) displacement associated with any given displacement on
the base manifold G/H . Such a form can be recognised as a connection form.
In our context, TG is the space of divergence-free vector fields over R2, which
can be identified through the use of a streamfunction with the space of real-
valued functions C(R2). Thus, a lift can be defined by a connection one-form
over G/H ≃ L with values in C(R2). This is precisely the interpretation we
give to Φ⋆. With the geometric interpretation of Φ⋆, the subsequent results are
clear: (4.26) is the standard expression for the curvature of Φ⋆, the geometric
angle (4.27) is given by the holonomy of Φ⋆, and the standard conclusion about
the geometrical angle in finite-dimensional systems is recovered.
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A Solution of (∆ − F ′
ΛPΛ) u = f

Here we show that the problem

(∆ − F ′
Λ PΛ) η = f

η = g on ∂DΛ
(A.1)

has a unique solution η when F ′
Λ > −cpoi everywhere in DΛ as follows from

the hypothesis H1.

We start with an identity. Let u and v be such that PΛu = 0 and PΛv = v.

2 We stress again the local nature of P1: globally, there are many possible steady
flows for a given vorticity distribution and a given domain DΛ. Geometrically, this
implies that the section of G/H0 is multivalued.
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We have
∫

DΛ

u v d2x =
∫

{
∮

u v ds
}

dψΛ =
∫

u
{

∮

v ds
}

dψΛ = 0. (A.2)

From this it follows that the projection PΛ is orthogonal in L2(DΛ), in the
sense that for any (sufficiently smooth) function w

∫

DΛ

|w|2 d2x =
∫

DΛ

{

|PΛw|2 + 2(PΛw)[(1 − PΛ)w] + |(1 − PΛ)w|2
}

d2x

=
∫

DΛ

{

|PΛw|2 + |(1 − PΛ)w|2
}

d2x.

(A.3)

Using (A.2), we find that the operator (∆ − F ′
Λ PΛ) is self-adjoint for any

functions u and v which vanish on ∂DΛ,
∫

DΛ

v (∆ − F ′
Λ PΛ) u d2x =

∫

DΛ

u (∆ − F ′
Λ PΛ) v d2x. (A.4)

Moreover, (∆ − F ′
Λ PΛ) is coercive under the hypothesis F ′ > −cpoi. To show

this, we first combine (A.3) and Poincaré inequality to obtain

∫

DΛ

|PΛu|2 d2x ≤
∫

DΛ

|u|2 d2x ≤ 1

cpoi

∫

DΛ

|∇u|2 d2x (A.5)

for any function u vanishing on ∂D. It is then clear that
∫

DΛ

u (∆ − F ′
Λ PΛ) u d2x = −

∫

DΛ

{

|∇u|2 + F ′
Λ(PΛu)

2
}

d2x ≤ 0 (A.6)

when F ′
Λ > cpoi everywhere in D, with equality obtaining only when u = 0.

Returning to the problem (A.1), we extend g to clDΛ and let η̃ = η − g. The
problem thus becomes

(∆ − F ′
ΛPΛ) η̃ = −∆g + F ′

ΛPΛg + f (A.7)

with boundary conditions η̃ = 0 on ∂DΛ. We have shown that the operator
(∆ − F ′

ΛPΛ) on the left-hand side is self-adjoint and its associated bilinear
form is coercive, so by the Lax–Milgram lemma (assuming compactness, etc.,
see, e.g., [8]) we can find a unique solution η̃ for (A.7) and thus η for (A.1).

B Properties of Φ

In this Appendix, we derive some of the properties of the connection form Φ.
We begin by establishing the form (2.53) of the curvature of Φ.
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B.1 Curvature form

The curvature of the connection Φ encodes the manner in which two diffeo-
morphisms gΛ, generated along different paths with the same endpoints, differ.
An explicit expression for it is now obtained in a standard fashion, by consid-
ering two paths obtained by changing only two components of Λ, say Λ1 and
Λ2, by an infinitesimal amount. The two paths chosen join (Λ1,Λ2) = (0, 0) to
(δ, ǫ), where δ, ǫ≪ 1, the first via (δ, 0) and the second via (0, ǫ).

For τ ∈ [0, 1], let us fix a path τ 7→ γ(τ) in L and let gγ(τ) be the diffeomor-
phism on R2 that is the “flow” of Φ, in the sense that

d

dt
gγ(τ) =

(

∇
⊥Φ ◦ gγ(τ)

)

· γ̇ and gγ(0) = id. (B.1)

Let γa(τ) = (0, 0)+(δ, 0)τ and ga := gγa(1); similarly, let γb(τ) = (δ, 0)+(0, ǫ)τ
and gb := gγb(1), γc(τ) = (0, 0) + (0, ǫ)τ and gc := gγc(1), γd(τ) = (0, ǫ) + (δ, 0)τ
and gd := gγd(1). With this notation, the first path is γa∪γb, the second γc∪γd,
and in the limit δ, ǫ → 0, gbga − gdgc gives (δǫ times) one of the components
of the curvature of Φ at Λ = 0.

To compute this component, we first consider the action of gbga on a function
f in R2 and find

f(gax) = f(x)+δ[Φ1(0, 0), f ](x)+
δ2

2
[Φ1(0, 0), [Φ1(0, 0), f ]](x)+O(ǫ3) (B.2)

and so, with f̂(x) := f(gax),

f(gbgax) = f̂(x) + ǫ[Φ2(δ, 0), f̂ ](x) +
ǫ2

2
[Φ2(δ, 0), [Φ2(δ, 0), f̂ ]](x) +O(ǫ3)

= f(x) + δ[Φ1, f ](x) +
δ2

2
[Φ1, [Φ1, f ]](x)

+ ǫ[Φ2, f ](x) + ǫδ[Φ1, [Φ2, f ]](x)

+ ǫδ
[

∂Φ2

∂Λ1
, f

]

(x) +
ǫ2

2
[Φ2, [Φ2, f ]](x) + h.o.t.

(B.3)
where in the last expression Φ1 := Φ1(0, 0), Φ2 := Φ2(0, 0), and h.o.t. denotes
cubic terms and higher. Similarly,

f(gdgcx) = f(x) + ǫ[Φ2, f ](x) +
ǫ2

2
[Φ2, [Φ2, f ]](x)

+ δ[Φ1, f ](x) + δǫ[Φ2, [Φ1, f ]](x)

+ δǫ
[

∂Φ1

∂Λ2
, f

]

(x) +
δ2

2
[Φ1, [Φ1, f ]](x) + h.o.t.

(B.4)
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Subtracting these two expressions, we find

g∗bg
∗
af − g∗dg

∗
cf = δǫ

{

[Φ1, [Φ2, f ]] − [Φ2, [Φ1, f ]] +
[

∂Φ2

∂Λ1
, f

]

−
[

∂Φ1

∂Λ2
, f

]}

+ h.o.t..

(B.5)
After using Jacobi’s identity, [f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 for any three
functions f , g and h, this can be rearranged as

(gbga − gdgc)
∗f = δǫ

[{

∂Φ2

∂Λ1
− ∂Φ1

∂Λ2
+ [Φ1,Φ2]

}

, f
]

+ h.o.t.. (B.6)

From this equation, we can identify the component in dΛ1 ∧ dΛ2 of the cur-
vature of Φ as

∂Φ2

∂Λ1
− ∂Φ1

∂Λ2
+ [Φ1,Φ2], (B.7)

since it describes the diffeomorphism gbga− gdgc in the limit δ, ǫ→ 0. Thus, a
general expression for the curvature of Φ is given by

κ =
{

∂Φn

∂Λm
+

1

2
[Φm,Φn]

}

dΛm ∧ dΛn, (B.8)

which we write in coordinate-free notation as (2.53).

We note that the foregoing development is valid for any connection Φ and dif-
feomorphism gγ(τ) satisfying (B.1) since we have made no use of the properties
of Φ and gΛ developed elsewhere in this paper.

B.2 Derivation of (2.55)

We now derive (2.55). Applying d to (2.39) gives

0 = d2ωΛ = −d[Φ, ωΛ]

= −[dΦ, ωΛ] + [Φ ∧ dωΛ]

= −[dΦ, ωΛ] − [Φ ∧ [Φ, ωΛ]].

(B.9)

Now

−[Φ ∧ [Φ, ωΛ]] = −[Φm, [Φn, ωΛ]] dΛm ∧ dΛn

=
{

[Φn, [ωΛ,Φm]] + [ωΛ, [Φm,Φn]]
}

dΛm ∧ dΛn

= [Φ ∧ [Φ, ωΛ]] + [ωΛ, [Φ ∧ Φ]]

(B.10)

(to arrive at the second equality, we have used Jacobi’s identity); therefore

−[Φ ∧ [Φ, ωΛ]] = 1
2
[ωΛ, [Φ ∧ Φ]] (B.11)
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and from (B.9) we find

[dΦ + 1
2
[Φ ∧ Φ], ωΛ] = 0

⇒ dΦ + 1
2
[Φ ∧ Φ] = w ◦ ωΛ (B.12)

for an arbitrary function-valued two-form w ◦ ωΛ. Together with the result of
§B.1 above, the first equation implies that the curvature has no effect when
considering the effects of diffeomorphisms generated by Φ on functions of ωΛ.

We note that the result (B.12) is valid for any fΛ that (i) is a function of Λ,
so dfΛ makes sense, and (ii) satisfies dfΛ + [Φ, fΛ] = 0.

B.3 Relationship with (B.12)

Next we show that (B.12) can be derived directly from (2.43). This provides
a consistency check for our developments. Let us first compute

d [Φ, ψΛ] = d
{

[Φm, ψΛ]dΛm

}

= [dΦm, ψΛ] ∧ dΛm + [Φm,dψΛ] ∧ dΛm

= [dΦ, ψΛ] − [Φ ∧ dψΛ]

(B.13)

and

d(dGΛ ◦ ωΛ) = −(dG′
Λ ◦ ωΛ) ∧ dωΛ = (dG′

Λ ◦ ωΛ) ∧ [Φ, ωΛ]

= [Φ ∧ dGΛ],
(B.14)

where the last equality can be verified by computation in coordinates.

Writing (2.43) as

∆ [Φ, ψΛ] − [Φ, ωΛ] − ∆(dGΛ ◦ ωΛ) = 0 (B.15)

and taking d, we find

0 = ∆d[Φ, ψΛ] − d[Φ, ωΛ] − ∆d(dGΛ ◦ ωΛ)

= ∆[dΦ, ψΛ] − ∆[Φ ∧ dψΛ] − [dΦ, ωΛ] + [Φ ∧ dωΛ] + ∆[Φ ∧ dGΛ]

= (∆ − F ′
Λ) [dΦ, ψΛ] + ∆ [Φ ∧ (dGΛ − dψΛ)] + [Φ ∧ dωΛ]

= (∆ − F ′
Λ) [dΦ + 1

2
[Φ ∧ Φ], ψΛ]. (B.16)

A couple of identities have been used to arrive at the last equation. The first
one is

[Φ ∧ [Φ, ψΛ]] = 1
2
[[Φ ∧ Φ], ψΛ], (B.17)

which is proved in the same way as (B.11). The second identity is

[Φ ∧ dωΛ] = [Φ ∧ [Φ, FΛ ◦ ψΛ]] = [Φ ∧ F ′
Λ[Φ, ψΛ]]

= F ′
Λ[Φ ∧ [Φ, ψΛ]] − [Φ, F ′

Λ] ∧ [Φ, ψΛ] = F ′
Λ[Φ ∧ [Φ, ψΛ]],

(B.18)
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where we have used [Φ, F ′
Λ ◦ ψΛ] ∧ [Φ, ψΛ] = F ′′

Λ [Φ, ψΛ] ∧ [Φ, ψΛ] = 0 for the
last equality.

The desired result (B.12) is recovered by noting that the operator (∆−F ′
Λ) is

invertible by hypothesis and that [dΦ + 1
2
[Φ∧Φ], ψΛ] = 0 on ∂DΛ. The latter

can be verified by differentiating (2.39) and evaluating it on ∂DΛ.

B.4 Derivation of (4.26)

Finally, we establish the formula

dΦ̂ − 1
2
[Φ̂ ∧ Φ̂] = dΦ + 1

2
[Φ ∧ Φ]. (B.19)

Its application to the natural connection Φ⋆ shows that κ⋆ is independent of θ.
Our proof starts by noticing that [Φ̂∧Φ̂] = [Φ∧Φ] because the transformation
to action–angle variables is canonical. Thus (B.19) is equivalent to

dΦ̂ = dΦ + [Φ ∧ Φ]. (B.20)

This is established by direct computation as follows

dΦ̂(I, θ; Λ) = dΦ(X(I, θ; Λ); Λ)

= dΦ(x; Λ) +
(

dX · ∇Φn

)∣

∣

∣

(x,Λ)
dΛn

= dΦ(x; Λ) + [Φm,Φn]
∣

∣

∣

(x,Λ)
dΛm ∧ dΛn

= dΦ(x; Λ) + [Φ ∧ Φ]
∣

∣

∣

(x,Λ)
. (B.21)

C Higher-order Streamfunction

In this Appendix, we compute higher-order corrections to the streamfunction,
with the first-order streamfunction ψ(1) derived in section 3 as a special case.
Instead of the expansion (2.8), we use here an iterative procedure. Since much
of the computation is similar to earlier developments, we will only sketch the
derivation and make references to earlier, analogous steps. We start by writing

ω = ωΛ + ωε and ψ = ψΛ + ψε, (C.1)

where ψΛ = GΛ(ωΛ),

ωΛ = ∆ψΛ ψΛ

∣

∣

∣

∂D
= 0,

ωε = ∆ψε ψε
∣

∣

∣

∂D
= εb,

(C.2)
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and ωε, ψε = O(ε). Since ωε and ψε depends not only on Λ̇ but also on
its derivatives (and nonlinearly), we shall not be using the differential form
notation much in this Appendix.

Substituting these into the equation of motion ε∂τω+[ψ, ω] = 0, we find after
some manipulation [cf. (2.16)–(2.19)]

ε∂τωΛ + [φε, ωΛ] = −ε∂τωε − [ψε, ωε] (C.3)

where in analogy with φ we have defined

φε := (1 −G′
Λ∆)ψε . (C.4)

We note that the left-hand side of (C.3) is O(ε) while the right-hand side is
O(ε2), assuming that ωε depends slowly on time. Taking ∂τ of the relation
ψΛ = GΛ(ωΛ), we find after some manipulation using (C.3) [cf. (2.42)],

ε∂τψΛ + [φε, ψΛ] − χ = −G′
Λε∂τωε −G′

Λ[ψε, ωε] (C.5)

where χ := (dGΛ ◦ ωΛ) · Λ̇ ∈ C(DΛ) depends on x only through ωΛ. Taking ∆
of this equation and using (C.3) again, we find after more manipulation [cf.
(2.43)]

(∆ − F ′
Λ)[φε, ψΛ] − ∆χ = (1 − ∆G′

Λ)
{

ε∂τωε + [ψε, ωε]
}

. (C.6)

Now let ϕε := [φε, ψΛ] − χ. Since PΛ[φε, ψΛ] = [φε, ψΛ] and PΛχ = 0, we can
write (C.6) in the form [cf. (2.50)]

(∆ − F ′
ΛPΛ)ϕε = (1 − ∆G′

Λ)
{

ε∂τωε + [ψε, ωε]
}

, (C.7)

to which we must add the boundary conditions

ϕε = [b, ψΛ] on ∂DΛ. (C.8)

Once ϕε is known, φε is determined up to the addition of a function of ωΛ by

[φε, ψΛ] = PΛϕε . (C.9)

To obtain an equation for ψε, we need an integral constraint on the vorticity
ωε. Noting that, for any f ∈ C(DΛ),

∫

DΛ

Θ′(ωΛ − Ω)f d2x =
∮

ωΛ=Ω
f

dl

|∇ωΛ|
, (C.10)
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and subtracting Θ′(ωΛ −Ω)ωε to the integrand on both sides of (3.1), we find

∫

DΛ

{

Θ(ωΛ + ωε − Ω) − Θ′(ωΛ − Ω)ωε − Θ(ωΛ − Ω)
}

d2x

= −
∮

ωΛ=Ω
ωε

dl

|∇ωΛ|
.

(C.11)

Let us define E [ωΛ, ωε] ∈ C(DΛ) by

E [ωΛ, ωε](x)
∮

ωΛ=Ω

dl′

|∇ωΛ|
:=

∫

DΛ

{

Θ(ωΛ + ωε − Ω) − Θ′(ωΛ − Ω)ωε − Θ(ωΛ − Ω)
}

d2x′,
(C.12)

where the dummy integration variables are now denoted by x′, and the explicit
dependence on x is introduced by the choice Ω := ωΛ(x). We can then write
(C.11) as

(1 − PΛ)ωε = −E [ωΛ, ωε]. (C.13)

If we now take (1 − PΛ) of (C.4) and use (C.13), we obtain [cf. (3.11)]

(1 − PΛ)φε = (1 − PΛ)ψε +G′
ΛE [ωΛ, ωε]

Using this, we can write (C.4) in the form [cf. (3.8)]

(∆ − F ′
ΛPΛ)ψε = −F ′

ΛPΛφε − E [ωΛ, ωε], (C.14)

which goes with the boundary conditions

ψε = εb on ∂DΛ. (C.15)

Equations (C.7)–(C.15) form a system of nonlinear (partial pseudodifferential)
equations which is to be solved for ψε. Unlike the first-order equations in
section 3, their solution involves higher-order derivatives of Λ since these are
necessary to compute the time derivative on the right-hand side of (C.7). We
could obtain an asymptotic solution of this system by iteration as follows.

Given ψΛ and Λ̇ along with all its derivatives, let ψ[0] = 0. Then for n = 0, · · · ,
we successively solve

(∆ − F ′
ΛPΛ)ϕ[n+1] = (1 − ∆G′

Λ)
{

ε∂τω
[n] + [ψ[n], ω[n]]

}

with ϕ[n+1] = ε[ψΛ, b] on ∂DΛ

[φ[n+1], ψΛ] = PΛϕ
[n+1]

(∆ − F ′
ΛPΛ)ψ[n+1] = −F ′

ΛPΛφ
[n+1] − E [ωΛ, ω

[n]]

with ψ[n+1] = εb on ∂DΛ .

(C.16)
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Due to the term ∂tω
[n] in (C.16a), which can be computed from Λ̇, · · · , dnΛ/dtn,

this iteration is unlikely to converge as ψ[n] will lose differentiability as n→ ∞.
However, given sufficiently small ε and sufficiently smooth Λ̇, arbitrarily high
order can (formally) be achieved. It is clear from this construction that the
streamfunction corrections ψ[n] are all “slaved” to the boundary motion, in
the sense that if Λ̇ = 0 in an open interval I in time, ψ[n] = 0 for t ∈ I.

A couple of remarks are in order. First, ψ[1] = εψ(1) found in section 3, and
similarly φ[1] = εφ; the relationships between higher-order terms ψ(n) and iter-
ates ψ[n] are more complicated. Second, the foregoing development is formal;
we leave the rigorous proof, which would involve bounding both the slaved
streamfunctions ψ[n] and the remainder in appropriate function spaces, to a
future work.

D Second-order terms in nearly axisymmetric flows

At order O(δ2), ρ2 is found from (5.9) to satisfy

ψ′
0

r
∆∂σρ2 + 2

(

ψ′
0

r

)′(

∂2
rσρ2 −

1

r
∂σρ2

)

+
2

r
(rχ′

2)
′

= 2[ρ1,∆[ρ1, ψ0]] − [ρ1, [ρ1,∆ψ0]] − ∆[ρ1, [ρ1, ψ0]].
(D.1)

The boundary condition (5.12) can be written as

∂σρ2 = ∂σ (∂rρ1∂σρ1) − (∂σρ1)
2 +

∑

m

|Λm|2 at r = 1, (D.2)

after some manipulations. The interest of this form is that, when (6.7) is
taken into account, it is clearly consistent, with both sides having a vanishing
σ-average. A solvability condition for (D.1) is obtained by averaging over σ,
leading to

(rχ′
2)

′ = −
(

ψ′
0

2πr

∫ 2π

0

[

(∂2
rσρ1)

2 +
1

r2
(∂2
σσρ1)

2 − 2

r
∂σρ1∂

2
rσρ1

]

dσ
)′

.

This equation determines χ2 uniquely up to an irrelevant arbitrary constant.
When it is satisfied, (D.1) can be solved for ρ2, yielding a solution in the form
of a Fourier series

ρ2(r, σ) =
∑

m

ρ̂2,m(r) eimσ,

with ρ̂∗2,m = ρ̂2,−m and ρ̂2,0 = 0. The functions ρ̂2,m satisfy an inhomogeneous
version of (6.6) obtained from (D.2); clearly, they are quadratic in the Λm.
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E Rotating ellipse

Consider a fluid inside an ellipse with semi-axes a and b that is rotating around
its centre with a (possibly time-dependent) angular velocity ελ̇(τ). The equa-
tion of the ellipse is given by

B(x, τ) =
x̂2

1

a2
+
x̂2

2

b2
− 1 = 0,

where

x̂1 = x cosλ+ y sinλ,

x̂2 = −x sinλ+ y cosλ

are Cartesian coordinates in a frame rotating with angular velocity ελ̇. An
exact solution for the fluid motion in such a rotating ellipse is provided by the
uniform-vorticity flow with streamfunction

ψ(x, t) = K
(

x̂2
1

a2
+
x̂2

2

b2

)

+
ελ̇(a2 − b2)

2(a2 + b2)

(

x̂2
1 − x̂2

2

)

,

where K is a constant. In this streamfunction, which can be verified directly to
satisfy the boundary condition (2.5), the first term can be identified with ψ(0),
the second with ψ(1), and there are no higher-order terms in ε (see, e.g., [11,
p. 421] for a derivation). Action–angle coordinates (I, θ) for this flow satisfy

x̂1 =
√

2Ia/b cos θ,

x̂2 =
√

2Ib/a sin θ.

In terms of these variables, the streamfunction, or Hamiltonian, becomes

Ĥ(I, θ) =
2KI

ab
+
ελ̇I

ab

[

a2 − b2

a2 + b2
(a2 cos2 θ − b2 sin2 θ) − (a2 cos2 θ + b2 sin2 θ)

]

.

(E.1)
In this expression, the last term between round brackets comes from the time-
dependence in the (canonical) transformation from (x, y) to (I, θ); it simply
corresponds to a rigid-body rotation with angular velocity −ελ̇. The geomet-
ric angle is derived by writing the evolution equation for θ, averaging, then
integrating in time. This gives

∆θgeo =
∆λ

2ab

[

(a2 − b2)2

a2 + b2
− (a2 + b2)

]

, (E.2)

where ∆λ is the total angle rotated by the ellipse.

Note that the averaging is in fact unnecessary, since the Hamiltonian Ĥ does
not depend on θ as a simplification of (E.1) indicates. We do not perform
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this simplification here, however, in order to retain the two terms in (E.2)
separately. This facilitates the comparison with the general formalism of §4.
The first term in (E.2) stems from the correction in the streamfunction ψ(1)

(which here corresponds to a potential flow), while the second stems from the
slow time-dependence of the leading-order flow; thus these two terms can be
identified with the two contributions 〈dΦ̂⋆〉 and −1

2
〈[Φ̂⋆ ∧ Φ̂⋆]〉 in (4.25).

We can use the exact formula (E.2) to verify the approximate results for
slightly deformed axisymmetric flows obtained in §6. A rotating ellipse of small
eccentricity is represented by the deformed disc (6.1) with Λ±2(τ) describing
a unit circle in the complex plane and all the other Λm equal to zero. The
corresponding semi-axes are then

a = 1 + 2δ +O(δ2) and b = 1 − 2δ +O(δ2),

with the O(δ2) corrections ensuring that ab = 1. Introducing this into (E.2)
and considering a full rotation ∆λ = 2π gives the geometric angle

∆θgeo = π
[

32δ2 − (2 + 16δ2)
]

+O(δ3) = −2π + 16πδ2 +O(δ3). (E.3)

An equivalent result is obtained from the developments in §6. Since the only
non-zero parameter Λm is Λ±2, (6.14) reduces to

∆θgeo = δ2f2(r)A2 +O(δ3).

The uniform-vorticity corresponds to the limit α → 2 in (6.15), so that α2 =
β2 = 2, γ2 = 1/2, and f2(r) = 8, independent of r. Because a full rotation of
the ellipse is obtained when Λ2(τ) covers twice the unit circle, A2 = 2π and
hence

∆θgeo = 16πδ2 +O(δ3),

with contributions 32πδ2 and −16πδ2 from 〈dΦ̂∗〉 and −1
2
〈[Φ̂∗, Φ̂∗]〉, respec-

tively. The discrepancy of −2π when compared with (E.3) results from a dif-
ferent definition of the angle θ, which is measured from an axis rotating with
the ellipse in the calculation leading to (E.3) while it is measured from a fixed
axis in §6.
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