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Abstract

Accurate approximations to the solutions of a second-order inhomogeneous equation with a small

parameter ε are derived using exponential asymptotics. The subdominant homogeneous solutions

that are switched on by an inhomogeneous solution through a Stokes phenomenon are computed.

The computation relies on a resurgence relation, and it provides the ε-dependent Stokes multiplier

in the form of a power series. The ε-dependence of the Stokes multiplier is related to constants

of integration that can be chosen arbitrarily in the WKB-type construction of the homogeneous

solution.

The equation under study governs the evolution of special solutions of the Boussinesq equations

for rapidly rotating, strongly stratified fluids. In this context, the switching-on of subdominant

homogeneous solutions is interpreted as the generation of exponentially small inertia-gravity waves.

Keywords: exponential asymptotics, Stokes phenomenon, WKB expansion, inertia-gravity waves.

1 Introduction

This paper is concerned with the small-ε asymptotics of solutions of the linear inhomogeneous

differential equation

ε2

(

d2ζ

dt2
−

2t

1 + t2
dζ

dt

)

+

(

(1 + ε)

(

1 +
2ε

1 + t2

)

+
1 + t2

β2

)

ζ =
1 + t2

β2
, (1.1)

where β > 0 is a fixed parameter and ε > 0. This equation, which is a limiting case of that exam-

ined by McWilliams & Yavneh (1998) and Vanneste & Yavneh (2004), arises in geophysical fluid

dynamics; it governs the evolution of the amplitude of special solutions of the Boussinesq equations

for a rotating stratified fluids. The limit ε ↓ 0 is the so-called geostrophic limit, which corresponds

to fast rotation and strong stratification, and is directly relevant to the earth’s atmosphere and

oceans. See Appendix A for details.

Like the low-order models proposed by Lorenz (1980), equation (1.1) provides a toy model for

studying a general issue of central importance in geophysical fluid dynamics, namely the sponta-
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neous generation of fast oscillations with O(ε−1) frequencies (physically inertia-gravity waves) by

slow, or balanced, motion with O(1) frequency. To address this issue, one can consider solutions that

evolve from balanced initial conditions, that is, from initial conditions that are free of oscillations.

After some time, oscillations appear spontaneously; estimating their amplitude asymptotically then

gives some insight into the mechanism of spontaneous generation. We refer the interested reader to

Vanneste & Yavneh (2004) and Vanneste (2004) for background and references on the spontaneous

generation of fast oscillations in geophysical fluids.

In the context of (1.1), the balanced motion is represented by a particular integral of (1.1)

defined by its asymptotic expansion, while the fast oscillations are represented by the homogeneous

solutions. The spontaneous generation of fast oscillations can then be identified as an instance of the

Stokes phenomenon (e.g. Paris & Wood, 1995): the (subdominant) oscillations are switched on by

the (dominant) balanced solution when t crosses a Stokes line, and their amplitude is exponentially

small in ε. Estimating this amplitude thus amounts to the calculation of Stokes multipliers.

In their analysis of (1.1), Vanneste & Yavneh (2004) derived a leading-order approximation to

the amplitude of the fast oscillations using the Kruskal–Segur technique of matched asymptotics

in the complex t-plane (e.g. Hakim, 1998). In the present paper, we revisit the problem and apply

the somewhat more sophisticated technique of exponential asymptotics based on resurgence. The

upshot is a complete asymptotic expansion for the fast oscillations that are switched on; only a few

terms in this expansion turn out to provide a remarkably accurate estimate for moderately small

values of ε, as is confirmed by comparison with numerical solutions of (1.1).

In addition to its practical value, the asymptotic analysis of (1.1) has an interest from a more

mathematical viewpoint, since it illustrates the structure of Stokes multipliers in problems with

small parameters. The Stokes multipliers give the amplitude of the subdominant terms switched

on by the Stokes phenomenon. In problems where the independent variable is the asymptotic

parameters, these are simply constants; here, however, because the asymptotics is in terms of an

independent parameter ε, the Stokes multipliers are functions of ε. What emerges from our analysis
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is that these functions can be conveniently computed as powers series.

The dependence of the Stokes multiplier on ε can be related to the fact that the (subdominant)

homogeneous solutions are defined up to arbitrary ε-dependent factors. As a result, the coefficients

in their power-series expansion in ε are defined up to arbitrary constants which appear as constants

of integration (cf. Dingle, 1973). The choice of these constants affects the resurgence relation relat-

ing the expansions of the dominant and subdominant solutions. The appearance of an expansion

for the Stokes multiplier does not seem to have been noted in earlier applications of exponential

asymptotics to differential equations with small parameters.

Since this paper discusses exponential asymptotics for an inhomogeneous linear differential equa-

tion, the results are related to the ones in Howls & Olde Daalhuis (2003), in which hyperasymptotic

expansions are given for solutions of inhomogeneous linear differential equations with a singular-

ity of rank one. As in that paper, the solutions of (1.1) that are switched on when Stokes lines

are crossed are homogeneous solutions. We start our analysis of (1.1) by obtaining their small-ε

asymptotics.

2 Homogeneous solutions

Homogeneous solutions of (1.1) satisfy

ε2

(

d2ζ

dt2
−

2t

1 + t2
dζ

dt

)

+

(

(1 + ε)

(

1 +
2ε

1 + t2

)

+
1 + t2

β2

)

ζ = 0, (2.1)

and have formal expansions of the form

ζh(t) ∼ ef(t)/ε
∞
∑

n=0

bn(t)εn, (2.2)

where f(t) satisfies the equation

f ′(t)2 +
1 + t2 + β2

β2
= 0. (2.3)
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The coefficients bn(t) satisfy the recurrence relation

2f ′(t)b′n+1(t) +

(

f ′′(t) −
2t

1 + t2
f ′(t) +

3 + t2

1 + t2

)

bn+1(t)

= −b′′n(t) +
2t

1 + t2
b′n(t) −

2

1 + t2
bn(t),

(2.4)

for n ≥ −1, where we take b−1(t) = 0. It is clear from (2.2)–(2.3) that the homogeneous solutions

describe fast oscillations with O(ε−1) frequency.

From (2.3) it follows that the differential equation has simple turning points at

tp = i
√

1 + β2, tm = −i
√

1 + β2. (2.5)

It is convenient to define for j = 1, 2 and k = p,m the functions

fjk(t) = (−1)j i

β

∫ t

tk

√

1 + β2 + τ2 dτ

= (−1)j i

2β

(

t
√

1 + β2 + t2 + (1 + β2) ln

(

t +
√

1 + β2 + t2

tk

))

, (2.6)

which satisfy (2.3). These are multi-valued functions with branch points at the turning points. We

take as the branch cuts the half lines t = ±ri
√

1 + β2, r > 1. Note that with these definitions we

have the relations f1p = −f2p, f1m = −f2m, and for the principle branch of these functions

fjp(t) = fjm(t) + (−1)j π(1 + β2)

2β
, j = 1, 2. (2.7)

With the particular choices f(t) = fjk(t), the recurrence relation (2.4) can be solved. Suitably

normalised, the first term reads

bjk0(t) =

(

t +
√

1 + β2 + t2

tk

)(−1)j iβ/2 √
1 + β2 + t2 + (−1)j iβt

(1 + β2 + t2)1/4
. (2.8)

The next terms are found by integration (2.4) and have the form

bjk,n+1(t) = −bjk0(t)

∫ t b′′jkn(τ) − 2τ
1+τ2 b′jkn(τ) + 2

1+τ2 bjkn(τ)

2f ′
jk(τ)bjk0(τ)

dτ, (2.9)

for n = 0, 1, 2, · · · . Note that in these expressions we do not specify the constants of integration;

changing these constants of integration amounts to multiplying the homogeneous solutions by an

arbitrary function of ε (cf. Dingle, 1973).
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With the notation introduced, we define four special solutions of (2.1) via their asymptotic

expansions:

ζjk(t) ∼ efjk(t)/ε
∞
∑

n=0

bjkn(t)εn, j = 1, 2 and k = p,m, (2.10)

as ε ↓ 0. For real t, the functions ζ1p(t) and ζ2m(t) are the recessive solutions and uniquely

determined by (2.10); the functions ζ1m(t) and ζ2p(t) are dominant but can be uniquely defined using

the Borel–Laplace transform (e.g. Balser, 2000) or by insisting that (2.10) holds in a sufficiently

large sector of the complex t-plane.

3 Particular integral

A particular integral of (1.1) that is free of fast oscillations can be defined by the formal asymptotic

expansion

ζinh(t) ∼
∞
∑

n=0

an(t)εn, (3.1)

as ε ↓ 0. We define ζinh completely by requiring that (3.1) be the complete asymptotic expansion

for t < 0; that is, ζinh does not contains exponentially small terms for t < 0. Equivalently, ζinh can

be defined as the Borel–Laplace transform (e.g. Balser, 2000) of the right-hand side of (3.1).

Substituting the expansion (3.1) into (1.1), we obtain the recurrence relation

a0(t) =
1 + t2

1 + β2 + t2
, a1(t) =

−β2(3 + t2)

(1 + β2 + t2)2
,

an(t) =
−β2

(

(1 + t2)a′′n−2(t) − 2ta′n−2(t) + 2an−2(t) + (3 + t2)an−1(t)
)

(1 + β2 + t2)(1 + t2)
,

(3.2)

n ≥ 2, from which the an(t) can be derived. Note that in contrast to the coefficients bjkn(t), these

coefficients do not involve arbitrary constants of integration; they are uniquely determined by (3.2).

Remark: it might seem that the an(t) have poles at t = ±i. However, a local analysis at

these points shows that these are regular points of the differential equation (1.1), and also that all

the an(t) are regular there. Hence, the only singularities of an(t) are poles at the turning points

tk, k = p,m.
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4 Stokes lines and Stokes multipliers

Through the Stokes phenomenon, the inhomogeneous solution (3.1) switches on homogeneous solu-

tions of the form (2.2) when t crosses a Stokes line. To determine the Stokes lines, and to evaluate

the corresponding Stokes multipliers, we now use the large-n asymptotics of the coefficients an(t).

Appendix B reviews the connection between the Stokes phenomenon and the growth of the coef-

ficients in the divergent asymptotic expansions. For our purpose, it is sufficient to observe that

when we substitute the ansatz

an(t) ∼ K
∞
∑

s=0

b̃s(t)Γ(n − s + α)
(

−f̃(t)
)n−s+α , (4.1)

as n → ∞, into recurrence relation (3.2), then we find that f̃(t) satisfies (2.3) and that the

coefficients b̃s(t) satisfy recurrence relation (2.4). Equation (4.1) is a typical resurgence relation,

which connects the late coefficients in the expansion of a particular solution to the coefficients of

another solution.

From the remark following (3.2) we know that, in the complex t-plane, an(t) has only singu-

larities at the turning points tp and tm. On the other hand, according to (4.1), the singularities of

an(t) are located at the zeros of f̃(t). It follows that the only candidates for f̃(t) in (4.1) are the

fjp(t) and fjm(t) defined above. The connection between resurgence and the Stokes phenomenon

indicates that the only homogeneous functions of the form (2.2) that can be switched on by ζ inh(t)

when a Stokes line is crossed behave like exp(f̃(t)/ε), where f̃(t) is one of these four candidates.

On a Stokes line these functions must be maximally subdominant; thus, the Stokes lines are

{t ∈
�
| =fjk(t) = 0} , j = 1, 2 and k = p,m, (4.2)

and are illustrated in Figure 1.

The b̃s(t) that correspond to fjk(t) are the bjks(t) defined in (2.9). These, however, are defined

up to arbitrary constants of integrations. But, the asymptotic validity of (4.1) requires a suitable

choice for these integration constants. This important point is discussed in details in section 5.
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Assuming that (4.1) holds, we determine the constants α and K by observing that as t → tk,

k = p,m,

a2n(t) ∼
9Γ(3n)

Γ(n)

(

−β2

6tk

)n+1

(t − tk)
−(3n+1), (4.3)

a2n+1(t) ∼ (2 − β2)
3Γ(3n + 2)

2tkΓ(n + 1)

(

−β2

6tk

)n+1

(t − tk)
−(3n+2). (4.4)

The reader can check this by substituting these relations in (3.2). Using (2.6), (2.8) and (4.3), we

find that, for even n, both sides of (4.1) grow like (t− tk)
−(3n/2+1) as t → tk provided that α = 1/2.

For odd n, the growth of the right-hand side with α = 1/2 is apparently faster than the growth in

(t− tk)
−(3n+1)/2 expected from (4.4). This apparent mismatch is resolved by noting that the an are

in fact obtained by summing four series of the form (4.1) (see (4.5) below), and that the dominant

contributions cancel out for odd n, leading to a growth consistent with (4.4).

We summarise the results so far in

an(t) ∼
∑

j=1,2

∑

k=p,m

Kjk

2πi

∞
∑

s=0

bjks(t)Γ(n − s + 1
2)

(−fjk(t))
n−s+1/2

, (4.5)

as n → ∞. Now we let t → tk in (4.5) and compare the results with (4.3) and (4.4). The result is

K1p = K2m =
−i
√

βπ/2

(1 + β2)3/4
, K2p = iK1p, K1m = −iK1p. (4.6)

For the moment we assume that we have taken the correct constants of integration in the bjks(t)

for (4.5) to hold. We now analyse what happens when t crosses the imaginary axis along the real

axis. The part of the imaginary axis between the two turning points is a double Stokes line. When

it is crossed, the two terms K1pε
−1/2ζ1p(t) and −K2mε−1/2ζ2m(t) are switched on, with ζ1p(t) and

ζ2m(t) exponentially small in ε, since <f1p(t) = <f2m(t) = −π(1 + β2)/(4β) < 0 for real t. (The

opposite signs of the two terms switched on arise from the fact that t rotates around tp and tm

in opposite senses as the Stokes lines are crossed.) In addition, since a double Stokes line is being

crossed, there is also a switch on of an extra term that is exponentially smaller than (the already

exponentially small) K1pε
−1/2ζ1p(t) − K2mε−1/2ζ2m(t); we will ignore this extra term. (For more

details on double Stokes lines see for example Voros (1983)).

7



PSfrag replacements

tp

tm

ζinh ζinh + K1pε
−1/2ζ1p − K2mε−1/2ζ2m

Figure 1: The Stokes lines and the Stokes phenomenon

Let ζ(t) be a solution of the inhomogeneous differential equation (1.1) that has ζ inh(t) as its

complete asymptotic expansion for t < 0, then ζ(t) has ζinh(t) + K1pε
−1/2ζ1p(t) − K2mε−1/2ζ2m(t)

as its asymptotic expansion for t > 0 (cf. Appendix B). The dominant part of K1pε
−1/2ζ1p(t) −

K2mε−1/2ζ2m(t) is found from (2.2), (2.6), (2.8) and (4.6) to be given by

−

√

2βπ

ε
e−π(1+β2+βε)/(4βε)

√

1 + β2 + t2 sinR(t, ε) + βt cos R(t, ε)

(1 + β2 + t2)1/4 (1 + β2)3/4
, (4.7)

where

R(t, ε) =
1

2βε













t
√

1 + β2 + t2 + (1 + β2) ln

(

t +
√

1 + β2 + t2
√

1 + β2

)











+
β

2
ln

(

t +
√

1 + β2 + t2
√

1 + β2

)

.

(4.8)

This dominant part depends only on the first coefficients bjk0, which are entirely defined by (2.8)

and is unaffected by the choice of constants of integrations for the bjks, s > 0. To obtain higher-

order corrections, however, it is necessary to determine the correct constants of integration in (2.9)

which ensure that (4.5) is valid. This is considered in the next section.
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5 The missing constants of integration

We first concentrate our analysis on the coefficient bjk1(t). Note that changing the constant of

integration in (2.9) has the same effect as replacing bjk1(t) by bjk1(t)+αjk1bjk0(t), where αjk1 is just

a constant. Taking bjk1(t)+αjk1bjk0(t) as the new bjk1(t) and determining all the other b-coefficients

via recurrence relation (2.9) has the same effect as replacing each bjk,s+1(t) by bjk,s+1(t)+αjk1bjks(t).

The effect on (4.5) is

an(t) ∼
∑

j=1,2

∑

k=p,m

Kjk

2πi













∞
∑

s=0

bjks(t)Γ(n − s + 1
2 )

(−fjk(t))
n−s+(1/2)

+ αjk1

∞
∑

s=0

bjks(t)Γ(n − s − 1
2)

(−fjk(t))
n−s−(1/2)













, (5.1)

as n → ∞.

The second step is the correction of bjk2(t) by bjk2(t)+αjk2bjk0(t), where αjk2 is a constant. The

effect is again that we replace all the higher bjk,s+2(t) by bjk,s+2(t) + αjk2bjks(t). Continuing this

process, we observe that adding the constants αjks to bjks(t), s = 1, 2, · · · leads to the replacement

of each bjks(t) by
s
∑

`=0

αjk`bjk,s−`,

where we have taken αjk0 = 1. The effect on the resurgence relation (4.5) is its replacement by

an(t) ∼
∑

j=1,2

∑

k=p,m

Kjk

2πi

∞
∑

`=0

αjk`

∞
∑

s=0

bjks(t)Γ(n − s − ` + 1
2 )

(−fjk(t))
n−s−`+(1/2)

, (5.2)

as n → ∞. Note that we can write (5.2) as

an(t) ∼
∑

j=1,2

∑

k=p,m

∞
∑

`=0

Kjk`

2πi

∞
∑

s=0

bjks(t)Γ(n − s − ` + 1
2)

(−fjk(t))
n−s−`+(1/2)

, (5.3)

as n → ∞, where we take Kjk` = Kjkαjk`. Hence, Kjk0 = Kjk.

The analysis above shows that taking the correct constants of integration in (2.9) for (4.5) to

be valid, is equivalent to taking the correct constants Kjk`, ` = 1, 2, 3, · · · in (5.3). Thus, instead of

trying to determine the constants of integration in (2.9), we will restrict ourselves to determining

the correct constants Kjk` in (5.3); that is, we will fix the constants of integrations in the bjks

arbitrarily (so that (4.5) does not hold in general), and compute the Kjk` for (5.3) to hold. Of
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course, once the Kjk` are known, one can redefine a set of bjks by

1

Kjk

s
∑

`=0

Kjk`bjk,s−`

so that (4.5) holds. In fact, a deeper analysis suggests that there is no alternative to the computation

of the Kjk`; in particular, there is no obvious starting point for the integrals in (2.9) which would

guarantee that (4.5) holds.

In this paper we are in the fortunate situation that we were able, in the previous section, to

determine the exact value of Kjk0 = Kjk. We now show how one can determine all the missing

constants. The method is very similar to the one discussed in Olde Daalhuis (1999). We use a

truncated version of (5.3); to be more precise, we take L terms in the ` sum in (5.3). Suppose that

we want to determine the constants Kjk` for j = 1, 2, k = p,m and ` = 0, 1, · · · , L− 1 numerically.

These are 4L unknowns. Note that for large n and bounded t the truncated version of (5.3) is an

‘equation’ in which the only unknowns are exactly these Kjk`. Thus by taking either 4L different

values for n, or for t, we obtain 4L equations with 4L unknowns. Since we can take n as large as

we want, we will be able to determine these 4L constants to any precision.

In the previous section we used (4.5) to determine the switching-on when the double Stokes

line is crossed. Since the constants of integration had not yet been determined, we were only able

to derive the switched-on terms to leading-order. We can now use (5.3) to calculate higher-order

approximations to these terms. Using (B.4)–(B.5), we can write the terms switched on when the

double Stokes line is crossed as K̃1p(ε)ζ1p(t) − K̃2m(ε)ζ2m(t), where now the Stokes multipliers

K̃1p(ε) and K̃2m(ε) are functions of ε:

K̃jk(ε) =

∞
∑

`=0

Kjk`ε
`−(1/2). (5.4)

The final result in the previous section is still the correct dominant term that is switched on when

the double Stokes line is crossed. Why do we need all these extra terms in the expansion of the

Stokes multipliers K̃1p(ε) and K̃2m(ε)? We illustrate in the next section that with these extra terms

we can obtain results that are also valid when ε is not very small. In fact, one example shows good
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results for the case ε = 1.

In the previous section a careful analysis near the turning points was necessary to determine

the exact values for the Kjk0. This required considering complex values of t. Here we note that

when we are only interested in determining the Kjk` numerically (to any precision) we can confine

our calculations to the real t-axis. In fact, the numerical method given above works better when

we take real t, because, for a given `, the four terms in the 4L equations for the Kjk` have similar

order of magnitude.

6 A numerical illustration

In the numerical illustration we take β = 1. For the constant of integration in (2.9) we take +∞ as

one of the limits of integration. Thus the b-coefficients are now well defined. We define ζ inh(t) as the

solution of (1.1) that has (3.1) as its complete asymptotic expansion for t < 0. Hence, for t < 0 we

can approximate this function via asymptotic expansion (3.1) in which we take the optimal number

of terms. (See Olde Daalhuis (1998) for more detail on the optimal number of terms in asymptotic

expansions.) From (5.3) it follows that the optimal number of terms in the approximation

ζinh(t) ≈

N−1
∑

n=0

an(t)εn, (6.1)

is N = [|fjk(t)/ε|], where [·] denotes the integer part. Note that this N depends on t, but that for

real t it does not depend on the choice of j and k. In practice, we take at least three terms, that

is, we take

N = max ([|fjk(t)/ε|] , 3) . (6.2)

In this way the discontinuities in t of the approximant are less conspicuous.

For t > 0 we have to incorporate the Stokes phenomenon and approximate ζinh(t) by

ζinh(t) ≈

N−1
∑

n=0

an(t)εn + ef1p(t)/ε
L−1
∑

`=0

K1p`

R−1
∑

r=0

b1pr(t)ε
`+r−(1/2)

+ ef2m(t)/ε
L−1
∑

`=0

K2m`

R−1
∑

r=0

b2mr(t)ε
`+r−(1/2),

(6.3)
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Figure 2: The exact (grey) and approximation (black) with ε = 0.5 and L = R = 1.

for some fixed values of L and R which we do not attempt to optimise.

In our first illustrations we take only the leading-order Stokes multipliers and only the first

b-coefficients, that is we set L = R = 1. We take t = −5 and ε = 1/2 and compute ζinh(t) and

its derivative via (6.1). To compute the ‘exact’ ζinh(t) numerically we take these two values and

integrate the differential equation (1.1) in the positive t direction. This gives the grey curve in

Figure 2. The black curve in this Figure is (6.1) for t < 0 and (6.3) with L = R = 1 for t > 0.

Note that the black curve has discontinuous jumps because that the optimal number of terms N

changes with t. If we did not incorporate the Stokes phenomenon then the black curve would be

symmetric in t, and there would be no oscillations on the right-hand side of Figure 2. Note that,

in this first illustration, the small parameter ε = 0.5 is not very small; taking only the dominant

terms of the parts that are switched on gives nonetheless a very good approximation for t > 0.

In the second illustration we take the even larger value ε = 1, and the result is given in Figure 3.

This time, the leading-order approximation is not as good for t > 0. More terms in the expansion

of the Stokes multipliers, and more b-coefficients are needed to obtain a better approximation. We

now fix L = R = 5. To compute the Stokes multipliers we use the approximation

an(t) ≈
∑

j=1,2

∑

k=p,m

4
∑

`=0

Kjk`

2πi

4
∑

r=0

bjkr(t)Γ(n − r − ` + 1
2 )

(−fjk(t))
n−r−`+(1/2)

. (6.4)

In this equation, the an(t) and bn(t) are calculated numerically from their recurrence relation,
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Figure 3: The exact (grey) and approximation (black) with ε = 1 and L = R = 1.

and the Kjk` (including Kjk0) are regarded as unknowns. Hence, (6.4) is one equation with 20

unknowns. By taking t = 1/2 and for n the values 181, 182, · · · , 200, we obtain 20 equations and

solve them. The result is

K1p0 = −0.7452250447i,

K1p1 = −0.3105104338 − 0.4657656523i,

K1p2 = −0.0232886541 + 0.3383269912i,

K1p3 = 0.1744022316 − 0.1406351894i,

K1p4 = −0.1578173268 − 0.0112755970i,

(6.5)

and iK1p` and iK2m` are complex conjugates, as can be expected from symmetry.

We take these Stokes multipliers and use them in (6.3) with L = R = 5. The result is the black

curve in Figure 4 which provides an excellent approximation to the exact solution.

7 Discussion

We have studied the exponential asymptotics of (1.1) using the resurgence relationswhich relate

the late terms in the asymptotic expansion of its particular integral to the early terms in the

expansion of its homogeneous solutions. Our approach, applicable to a wide class of problems with
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Figure 4: The exact (grey) and approximation (black) with ε = 1 and L = R = 5.

small parameters, highlights the relationship between (i) the constants of integrations that appear

when constructing the homogeneous solutions, and (ii) the ε-dependence of the Stokes multipliers.

The constants of integration can be chosen arbitrarily (reflecting the fact that the homogeneous

solutions are defined up to an arbitrary function of ε). Different choices lead to different forms of

the Stokes multipliers, so that the subdominant terms that are switched on are left invariant.

The particular equation studied in this paper describes the spontaneous generation of inertia-

gravity waves in a model of geophysical fluid. The results of Vanneste & Yavneh (2004) about the

exponential smallness of this generation are recovered here using a different exponential-asymptotic

technique. A useful extension is the computation of the switched-on terms describing the inertia-

gravity waves to higher-order in ε: this makes it possible to estimate the wave amplitude with good

accuracy for the values of the ‘small’ parameters as large as 1, that is, for values of the Rossby

number large enough for the waves to have amplitudes similar to that of the balanced motion which

generates them.
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A Derivation of (1.1)

Equation (1.1) follows from an exact reduction of the partial differential equations governing the

dynamics of a rotating stratified fluid. Specifically, introducing solutions of the form

(u, v, w, b) = (Σy, 0, 0, 0) + <
{

[û(t), v̂(t), ŵ(t), b̂(t)]ei[k(x−Σyt)+mz]
}

into the hydrostatic Boussinesq equations (e.g. Gill, 1982) leads to a set of ordinary differential

equations for û(t), v̂(t), ŵ(t) and b̂(t). In the above, (u, v, w) are the three components of the

fluid velocity, and b is the buoyancy; their form is that of a wave, with time-dependent wavevector

(k,−kΣt,m), superimposed on a horizontal Couette flow, with shear Σ. A single ordinary differ-

ential equation can be derived for ζ(t) = ikv̂(t) + iΣktû(t); when suitably non-dimensionalised,

it takes the form (1.1), where ε = |Σ|/f and β = fm/(Nk) and we have assumed that Σ < 0.

Here the Coriolis parameter f and Brunt–Väisälä frequency N characterise the fluid’s rotation and

stratification.

McWilliams & Yavneh (1998) and Vanneste & Yavneh (2004) provide a detailed derivation of

a slightly more general version of (1.1) obtained when the hydrostatic approximation is not made.

Their equation reduces to (1.1) in the limit m/k → ∞, N/f → ∞ with β fixed.

B Asymptotic expansions of Gevrey order one

In the discussion below the set of variables x is kept constant.

An asymptotic expansion of the form

y(x, ε) ∼ ef(x)/ε
∞
∑

n=0

an(x)εn−α, as ε → 0 in sector β1 < ph ε < β2 (B.1)

is of Gevrey order one (see, e.g., Balser, 2000) if for all positive integers N and all ε in subsectors

of the form |ε| ≤ r, β1 < γ1 ≤ ph ε ≤ γ2 < β2 we have the estimates

∣

∣

∣

∣

∣

e−f(x)/εεαy(x, ε) −

N−1
∑

n=0

an(x)εn

∣

∣

∣

∣

∣

≤
CN !

αN
εN , (B.2)
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where C and α depend only on r, γ1 and γ2.

We assume that we are dealing with a linear finite dimensional problem in which all small ε

asymptotic expansions are of Gevrey order one. Let

ỹ(x, ε) = ef0(x)/ε
∞
∑

n=0

an0(x)εn−α0 , (B.3)

be a formal solution of our problem. Suppose y1(x, ε) and y2(x, ε) are two distinct solutions of our

problem, each having ỹ(x, ε) as their complete asymptotic expansion in open ε-sectors S1 and S2,

respectively. Since we assume that our problem is linear y1(x, ε) − y2(x, ε) is also a solution. In

the case that the sectors S1 and S2 overlap, y1(x, ε) − y2(x, ε) has as asymptotic expansion

y1(x, ε) − y2(x, ε) ∼
∑

j 6=0

νjKj(ε)e
fj (x)/ε

∞
∑

n=0

anj(x)εn−αj , (B.4)

where νj = ±1, as ε → 0 in the sector S1 ∩ S2. Compared with ỹ(x, ε) the asymptotic expansion

with index j in (B.4) is of course exponentially small in S1 ∩ S2. It is switched on by ỹ(x, ε) when

Stokes line {ε ∈
�
|ph ε = ph (f0(x) − fj(x))} is crossed. In (B.4) the Kj(ε) are nonzero functions

of ε. The dependence on ε is related to the fact that the functions y1(x, ε) and y2(x, ε) in (B.1) are

typically defined up to multiplication by arbitrary functions of ε; only for special choices of these

functions can the Stokes multipliers be made ε-independent.

By varying sectors S1 and S2 we determine all the asymptotic expansions that can be switched

on by ỹ(x, ε). All these Stokes phenomena are reflected in the growth of the coefficients. One can

prove, for example using the Cauchy-Heine transform (see Balser (2000), and for an application

Olde Daalhuis & Olver (1994)), that

an0(x) ∼
∑

j

Kj

2πi

∞
∑

s=0

asj(x)
Γ (n − s + αj − α0)

(f0(x) − fj(x))n−s+αj−α0
, (B.5)

as n → ∞. In (B.5) the j-sum is over all the asymptotic expansions that can be switched on by

ỹ(x, ε).

In many problems (for example in this paper) it is relatively easy to determine an asymptotic

expansion of the form (B.5) directly from the recurrence relations of the coefficients an0(x). In
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this way we are able to determine the asymptotic expansions (and especially the fj(x)) that are

switched on when the Stokes lines are crossed.

The main differential equation (1.1) is inhomogeneous. However, we can differentiate this

equation and construct a third order linear homogeneous ODE, which has as solutions all the linear

combinations of solutions of (1.1) and (2.1). Hence, the results of this Appendix apply to the main

problem discussed in this paper.

References

Balser, W. 2000, Formal power series and linear systems of meromorphic ordinary differential

equations, Universitext, Springer-Verlag, New York.

Dingle, R. B. 1973, Asymptotic expansions: their derivation and interpretation, Academic Press.

Gill, A. E. 1982, Atmosphere-ocean dynamics, Academic Press.

Hakim, V. 1998, Asymptotic techniques in nonlinear problems: some illustrative examples, in
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