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The spontaneous generation of inertia-gravity waves by balanced motion at low Rossby

number is examined using Lorenz’s five-component model. The mostly numerical

analysis by Lorenz & Krishnamurthy of a particular (homoclinic) balanced solution is

complemented here by an asymptotic analysis. An exponential-asymptotic technique

provides an estimate for the amplitude of the fast inertia-gravity oscillations which are

generated spontaneously, through what is shown to be a Stokes phenomenon. This

estimate is given by 2πκε−2 exp[−π/(2ε)], where ε � 1 is proportional to the Rossby

number and the prefactor κ is determined from recurrence relations. The nonlinear

dependence of κ on the O(1) rotational Froude number indicates that the feedback

of the inertia-gravity waves on the balanced motion directly affects their amplitude.

Numerical experiments confirm the analytic results. Optimally truncated slaving

relations are used to separate the exponentially small inertia-gravity oscillations from

the (much larger) slow contribution to the dependent variables. This makes it possible

to examine the switching-on of the oscillations in detail; it is shown to be described

by an error function of t/ε1/2 as predicted theoretically. The results derived for

the homoclinic solution of Lorenz & Krishnamurthy are extended to more general,

periodic, solutions.
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1 Introduction

Initialisation, slow manifold, balanced dynamics and other related concepts can use-

fully be understood by studying finite-dimensional, low-order models. This approach

was pioneered by Lorenz who introduced, in particular, a five-component trunca-

tion of the shallow-water equations (Lorenz 1986) which has become a central tool

in the investigation of these concepts. The model is often referred to as the Lorenz–

Krishnamurthy model, after the subsequent work in which a forced-dissipative version

was introduced to examine the spontaneous generation of inertia-gravity waves by bal-

anced motion (Lorenz & Krishnamurthy 1987). Since then, the Lorenz–Krishnamurthy

model, either in conservative or forced-dissipative versions, has been the subject of

many papers (Jacobs 1991, Lorenz 1992, Boyd 1994, Fowler & Kember 1996, Camassa

1995, Boyd 1995, Bokhove & Shepherd 1996, Camassa & Tin 1996, to give a long,

yet non-exhaustive, list). The reason for this appeal is that the model is arguably

the simplest in which the interactions between slow vortical modes (represented by

a triad of Rossby waves) and fast inertia-gravity modes (represented by a pair of

inertia-gravity waves) are described in a realistic manner.

Lorenz & Krishnamurthy (1987) examined a particular solution of their model

in the small-Rossby-number limit to demonstrate that a solution that is initially

perfectly balanced inevitably develops fast inertia-gravity oscillations in the course

of time. This has two major implications: (i) it establishes the non-existence of an

exactly invariant slow manifold for the model (see also Lorenz (1986) and Bokhove &

Shepherd (1996) for further discussion and the definition of a slowest “manifold”); and

(ii) it exhibits a physical mechanism for the spontaneous generation of inertia-gravity

waves.

It is of interest, especially in view of the practical implications of (ii), to estimate

3



the amplitude of the inertia-gravity waves that are generated. Lorenz & Krishna-

murthy (1987) used numerical solutions to show that this amplitude is exponentially

small; that is, it is proportional to exp(−α/ε), where ε � 1 is the relevant small

parameter and α > 0 a constant. In terms of the rotational Froude number b and

Rossby number R, ε is defined by

ε =
bR√
1 + b2

, (1.1)

and it can be recognized as the ratio of the nonlinear frequency Rf , with f the

Coriolis parameter, to the inertia-gravity-wave frequency f
√

1 + 1/b2 (Bokhove &

Shepherd 1996). Lorenz & Krishnamurthy (1987) supported their numerical results

by an analytical estimate which assumes that b � 1 in addition to (and prior to)

ε � 1. The aim of the present paper is the derivation of a more general analytic

estimate, valid in the regime where b = O(1), R � 1 and hence ε = O(R) � 1.

This is the usual low-Rossby-number quasi-geostrophic regime, the regime relevant

to Lorenz & Krishnamurthy (1987)’s numerical calculations.

To derive this estimate and capture the exponentially small gravity-wave ampli-

tude, we use the techniques of exponential asymptotics, or asymptotics beyond all

orders (see, e.g., Segur, Tanveer & Levine (1991)). The relevance of these techniques

to the problem at hand has been pointed out in the past (Boyd 1995, Fowler & Kem-

ber 1996) but their application seems to be new. Vanneste & Yavneh (2003) use

exponential asymptotics to estimate the amplitude of the inertia-gravity waves that

appear spontaneously in a family of exact, sheared-disturbance, solutions to the three-

dimensional Boussinesq equations which are described by a (non-autonomous) linear

ordinary differential equation. The present paper treats the Lorenz–Krishnamurthy

model in a similar manner. There are, however, important differences mostly because

the Lorenz–Krishnamurthy model is nonlinear. As a result, the connection problem

which underlies the exponential-asymptotic analysis cannot be solved in closed form,
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in contrast to that in Vanneste & Yavneh (2003). The amount of numerical calcula-

tion that is required is nevertheless modest: the use of a Borel-summation technique

reduces the problem to the determination of a single function of b that is obtained

from a (nonlinear) recursion.

The generation of exponentially small inertia-gravity waves from balanced mo-

tion occurs through a Stokes phenomenon (e.g., Olver (1974) or Ablowitz & Fokas

(1997)). It corresponds to the switching-on of a subdominant term (associated with

the waves) when the real-valued time t crosses a Stokes line which emanates from

singularities of the balanced motion in the complex t-plane. Physically, this means

that the waves appear quite suddenly near a fixed time which is easy to identify. The

theory of the Stokes phenomenon (Berry 1989) provides a detailed description of the

manner in which the subdominant term is switched on. We confirm the relevance of

this description to the inertia-gravity-wave problem by showing that the wave am-

plitude estimated from numerical solutions behaves as an error-function of t/ε1/2, in

agreement with the theoretical prediction of Berry (1989).

It should be noted that our analysis is local in time in that it accurately describes

the dynamics only for a finite, O(1), time after the inertia-gravity-wave generation.

While the inertia-gravity waves leave the balanced motion essentially unaffected on

such time scales, they have a systematic effect on longer times scales (O(ε−1) or

larger). This systematic effect is, of course, crucial when global issues, such as the

existence of invariant (but not slow) manifolds, are addressed. The (formal) asymp-

totic techniques used in this paper are not appropriate to study such issues. (See,

e.g., Lorenz (1992), Camassa (1995), Bokhove & Shepherd (1996) and Camassa &

Tin (1996) for some global results.)

The plan of the paper is as follows. In §2 we introduce the Lorenz–Krishnamurthy

model and the particular solution (homoclinic to a fixed point when ε = 0) under con-
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sideration. The exponential-asymptotic analysis leading to an estimate for the ampli-

tude of the inertia-gravity waves is carried out in §3. This estimate is checked against

numerical results in §4. The rapidly oscillating, inertia-gravity-wave component of

the numerical solutions is isolated from the much larger slow balanced component

using high-order slaving (Warn, Bokhove, Shepherd & Vallis 1995, Bokhove & Shep-

herd 1996). This technique is sufficiently accurate to capture the switching-on of

inertia-gravity waves and demonstrate its agreement with the theoretical prediction.

The paper concludes with a few remarks in §5.

Most of the paper is devoted to the homoclinic balanced solution considered by

Lorenz & Krishnamurthy (1987). As is well known, this solution is the limiting

member of a one-parameter family of periodic solutions which can be written in

terms of elliptic functions. We devote Appendix A to the derivation of an estimate

for the amplitude of the inertia-gravity waves that are generated by these more general

balanced solutions. This analytic estimate is confirmed numerically.

2 Model

We consider Lorenz’s five-component model (Lorenz 1986) in the conservative (or

inviscid) form

u̇ = −vw + εbvy,

v̇ = uw − εbuy,

ẇ = −uv, (2.1)

εẋ = −y,

εẏ = x + buv,
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where ε is related to the rotational Froude number b and Rossby number R according

to (1.1). The variables have been scaled following Bokhove & Shepherd (1996), but

with an additional factor ε for the fast variables x and y. (It may be noted that (2.1)

reduces to a two-degree-of-freedom Hamiltonian system (Camassa 1995, Bokhove &

Shepherd 1996), although we make no explicit use of this fact.)

An approximate balance is possible when ε � 1. In this limit, (2.1) describes

the interaction between a slow Rossby-wave triad (u, v, w) with O(1) (nonlinear)

frequency, and a fast inertia-gravity-wave pair (x, y) with (linear) frequency 1/ε � 1.

It is, of course, on this formal frequency separation that the concept of balance rests.

In this paper, we concentrate on one of the possible ways to approach the limit ε � 1,

namely R � 1 and b = O(1). This corresponds to the standard quasi-geostrophic

regime, with small Rossby and Froude numbers R and F = Rb (cf. Pedlosky (1987)).

When ε = 0, the slow variables (u, v, w) decouple from the fast ones (x, y), and

exact solutions of (2.1) are readily found. Following Lorenz & Krishnamurthy (1987),

we consider mainly the homoclinic solution

u0 = sech t, v0 = − tanh t, w0 = −sech t, x0 = −bu0v0, y0 = 0, (2.2)

which, clearly, is formally slow, devoid of inertia-gravity oscillations. More general,

periodic, solutions are considered in Appendix A. (Note that there is no loss of

generality in taking unit amplitudes for the hyperbolic functions in (2.2) as this can

be arranged by suitably defining ε. Moreover, the signs of any pair in (u0, v0, w0) can

be changed freely; here we follow the choice of Lorenz & Krishnamurthy (1987).)

When ε 6= 0, it is natural to seek a slow solution as a perturbation of (2.2). This

is achieved formally by introducing expansions of the form

ubal =

N
∑

n=0

εnun, · · · (2.3)

into (2.1) and solving order by order for the coefficients un, vn, etc. up to some
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order n = N . The solutions so obtained are balanced approximations, hence the

subscript bal, which do not contain explicit fast oscillations and satisfy the following

symmetries:

ubal(−t) = ubal(t), vbal(−t) = −vbal(t), wbal(−t) = wbal(t),

xbal(−t) = −xbal(t), ybal(−t) = ybal(t). (2.4)

That they cannot capture the dynamics of (2.1) completely, however small ε and

however large N , emerges from two pieces of evidence. Firstly, the balanced approx-

imations (2.3) are only asymptotic and generally diverge as N → ∞ (Lorenz 1986).

This can be attributed to their failure to capture exponentially small terms, expected

to represent fast inertia-gravity oscillations. Secondly, such oscillations appear clearly

in the numerical solutions of (2.1): as shown by Lorenz & Krishnamurthy (1987), so-

lutions that are well balanced for t → −∞ develop exponentially small inertia-gravity

for t > 0.

Figure 1, which is similar to Figure 5 in Lorenz & Krishnamurthy (1987), illus-

trates this point. It shows the evolution of the fast variable y(t) for b = 0.5 and for

three different values of ε. This evolution has been obtained by solving (2.1) numer-

ically, starting with the leading-order balanced solution (2.2) at some large negative

time (specifically t = −10). While y(t) remains apparently balanced as long as t < 0,

fast oscillations appear for t > 0 which break the symmetry (2.4). They are clearly

visible for ε = 0.15 and ε = 0.125; for ε = 0.1 they are too weak to be distinguished

directly but would appear in the difference between y and some sufficiently good

balanced approximation ybal. Note that an integration time much longer than that

shown in Figure 1 would reveal a succession of transient events similar to the one

occuring near t = 0, with, correspondingly, a succession of changes in the amplitude

of the fast oscillations. This large-time behaviour, mentioned in the Introduction,
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is however not the concern of this paper. Thus, implicit to our discussions, will be

the assumption that t is small enough for the single transient event near t = 0 to be

relevant. Assuming εt � 1 is certainly sufficient.

Our objective is to provide an analytic estimate for the amplitude of the fast

inertia-gravity oscillations. To separate them from the balanced component of the

dynamics, we write

x = xbal + xigw and y = ybal + yigw, (2.5)

with similar expressions for u, v and w. Here, the balanced approximations xbal and

ybal are taken to some finite truncation order N , ideally the optimal truncation order

(where the series (2.3) reach their least term). For the homoclinic solution (2.2) and

for large |t|, the choice of N is not crucial and N = 0 can be taken because the rapid

decay of u0 and w0 with |t| leads to terms xn, yn, · · · , n ≥ 1 which are very small

except for n exceedingly large. For moderate values of |t| the choice of N is more

delicate; a practical approach to find a near-optimal N is discussed in §4.

We remark that it is not a priori obvious whether the separation (2.5) between

balanced and inertia-gravity-wave components is a useful one. A difficulty is that xbal

and ybal are effectively defined up to exponentially small (slow) terms, depending on

the precise value taken for N (at an O(1) distance from its optimal value). These

terms could be of the same order as or larger than the rapidly oscillating terms which

one wants to associate with xigw and yigw. However, Berry’s analysis of the Stokes

phenomenon (Berry 1989) suggests that they are in fact asymptotically smaller, so

xigw and yigw genuinely represent the rapidly oscillating inertia-gravity waves. This

justifies the separation (2.5) and explains why similar approaches have been used

successfully (Warn & Menard 1986, Bokhove & Shepherd 1996).

At leading order, the inertia-gravity-wave components xigw and yigw are given by
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the homogeneous solution of (2.1)

xigw ∼ C cos(t/ε + φ) and yigw ∼ C sin(t/ε + φ) (2.6)

for some real C and φ. (The inertia-gravity-wave component of u, v and w is a factor

ε2 smaller (see (2.1)) and will not be considered further.) We examine solutions

which are well balanced, i.e. which have C = 0 at some initial time t < 0. It can be

shown that C remains 0 (and φ a constant) until t reaches a small neighbourhood of

t = 0 where a Stokes phenomenon (Olver 1974, Ablowitz & Fokas 1997) takes place.

There, exponentially small fast oscillations are switched on: C jumps to a non zero,

exponentially small value, and φ changes. The oscillations then persist with the same

amplitude C and phase φ for an asymptotically long (but finite) time.

In the next section, we use exponential asymptotics to estimate the amplitude C

analytically. (The reader not interested in the derivation of C may directly skip to

equation (3.8) which gives the final result.) Numerical experiments are used in §4 to

confirm this estimate and to describe the behaviour of the inertia-gravity oscillations

in the switching-on region around t = 0.

3 Exponential asymptotics

The divergence of the balanced series (2.3) and the generation of exponentially small

oscillations can be traced to the singularities of the terms of (2.3) in the complex

t-plane and to the Stokes lines which emanate from these singularities and across

which exponentially small terms can be switched on. The leading-order terms (2.2)

and higher-order terms indicate that the singularities of (2.3) are located at t =

i(π/2 + kπ), k ∈ �
. The ones closest to the real axis, i.e. t = ±iπ/2, dominate the

asymptotics; here we consider the contribution of the singularity at t = t? = iπ/2,

given that the contribution of t = −iπ/2 is simply its complex conjugate.
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In general, Stokes lines are curves in the complex t-plane where one asymptotic

solution is maximally dominant over another asymptotic solution. Writing the dom-

inant and subdominant controlloing behaviour of x(t) (or y(t)) as exp[φ+(t)/ε] and

exp[φ−(t)/ε], respectively, the Stokes lines emanating from t? are equivalently defined

by the condition

Im [ϕ+(t) − ϕ−(t)] = Im [ϕ+(t?) − ϕ−(t?)]. (3.1)

In our context, the dominant term is the balanced component, with ϕ+ = 0, and the

subdominant term is the inertia-gravity-wave component, with ϕ− = −it (cf. (2.6)

and (3.3) below; the solution with ϕ = it would be exponentially large for real t so

its amplitude remains zero). Thus, according to (3.1), Re t = Re t? = 0 consists of

Stokes lines; the relevant Stokes line is in fact the segment joining −iπ/2 to iπ/2.

With t real as should physically be the case, the generation of the exponentially small

term associated with inertia-gravity waves occurs therefore at t = 0. See Figure 2 for

an illustration.

A standard approach to calculate this term relies on the complexification of the

time t and on the solution of the differential equations (2.1) in a neighbourhood of

the singularity t? using matched asymptotics. The central idea is that near t? the

dominant and subdominant terms have comparable orders of magnitude so that both

can be estimated using standard perturbation techniques. This approach is followed

here. We only sketch the derivation and refer the reader to Hakim (1998) for a detailed

exposition of the method.

Near t?, we find the leading-order balanced components as

u0 ∼
−i

t − t?
, v0 ∼

−1

t − t?
, w0 ∼

i

t − t?
, x0 ∼

−ib

(t − t?)2
, y1 ∼

−2ib

(t − t?)3
(3.2)

and the inertia-gravity-wave components as

xigw ∼ A±e−π/(2ε)ei(t−t?)/ε + B±eπ/(2ε)e−i(t−t?)/ε,
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yigw ∼ −iA±e−π/(2ε)ei(t−t?)/ε + iB±eπ/(2ε)e−i(t−t?)/ε. (3.3)

The ± superscripts refer to t � 0 for real t or, more generally, to the left and right

of the Stokes line for complex t. Assuming the absence of inertia-gravity waves for

t < 0, we take A− = B− = 0. On the right of the Stokes line, we expect A+ = 0 and

B+ non zero but exponentially small. An estimate for B+ is obtained by examining

(2.1) in an neighbourhood of t?.

In this inner region, we use the rescaled time variable τ defined by

t = t? + ετ.

The asymptotic behaviours (3.2) suggest the introduction of the rescaled dependent

variables

U = εu, V = εv, W = εw, X = ε2x, Y = ε2y.

Introducing these rescaled variables into (2.1), we find the inner version of the five-

component model,

U ′ = −V W + bV Y,

V ′ = UW − bUY,

W ′ = −UV, (3.4)

X ′ = −Y,

Y ′ = X + bUV,

where ′ denotes differentiation with respect to τ . Somewhat disappointingly, this

inner system is nothing other than the full Lorenz system (2.1) with ε = 1, so that a

complete analytical solution of inner problem cannot be expected. However, such a

complete solution is not needed: what is required for matching with the outer problem

is the behaviour of the solution for large |τ | and, more specifically, a connection

12



formula relating the form of the solution on either side of the Stokes line arg τ = −π/2

(see Figure 2). Here, we obtain this connection formula using a Borel-summation

technique (Hakim 1991, Hakim 1998).

For large |τ |, the solution of (3.4) can be sought in the form of series expansions

U =
∞

∑

n=1

Un

τ 2n−1
, V =

∞
∑

n=1

Vn

τ 2n−1
, W =

∞
∑

n=1

Wn

τ 2n−1
,

X =
∞

∑

n=1

Xn

τ 2n
, Y =

∞
∑

n=1

Yn

τ 2n+1
. (3.5)

Matching with (3.2) gives the n = 1 coefficients as

U1 = −i, V1 = −1, W1 = i, X1 = −ib, Y1 = −2ib.

The higher-order coefficients are then derived easily from the recurrence relations

that obtain when the series expansions (3.5) are introduced into (3.4). These coeffi-

cients are growing rapidly with n suggesting that the series are asymptotic and not

convergent.

The required connection formula depends on the form of the (late) coefficients Xn

and Yn for n � 1. An examination of the recurrence relations indicates that these

coefficients have the form

Xn ∼ i(−1)n(2n − 1)! κ and Yn ∼ i(−1)n(2n)! κ, (3.6)

where κ is a function of b that can be estimated numerically (see below). The con-

nection formula is then found using Borel summation. Concentrating on Y for con-

venience, we define its Borel transform BY (ξ) as the series

BY (ξ) =

∞
∑

n=1

Yn

(2n)!
ξn

which is clearly convergent for |ξ| < 1. A straightforward calculation then shows that

the series for Y is recovered formally from the inversion formula

Y (τ) =
1

τ

∫

∞

0

e−sBY

(

s2/τ 2
)

ds. (3.7)
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In this form, Y is a solution of (3.4) which can be made analytic by a suitable choice

of integration path; this makes it possible to connect the solution analytically across

the Stokes line arg τ = −π/2.

We note from the late coefficients Yn/(2n)! ∼ i(−1)nκ in the expansion of BY (ξ)

in powers of ξ that BY (ξ) is singular for ξ = −1, with the behaviour

BY (ξ) ∼ iκ

1 + ξ
.

Correspondingly, the integrand in (3.7) has poles for s = ±iτ . These poles move as t

travels along the real axis: in particular, we note that −π < arg τ < −π/2 for t < 0,

and −π/2 < arg τ < 0 for t > 0 (see Figure 2). If we take the integration path in (3.7)

to be along the positive real axis when −π < arg τ < −π/2, then the singularities do

not contribute to Y (τ). This solution matches the oscillation-free ybal(t) for t < 0.

As arg τ increases beyond −π/2, the pole s = iτ crosses the positive real axis and

the integration path in (3.7) must be deformed for Y (τ) to be analytic (see Figure

3): thus, for −π/2 < arg τ < 0, the integral in (3.7) includes the contribution of the

pole s = iτ . It is this contribution, readily calculated to be

Yigw(τ) = −iπκe−iτ ,

which matches the oscillatory term yigw(t) for t > 0. Matching with (3.3) gives A+ = 0

and

B+ = −πκε−2e−π/(2ε).

Taking into account the contribution of the singularity at t = −t?, complex conjugate

that to just obtained, we find that the inertia-gravity-wave amplitude in (2.6) is

C = 2πκε−2e−π/(2ε) (3.8)

while the phase is φ = π. Note that the small parameter ε is present in the prefactor

besides appearing in the exponential as expected. The ε−2-dependence of the prefactor
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takes its proper meaning when one recalls that, with the scaling chosen, the balanced

component of the fast variable x is O(1) (see (2.2)).

The central formula (3.8) becomes practically useful once the dependence of the

prefactor κ on b is established. This dependence is found numerically from (3.6),

written as

κ = lim
n→∞

κn, where κn =
i(−1)n+1Yn

(2n)!
,

and where the Yn are calculated using the recurrence relations for the coefficients in

the inner expansion (3.5). The estimates κn thus obtained turn out to converge quite

slowly with n when b is not small; to accelerate convergence, we have employed a

form of second-order Richardson extrapolation based on the assumption that κn =

κ + a1/n + a2/n
2 + · · · for given constants a1 and a2 (Byatt-Smith 2000). With

this method, converging results with a relative accuracy of 10−4 are obtained in a

reasonable number of iterations.

The estimate of κ for a few values of b as well as the number of iterations required

are reported in Table 1. A more complete picture is given by Figure 4 which displays

κ as a function of b for 0 ≤ b ≤ 6. (As many as 78 iterations were required to

estimate κ with the desired accuracy when b = 6.) Interestingly, the curve, while

increasing for small b, is non-monotonic and appears to decay to zero for large b.

This implies that the spontaneous generation of inertia-gravity waves can in fact be

decreased by increasing the rotational Froude number b. (The maximum of κ can

be located accurately as κ = 0.4660 for b = 0.7444.) Also, κ vanishes for several

values of b; for these values, the inertia-gravity-wave generation associated with the

singularities of the balanced motion at t = ±iπ/2 vanishes at leading order. This does

not necessarily imply that the wave generation vanishes exactly for values of b close

to those for which κ = 0: the contribution of lower-order terms in the perturbation

expansion, and the role of the singularities at t = i(π/2 + kπ), k ∈ � \{−1, 0} need
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to be considered before definite conclusions are drawn.

Lorenz & Krishnamurthy (1987) derived an estimate for the inertia-gravity-wave

amplitude in the limit of small b (see also Camassa (1995) and Camassa & Tin (1996)

for studies of the small-b regime). In our notation, this estimate reads

CLK = 2πbε−2e−π/(2ε), (3.9)

corresponding to (3.8) with b replacing κ. It follows readily from (2.1) when the

first two equations are simplified by discarding the terms proportional to b so that

the evolution of (u, v, w) decouples from that of (x, y). A priori the estimate (3.9)

assumes that b � ε because it is obtained by taking b → 0 before ε → 0. However,

our approach recovers it as a limiting case. Indeed, it can be shown that

κ ∼ b for b � 1, (3.10)

i.e. (3.8) reduces to (3.9) for small b. The limited range of validity of the linear

approximation (3.9)–(3.10) appears in Figure 4 which shows this approximation to

κ as well as the exact value. In particular, for the realistic choice b = 0.5 made by

Lorenz & Krishnamurthy (1987), (3.9) overestimates the actual value κ = 0.4077 by

about 20%.

4 Comparison with numerical results

In this section, we employ numerical solutions of (2.1) to verify the analytic result

(3.8) and to examine the generation of inertia-gravity waves for t ≈ 0. For this we need

to extract the inertia-gravity-wave components xigw(t) and yigw(t) from the numerical

solutions for x(t) and y(t). As mentioned in §2, this can in principle be achieved by

subtracting from x(t) and y(t) a balanced approximation xbal(t) and ybal(t). There

are, however, difficulties with the direct use of such balanced approximations. As
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pointed out by Warn et al. (1995), secular terms appear in the evolution equations,

which invalidate the approximations for large times. These difficulties are overcome

either by using multiple time scales or by using slaving. The slaving approach provides

a balanced approximation by regarding the fast variables (x, y) as functions of the

slow ones (u, v, w) (Warn et al. 1995). Introduction of such a slaving relation into

(2.1) then leads to the so-called superbalance equation (Lorenz 1980) which can be

solved asymptotically, order-by-order in ε. We use this approach.

Specifically, neglecting terms of order O(ε2N+2) for some fixed N , we write the

slaving relations as

xN
sla(u, v, w) =

N
∑

n=0

ε2nx̂n(u, v, w) and yN
sla(u, v, w) =

N
∑

n=0

ε2n+1ŷn(u, v, w)

and derive the functions x̂n and ŷn by introduction into (2.1). The first few are given

by

x̂0 = −buv, ŷ0 = b(u2 − v2)w, x̂1 = b(uv3 − u3v − 4uvw2), · · ·

and can be verified against those obtained by Bokhove & Shepherd (1996) who used

the reduction of (2.1) to a two-degree-of-freedom Hamiltonian system. Higher-order

terms are derived using a symbolic computation package for N up to 7, i.e. for a first

neglected term of order O(ε16).

With the slaving relations, a balanced approximation (ubal, vbal, wbal) to (u, v, w)

is obtained by solving numerically the corresponding balanced model which consists

of the first three equations of (2.1) where xN
sla(u, v, w) and yN

sla(u, v, w) are substituted

for x and y. The inertia-gravity-wave component of x could then be calculated as the

difference xigw = x − xsla(ubal, vbal, wbal), and similarly for y. However, we found it

expedient to avoid the integration of the balanced model, using the approximations

xigw ≈ x − xsla(u, v, w) and yigw ≈ y − ysla(u, v, w),
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where (u, v, w) come from the full numerical solutions, i.e. include fast inertia-gravity

oscillations. This approximation is a valid one because the inertia-gravity-wave part

of (u, v, w) is, as (2.1) indicates, smaller than that of (x, y) by a factor ε2.

As a measure of the amplitude of the inertia-gravity waves we therefore introduce

IN =
{

[

x − xN
sla(u, v, w)

]2
+

[

y − yN
sla(u, v, w)

]2
}1/2

.

The numerical evaluation of IN provides the desired estimate for the amplitude C:

starting with the leading-order balanced solution (2.2) at some large negative t (or

more generally with a near-optimal balanced solution for any negative t outside a

neighbourhood of 0), we find that IN = 0 for t < 0. After a sharp transition near

t = 0 which we describe below, IN tends to a constant value,

IN(t) → Cnum = C[1 + O(ε)], (4.1)

essentially independent of N for t > 0. Computations for several values of b and

ε confirm this is the case and provide a verification for the theoretical expression

(3.8) for C. Figure 5 shows typical results: it compares the theoretical C with its

numerical estimate Cnum as a function of ε for b = 0.5 and for b = 1.5. The agreement

is excellent, particularly for b = 0.5, and the discrepancies, decreasing with ε, are

consistent with the linear error in (4.1).

Figure 6 refines the comparison between theoretical and numerical estimates of the

inertia-gravity-wave amplitude by showing the factor κ in (3.8) as a function of b. The

theoretical value is compared with two numerical approximations Cnumε2 exp[π/(2ε)]/(2π)

obtained for ε = 0.08 and 0.06. The agreement is good for small b but degrades as b

increases, suggesting that the error term in (4.1) is rapidly increasing with b. This is

supported by a third estimate, obtained from the two numerical approximations by

linear extrapolation, which gives a significantly improved agreement with the theo-

retical κ for b as large as 2. This third estimate is reported as κnum in Table 1.

18



The recognition that the inertia-gravity-wave generation is associated with a

Stokes phenomenon makes it possible not only to estimate the final amplitude of

the waves but also to describe the details of the wave growth in the neighbourhood

of t = 0. Berry (1989) described the smooth manner with which exponentially small

terms are switched on across a Stokes line; remarkably, this transition is universal

and represented by a simple error function. In our context, his results suggest that

the inertia-gravity-amplitude evolves as

IN(t) ≈ C

2

[

1 + erf

(

t

(πε)1/2

)]

. (4.2)

Here, it is crucial for the approximate equality that N be chosen optimally or near

optimally; that is, the series defining xsla and ysla must be truncated near their least

term.

Formula (4.2) shows that inertia-gravity waves grow over a time of order O(ε1/2).

Since t has been non-dimensionalised by the slow (nonlinear) time scale, this means

that the transition appears brusque in the slow time, but gentle in the fast time t/ε,

extending in fact over a large, O(ε−1/2), number of inertia-gravity-wave periods.

The behaviour predicted by (4.2) can be verified numerically. Figure 7 shows IN ,

scaled by the theoretical amplitude C, as a function of the scaled time t/(πε)1/2 for

b = 0.5, ε = 0.1, and for a few values of N . The figure illustrates the importance of

a suitable choice of N for the good agreement between the left-hand and right-hand

sides of (4.2): as N increases from 4 to 6, the agreement improves; it is of about

the same quality for N = 6 and N = 7 but would degrade for larger N . Figure 7

exemplifies the pragmatic approach we have taken to determine an optimal value for

N , choosing it so as to minimise the fluctuations in IN around the smooth error-

function profile. Note, however, how the amplitude for t/(πε)1/2 � 1 is unaffected by

the choice of N . This confirms the inconsequence of N for the numerical estimate of C.

The discrepancy between this “final” amplitude, i.e. Cnum, and the theoretical value
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C causes the bulk of the mismatch between IN and the error-function prediction; had

IN been scaled by Cnum rather than C in Figure 7, a much better agreement would

have been obtained.

Figure 8 shows IN/C as a function of t/(πε)1/2 in a manner similar to Figure

7 but for several values of ε. For each of these, N has been chosen optimally as

explained above. The figure demonstrates the collapse of the evolution of the inertia-

gravity-wave amplitude on the universal error-function form when the proper scaling

is employed. Again, the agreement between the numerical results and the error-

function curve would be improved if the discrepancy between the large-t amplitude

Cnum and its theoretical counterpart C had been accounted for. Note that figures very

similar to Figures 7 and 8 can be obtained for a range of values of b; this confirms

that, at leading order in ε, the dependence of the inertia-gravity-wave generation on

b is only through κ.

It will be noticed that our numerical results are limited to moderately small values

of ε. This is convenient for two reasons: first, this ensures that the amplitude of the

inertia-gravity waves is large enough to dominate any numerical errors; second, the

optimal value of N is small enough that the N -term slaving series can be easily calcu-

lated. The disadvantage is, of course, that the O(ε) errors involved in the asymptotics

are significant. They are sufficiently small, however, for the numerics to provide a

convincing verification of the asymptotic results.

5 Concluding remarks

This paper complements that of Lorenz & Krishnamurthy (1987) by providing an

analytic estimate for the amplitude of the inertia-gravity waves that are generated

spontaneously in the Lorenz (1986) five-component model with ε � 1 and b = O(1).
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The analytic estimate confirms the main conclusion of the mostly numerical analysis of

Lorenz & Krishnamurthy (1987): the generation of inertia-gravity waves by balanced

motion is inevitable, but it is also very weak, with an amplitude which is exponentially

small in ε. (A variety of other arguments suggests this exponential scaling; see the

Introduction to Vanneste & Yavneh (2003) for a brief review.)

Our estimate reduces to that derived by Lorenz & Krishnamurthy (1987) in the

limit of small rotational Froude number b � 1. In this limit, the slow variables

(u, v, w) can be decoupled from the fast ones (x, y) (in effect the terms proportional

to b are dropped in the first two equations of (2.1) but retained in the last equation),

and (x, y) obey the equations of a forced linear oscillator. In view of the ambiguity

of some of the literature (Fowler & Kember 1996), it is worth stressing that the

decoupled system is a valid approximation to (2.1) only when b � 1. For b = O(1),

the feedback of (x, y) on (u, v, w) is crucial in determining the amplitude of the

inertia-gravity waves. This may not be obvious from (2.1) since the feedback terms

are O(bε2) � 1, but it emerges clearly both from our asymptotic analysis (see the

inner equations (3.4)) and from the comparison between the exact value of κ and

that found for the decoupled system, namely κ ∼ b (see Figure 4). The sensitivity of

the inertia-gravity-wave amplitude to the feedback of the fast variables on the slow

variables is related to the exponential smallness of this amplitude; it is a somewhat

subtle feature which can be expected to be generic to the generation of inertia-gravity

waves in the regime where R � 1 and b = O(1).

A novel aspect of spontaneous wave generation in the Lorenz–Krishnamurthy

model appears in this paper, namely the description of the growth of the waves

as t crosses a Stokes line. Several points can be made: (i) the details of the growth

can be captured accurately by subtracting from the fast variables their slaving ap-

proximation provided that this be near-optimally truncated; (ii) the near-optimal
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truncation, when used for initialisation, leads to variables which are practically free

of inertia-gravity waves (more precisely, the initial amplitude of inertia-gravity waves

is negligible compared to that amplitude attained as a result of spontaneous genera-

tion); (iii) the inertia-gravity-wave growth takes place over a short (slow) time scale

of order O(ε1/2) and is described by an error function; and (iv) because the time

scale is so short, dissipative processes, neglected here and very weak in reality, are

unimportant for the amplitude of the waves immediately after generation.

It is tempting to transpose these conclusions directly to the problem of wave gen-

eration in the real atmophere and oceans. However, it should be kept in mind that

they have been obtained for a severely truncated and highly simplified model. The at-

mosphere and oceans are accurately described by partial-differential equations rather

than the ordinary differential equations considered here, and this may introduces sig-

nificant physical differences in addition to (considerable) technical difficulties.1 Fur-

thermore, even in the context of low-order models, the Lorenz–Krishnamurthy model

suffers important limitations.

One of these is the absence of certain forms of coupling between the fast and

slow variables. In particular, products of slow and fast variables are absent from the

evolution equations for the fast variables. Such products, which can be interpreted as

nonlinear frequency shifts for the fast variables, affect the amplitude of the inertia-

gravity waves, possibly even through the exponential factor (here simply π/(2ε)).

This is evident from the work of Vanneste & Yavneh (2003) where the only terms

1The limitations of low-order models for the wave-generation problem appear clearly in the low-

Froude-number regime, with b � 1 and R = O(1), where the main mechanism is Lighthill radiation

(Ford, McIntyre & Norton 2000). Because this mechanism relies on the (resonant) excitation of

inertia-gravity waves with asymptotically large scale, it cannot be captured in low-order models

with a single typical spatial scale. See Saujani & Shepherd (2002) and Ford, McIntyre & Norton

(2002) for a discussion contrasting the low-Froude-number and low-Rossby-number regimes.
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leading to inertia-gravity-wave generation are of this type. Clearly, the analysis of a

low-order model in which all realistic types of fast-slow interactions are represented

would be useful.

Another limitation of the Lorenz–Krishanmurthy model is the integrability of

the slow dynamics. This has been considered by Wirosoetisno & Shepherd (2000)

who introduced an extension of the model making its slow dynamics chaotic. It

would be interesting to apply exponential-asymptotic techniques to this extended

model. In general, one might expect chaotic dynamics to lead to a more complex

singularity structure of the slow variables for complex t than the presence of a few

poles. For instance, if the conjecture on the Painlevé integrability is true (Ercolani

& Siggia 1990, and references), chaotic (non-integrable) systems must at least have

some branch points; but much more exotic behaviour is certainly possible. Although

such behaviour may lead to much technical complications, it is unlikely to alter the

essential conclusion that the inertia-gravity waves generated are exponentially small.

The only requirement for this to hold is the smoothness of the balanced variables for

real values of t, with all singularities some distance away from the real axis. This leads

to the balanced variables having an exponentially decaying frequency spectrum and

hence an exponentially small amplitude at the O(1/ε) frequency of the fast variables

(cf. Warn (1997)).

In the partial-differential-equation context, an exponentially decaying frequency

spectrum of the balanced variables is presumably also sufficient to lead to exponen-

tially small inertia-gravity waves. However, one might question whether real balanced

flows have such a spectrum. Real flows are turbulent and, according to Kolmogorov-

type arguments, often have power-law, not exponential, frequency spectra. This

would imply inertia-gravity-wave amplitudes that are algebraic, not exponential, in ε.

But balanced turbulence is special, and it can be argued that its frequency spectrum
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does decay exponentially: if we assume that balanced turbulence behaves more-or-

less like quasi-geostrophic turbulence, then its energy spectrum E(k), where k is the

wavenumber, is likely to be the power law k−3 (in the direct enstrophy cascade) or

steeper. Correspondingly, the typical frequency ω ∝ k[kE(k)]1/2, or more precisely

ω ∝ (
∫

k2E(k) dk)1/2, is predicted to be essentially independent of k, i.e. to be fixed

by the temporal behaviour of the large-scale motion (Kraichnan 1971).2 Because this

is presumably smooth, an exponential frequency spectrum E(ω) can be expected.

(This conclusion may be contrasted with that obtained for a different regime of tur-

bulence, say the inverse energy cascade with E(k) ∝ k−5/3, which gives ω ∝ k2/3 and

the power-law frequency spectrum E(ω) ∝ ω−5/2.) It would be interesting to confirm

(or refute) this heuristic argument using direct numerical simulations.
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A Periodic balanced solutions

For ε = 0, the general solution of (2.1) can be written explicitly in terms of Jacobian

elliptic functions. Here, we consider the one-parameter family of solutions

u0 = cn(t/k, k), v0 = −sn(t/k, k), w0 = −dn(t/k, k)/k, x0 = −bu0v0, y0 = 0,

(A.1)

2The same reasoning indicates that that balanced approximations remain self-consistent, without

breakdown at small scales, because the Rossby number ω/f is independent of k (Warn & Menard

1986).
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parameterised by 0 < k ≤ 1, which reduce to the homoclinic solution (2.2) for

k = 1. The solutions (A.1) are periodic, with fourth-period kK(k), where K(k) is the

complete elliptic integral of the first kind. They also have poles on a lattice in the

complex t-plane. (The solutions (A.1) are in fact very general: using the symmetries

of (2.1), one can impose u0(0) = 1 v0(0) = 0 by suitable definitions of ε and of the

origin for t, leaving the condition |u0(0)/w0(0)| = k ≤ 1 as the only restriction; when

the opposite condition holds, the roles of u0 and w0 have to be interchanged.)

We are interested in the inertia-gravity waves that are generated for ε 6= 0 from

a solution given at leading order by (A.1) that is well balanced at some initial time.

To concentrate on a single wave-generation event, i.e. the crossing of a single Stokes

line, we take this initial time to satisfy −kK(k) < t < 0 and we estimate the wave

amplitude at a later time 0 < t < kK(k); the waves are then entirely generated at

t = 0, across the Stokes line Re t = 0 which joins the complex-conjugate poles at

t = ±t? = ±ikK ′(k), where K ′(k) = K(
√

1 − k2).

The exponential-asymptotic calculation yielding the amplitude of the inertia-

gravity waves is essentially identical to that carried out in §3 for the homoclinic

solution. The sole difference is the different location of the poles, leading to a differ-

ent exponential behaviour of the amplitude. The determination of the prefactor is,

in fact, completely identical, because the leading-order behaviour of the solution in

the neighbourhood of the singularities ±t? is independent of k; in particular, it is the

one deduced in §3 for the homoclinic solution. The amplitude of the inertia-gravity

waves is therefore found to be

C = 2πκε−2e−kK′(k)/ε. (A.2)

Note that the function kK ′(k) is monotonically increasing from 0 at k = 0 to π/2 at

k = 1: the generation of inertia-gravity waves is thus minimised for the homoclinic
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solution.

We have verified the result (A.2) numerically. When k is significantly less than

1, so that the period of the balanced solution is not particularly large, the numerical

estimation of C for small but finite ε is somewhat delicate: because the O(ε1/2) time

interval during which the switching-on of the waves takes place occupies a significant

fraction of the period, the use of an accurate slaving solution both for the initialisation

and for the estimation of the wave amplitude is essential. In spite of this difficulty, we

have obtained good agreement between the theoretical and numerical results. This

is illustrated in Figure 9 which shows C (in logarithmic coordinate) as a function of

1/ε for two different solutions in the family (A.1). For the first, k = 2/3, the period

kK(k) is 1.206 and the exponential factor kK ′(k) is 1.269; for the second k = 1/2,

the period is 0.843 and the exponential factor is 1.078.
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offset by 0.02), ε = 0.125 (middle curve, offset by 0.01), and ε = 0.1 (lower curve).
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0.08 (+), ε = 0.06 (×) and using a linear extrapolation (◦) are compared with the
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value for large t which increases with ε.) The function [1 + erf(t/(πε)1/2)]/2 is also
shown (dotted line).
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Figure 9: Amplitude of the inertia-gravity waves (in logarithmic coordinate) as a
function of 1/ε for periodic balanced solutions with b = 0.5. Numerical results for
k = 2/3 (+) and k = 1/2 (×) are compared with the analytical prediction (curves).
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b κ n κnum

0.25 0.2378 6 0.2372
0.5 0.4077 6 0.4080
0.75 0.4660 9 0.4660
1. 0.4076 11 0.4073
1.25 0.2657 12 0.2642
1.5 0.0965 13 0.0940
1.75 –0.0430 15 –0.0438
2. –0.1159 15 –0.1083

Table 1: Values of the factor κ in (3.8) as a function of the rotational Froude number
b. Also indicated are the number n of iterations required for the estimation of κ with
a relative error of 10−4 and an indirect numerical estimate of κ described in §4.
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