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The weakly nonlinear dynamics of quasi-geostrophic flows over a one-dimensional, pe-
riodic or random, small-scale topography is investigated using an asymptotic approach.
Averaged (or homogenised) evolution equations which account for the flow-topography in-
teraction are derived for both homogeneous and continuously stratified quasi-geostrophic
fluids. The scaling assumptions are detailed in each case; for stratified fluids, they imply
that the direct influence of the topography is confined within a thin bottom boundary
layer, so that it is through a new bottom boundary condition that the topography affects
the large-scale flow. For both homogeneous and stratified fluids, a single scalar function
entirely encapsulates the properties of the topography that are relevant to the large-scale
flow: it is the correlation function of the topographic height in the homogeneous case,
and a linear transform thereof in the continuously stratified case.

Some properties of the averaged equations, including their Hamiltonian structure, are
discussed. Explicit nonlinear solutions in the form of one-dimensional travelling waves
can be found. In the homogeneous case, previously studied by Volosov, they obey a
second-order differential equation; in the stratified case on which we focus they obey a
nonlinear pseudo-differential equation, which reduces to the Peierls–Nabarro equation
for sinusoidal topography. The known solutions to this equation provide examples of
nonlinear periodic and solitary waves in continuously stratified fluid over topography.

The influence of bottom topography on large-scale baroclinic instability is also ex-
amined using the averaged equations: they allow a straightforward extension of Eady’s
model which demonstrates the stabilising effect of topography on baroclinic instability.

1. Introduction
The effect of bottom topography on large-scale ocean dynamics has been studied using

a variety of modelling hypotheses. Starting with Rhines & Bretherton (1973), a number of
authors have considered topographies whose scale is much smaller than the typical scale of
motion. This allows asymptotic techniques — essentially homogenisation techniques — to
be employed to derive effective equations of motion in which only the averaged, large-scale
effect of the topography is represented. Recent papers by Reznik & Tsybaneva (1999) and
Bobrovich & Reznik (1999) present detailed analyses of this kind for, respectively, two-
layer and stratified quasi-geostrophic flows over one-dimensional topography; the reader
is referred to these papers for further background on the problem and for references.

Most of the previous results concern linear waves propagating over one-dimensional
topography. A series of papers by Volosov and Zdhanov is however devoted to a non-
linear theory: extending the asymptotic approach of Rhines & Bretherton (1973), they
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derive evolution equations for weakly nonlinear motion over small-scale topography in the
quasi-geostrophic regime, using homogeneous (Volosov 1976c,a,b), two-layer (Volosov &
Zhdanov 1982) and continuously stratified models (Volosov & Zhdanov 1983). From these
equations it is then easy to obtain closed-form solutions representing one-dimensional pe-
riodic travelling waves, which directly generalise linear Rossby and topographic waves,
and solitary waves.

The present paper is similar in spirit to those of Volosov and Zdhanov. Its main novel
result is an asymptotic theory for the weakly nonlinear motion of a continuously strati-
fied quasi-geostrophic fluid over a small-scale, one-dimensional topography. This can be
viewed as an extension to the nonlinear regime of some of the linear results of Bobrovich
& Reznik (1999). As is detailed in that paper, the dynamical regime is mainly specified
by the relationship between three key length scales, namely the scale of motion L, the
scale of the topography Lt and the internal Rossby radius of deformation Li, defined
by Li = NH/f , where N,H and f are typical values of the Brunt-Väisälä frequency,
ocean depth and Coriolis parameter, respectively. A crucial assumption, common to all
the papers cited above, is that of a scale separation between motion and topography,
explicitly expressed as

ε =
Lt

L
� 1.

For a stratified ocean, the relation between Lt and Li is also important. Here, we assume
that Li ∼ L, so that Lt � Li. This implies that the separation between the large scale of
the leading-order motion and the small scale of the topography (and hence of the small-
amplitude topography-induced motion) which is assumed in the horizontal holds also in
the vertical: the topography-induced motion has vertical scale fLt/N , much smaller than
the total ocean depth H and is in fact localised within a boundary layer.

The scaling assumption Lt � Li makes our treatment of the stratified quasi-geostrophic
dynamics markedly distinct from that of Volosov & Zhdanov (1983). In that paper, the
different assumption Li . Lt is made. The consistency of the asymptotic analysis then
requires the leading-order motion to be independent of the vertical coordinate, so that
the averaged equations are barotropic. Here, in contrast, arbitrary vertical structures are
allowed, and the averaged equations are fully three dimensional.

Once the relative magnitude of the three length scales is fixed, the other parameters
in the model may be chosen to obtain a distinguished limit in which all physical effects
(topography, β-effect, nonlinearity) have a similar importance while a consistent asymp-
totic solution can be developed. In the continuously stratified case, this turns out to
require a ratio h/H of the topography height to the total ocean depth that scales like
ε1/2 and a (suitably non-dimensionalised) velocity amplitude that scales like ε. With this
scaling, closed averaged equations can be derived: they are given by the usual (linearised)
potential-vorticity conservation in the fluid interior, with a bottom boundary condition
provided by a system of two coupled nonlinear equations for the bottom potential temper-
ature and the fluid-parcel displacement across isobaths. This system presents interesting
similarities and differences with the corresponding system of averaged equations found
in the homogeneous case (which assumes that h/H = O(1) rather than O(ε1/2)). For
instance, the characteristics of the topography relevant to the large-scale motion are en-
capsulated in a single function; this is the correlation function of the topography height
in the homogeneous case, but a linear transform (related to the Hilbert transform) of the
correlation function in the stratified case.

To allow comparison between the effect of topography in homogeneous and stratified
fluids, the paper starts with a derivation of the averaged equations in the homogeneous
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case (§2.1). The results of Volosov (1976a,b,c) are thus recovered, with minor extensions
such as the inclusion of a finite radius of deformation and a discussion of the Hamiltonian
structure of the averaged equations (§2.2).

The central result of the paper, namely the averaged equations for stratified quasi-
geostrophic flow over small-scale topography is derived in §3.1. After a brief presentation
of a Hamiltonian structure for these equations (§3.2), we consider a reduced model of
particular interest (§3.3). This model arises when, in the absence of β-effect, the vorticity
in the fluid interior vanishes identically. The dynamics is then controlled entirely by
the evolution of the potential temperature and particle displacement on the bottom
boundary. This model with trivial interior dynamics, which may be viewed as resulting
from the inclusion of small-scale topography in the so-called surface quasi-geostrophic
model (Held, Pierrehumbert, Garner & Swanson 1995), is governed by evolution equations
involving a pseudo-differential operator related to the Hilbert transform.

The waves propagating in the model, supported by both the topography and the
β-effect are discussed. In the linear approximation, a dispersion relation obtained by
Bobrovich & Reznik (1999) is recovered (§4.1). When the nonlinearity is taken into
account, the situation is somewhat involved, since the travelling-wave problem (one-
dimensional in particular) is governed by a nonlinear pseudo-differential equation. How-
ever, we find closed-form solutions for a sinusoidal topography under the assumption
that β = 0 (i.e. for the surface quasi-geostrophic model; §4.2). In this case, the nonlin-
ear pseudo-differential equation to solve reduces to the Peierls–Nabarro equation whose
periodic solutions have been studied by Toland (1997). Of particular physical interest is
the solitary-wave solution (or, for the particle displacements, kink solution) that can be
found as a limit of periodic solutions.

An issue that can be examined using the averaged model derived in this paper is
the influence of small-scale topography on large-scale-flow instability, in particular on
baroclinic instability. This can be done straightforwardly by including in the model a
large-scale, vertically sheared flow and by carrying out a spectral stability analysis. In
§5, we apply this approach to examine how the simplest model of baroclinic instability
of a continuously stratified fluid, namely Eady’s model, is affected by topography. The
results complement those recently obtained by Benilov (2001) who addressed the same
issue using Phillips’ two-layer model.

A remark should be made about the limitations of the approach used in this paper. As
is usual when formal asymptotics is used, the averaged model is accurate in describing the
behaviour of the full system over finite, although large, spatial and temporal scales. This
remark is particularly relevant when one considers random topographies, with a height
field given by a non-degenerate random function (e.g. defined by a continuous spectrum
of Fourier modes with random amplitudes). In this case, the phenomenon of localisation
is known to take place: waves are not periodic but localised in space, with exponentially
decaying tails (Molchanov & Piterbarg 1990; Sengupta, Piterbarg & Reznik 1992; Kly-
atskin 1996). The averaged equations, however, do not capture this phenomenon and
predict exactly periodic waves whether the topography is periodic or random. This is
simply because, for Rossby waves over rough topography, the characteristic scale of the
localisation (the so-called localisation length) is much larger than the scale of validity of
the averaged equations. In effect, the averaged equations can only describe the spatially
oscillating part of the waves while neglecting the large-scale modulation that localisa-
tion induces. (See Molchanov (1991) for a general discussion of the relation between
localisation and averaging, or homogenisation.)
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2. Homogeneous quasi-geostrophic dynamics
2.1. Averaged equations

We start by considering the homogeneous quasi-geostrophic equation

∂t
(
∇2ψ − λ2ψ

)
+ β · ∇ψ +

f

H
∂(ψ, h) + ∂(ψ,∇2ψ) = 0, (2.1)

where ψ is the streamfunction, λ−1 the radius of deformation, H the mean depth, h the
topography height, and ∂(·, ·) the Jacobian operator. We employ the standard Cartesian
β-plane but with a rotated coordinate system (x, y) and write the planetary vorticity as
f − βyx+ βxy, where f and β = (βx, βy) are constant.

We investigate large-scale motion over a one-dimensional, random, rough topography.
Introducing ε � 1 as the small ratio of the scale of the motion to the scale of the
topography, the topographic height is written as

h(ε−1y) = h(Y ), where Y = ε−1y. (2.2)

It is a periodic or stationary random function with bounded derivatives, zero mean

〈h〉 = 0,

where 〈·〉 denotes period or ensemble average, and with fixed correlation function C(η)
defined by

C(η) = 〈h(Y + η)h(Y )〉.
In the random case it is useful to introduce the Fourier transform ĥ of h which we define
by

h(Y ) =
∫

eikY ĥ(k) dk.

(Here and in the rest of the paper, integrals with unspecified bounds are understood
to have (−∞,+∞) as integration range.) The values ĥ(k) can be taken as independent
Gaussian variables, with

〈ĥ(k)ĥ(l)〉 = Ĉ(k)δ(k + l), (2.3)
where the power spectrum Ĉ(k) is the Fourier transform of the correlation function:

C(η) =
∫

eikηĈ(k) dk.

The scaling of the topography which we use corresponds formally to a height field h =
O(1) and thus to a slope ∇h = O(ε−1). This scaling, also used by Rhines & Bretherton
(1973), Volosov (1976a,b,c) and others, is more precisely defined by introducing an inverse
time scale (or typical frequency) for the large-scale motion, σ say, which is given by |β|L
if the dynamics is dominated by linear Rossby waves but may be controlled by the
topography. The relevant dimensionless assumption on the topography height then reads

h

H
∼ σ

f

and can be recognised as the usual quasi-geostrophic scaling, with σ/f as a Rossby
number. Since we are interested in nonlinear effects, it is important to determine the
amplitude of the motion. It turns out that the suitable scaling, giving rise to leading-
order nonlinearity, corresponds formally to ψ = O(ε) or, more precisely, to

ψ

σL
∼ εL = Lt,
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a condition that can be identified as the requirement that the typical horizontal displace-
ments of fluid particles be of the order of the scale of the topography Lt.

Adopting this scaling, we expand the streamfunction as

ψ = εψ(0) + ε2ψ(1) + · · · (2.4)

and employ a multiple-scale technique to derive an averaged evolution from (2.1). Per-
forming the substitution ∂y → ε−1∂Y + ∂y in that equation, we find at leading order, i.e.
at O(ε−1),

∂t∂
2
Y Y ψ

(0) + ∂xψ
(0)∂3

Y Y Y ψ
(0) − ∂Y ψ(0)∂3

xY Y ψ
(0) = 0.

We are interested in the situation where the leading-order motion depends on the large-
scale coordinates only; therefore we select the solution ψ(0) = ψ(0)(x, t). At O(1) we
find

∂t∂
2
Y Y ψ

(1) + ∂xψ
(0)∂3

Y Y Y ψ
(1) +

f

H
h′∂xψ

(0) = 0,

where h′ = dh/dY . The general solution is given by

∂2
Y Y ψ

(1) =
f

H
[g(x, Y − η)− h(Y )] ,

where g(x, Y ) is an arbitrary function, and where η(x, t) satisfies

∂tη = ∂xψ
(0) (2.5)

and is the leading-order horizontal displacement of fluid particle across isobaths. Assum-
ing that the small-scale motion is entirely driven by the large-scale flow, we require that
∂2
Y Y ψ

(1) = 0 when η = 0 and find

∂2
Y Y ψ

(1) =
f

H
[h(Y − η)− h(Y )] . (2.6)

This solution takes a natural interpretation in terms of vorticity conservation: ∂2
Y Y ψ

(1)

is the vorticity response to the topographic stretching associated with the leading-order
motion. We note that 〈∂2

Y Y ψ
(1)〉 = 0 as required for ψ(1) to be a periodic or stationary

random function as is h.
At O(ε) a solvability condition must be imposed; it is obtained by averaging the O(ε)

equation. This leads to

∂t
(
∇2ψ(0) − λ2ψ(1)

)
+ β · ∇ψ(0) +

f

H
〈h′∂xψ(1)〉 = 0. (2.7)

The expression (2.6) for ψ(1) can now be used to derive a closed nonlinear evolution
equation for ψ(0). Integrating twice by parts and introducing (2.6), the averaged term in
(2.7) is written as

〈h′(Y )∂xψ(1)〉 = 〈
∫ Y

Y0

h(Y ′) dY ′ ∂x∂2
Y Y ψ

(1)〉 = − f
H
〈
∫ Y

Y0

h(Y ′) dY ′ h′(Y − η)∂xη〉,

where Y0 is an arbitrary constant. Another integration by parts then gives

〈h′(Y )∂xψ(1)〉 =
f

H
〈h(Y )h(Y − η)〉∂xη =

f

H
C(η)∂xη,

using the evenness of the correlation coefficient C(η). Introducing this result into (2.7)
provides the averaged, or homogenised, evolution equation for ψ(0). This equation is
coupled with equation (2.5) for the displacement η. Omitting the superscript (0) of the
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streamfunction for simplicity we write these two equations as

∂t
(
∇2ψ − λ2ψ

)
+ β · ∇ψ +K(η)∂xη = 0, (2.8)

∂tη − ∂xψ = 0, (2.9)

where K(η) = f2C(η)/H2.
These equations, previously derived with λ = 0 by Volosov (1976a,b,c), describe the

weakly nonlinear quasi-geostrophic motion over the topography h(Y ). The only nonlin-
earity appears in the correlation function K(η); when it is neglected, i.e. when linearised
equations of motion are considered, K(η) is replaced by the constant K(0) given by
f2/H2 times the variance of the topography. In this case, and when normal modes are
sought, the equations derived by Rhines & Bretherton (1973) are recovered. Similarly,
the spectral equations derived by Benilov (2000) to study the effect of topography on
homogeneous instability can be recovered: these equations, which include the effect of
an O(1) shear flow (U(y), 0), are obtained when the time derivatives in (2.8)–(2.9) are
replaced by ∂t + U∂x and the first component of β is replaced by βx − U ′′.

Rhines & Bretherton (1973) and Benilov (2000) pointed out the analogy between
quasi-geostrophic motion over one-dimensional topography with β = λ = 0 and two-
dimensional stratified fluids (see, e.g., Gill 1982, §6.4). This is transparent from (2.8)–
(2.9) when it is linearised: up to a normalisation, η plays the role of the (potential)
temperature and K(0) the role of the square of the Brunt-Väisälä frequency. Thus, in the
same way as stratification introduces a restoring force inhibiting motion across isopycnals,
topography introduces a restoring force inhibiting motion across isobaths.

The nonlinearity present in (2.8)–(2.9) is clearly associated with the topography; it
dominates the advective nonlinearity ∂(ψ,∇2ψ) — which has order O(ε2) only — and it
can be interpreted as a nonlinear dispersion. Since K(η) is expected to decrease (possibly
non monotonically) from a maximum for η = 0 to zero at for η → ∞, nonlinearity is
seen to decrease the restoring force associated with the topography. The consequences
of this effect for finite-amplitude wave propagation have been investigated by Volosov
(1976a,b,c) who found periodic and solitary waves as solutions of the averaged equations
(2.8)–(2.9).

The validity of the averaged equations for random topographies can be assessed by
estimating the first-order term in the perturbation expansion (2.4). From (2.6) we find
that it can be written as

ψ(1) = − f
H

∫ Y

Y−η

∫ Y ′

0

h(Y ′′) dY ′dY ′′.

With this result it is easy to show that 〈(ψ(1))2〉 ∼ Y provided that Ĉ(0) is finite, i.e.
the integral of C(Y ) is bounded as Y → ∞; this implies that ψ(1) typically grows like
Y 1/2. Therefore, over the spatial scale of interest, namely y = O(1) or Y = O(ε−1), the
expansion (2.4) remains well ordered, and the averaged equations (2.8)–(2.9) are valid
with an O(ε1/2) error.† Phenomena not captured by these equations, such as localisation,
take place over large spatial scales: y = O(ε−1/2) or larger. In fact, Molchanov & Piterbarg
(1990, Eq. (10)) found for a specific random function h(Y ) that the localisation length
scales like ε−1 (see also Sengupta, Piterbarg & Reznik 1992, Eq. (11)).

We note that the accuracy of the averaged equations is improved when Ĉ(0) = 0:
it is in particular easy to show that 〈(ψ(1))2〉 is bounded provided that Ĉ(k) = O(k2)

† This error estimate can be confirmed by a rigorous averaging procedure which eliminates
low-order rapidly varying terms by means of near-identity transformations (cf. Arnold 1988, Ch.
5).
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for k → 0, suggesting that the error is at most O(ε). More generally, we expect the
error to decrease, and correspondingly the localisation length to increase, the faster Ĉ(k)
tends to zero with k. The importance of the small-k behaviour of the power spectrum
Ĉ(k) for the accuracy of the averaging is quite natural since this quantity controls, in
a statistical sense, the scale separation that exists between topography and large-scale
motion. In this respect, it is worth pointing out that the validity of the averaging for
non-degenerate random topographies hinges on the fact that the power spectrum of the
random process present in the equation of motion, namely h′(Y ), necessarily vanishes for
k = 0 since it is given by k2Ĉ(k); were this not the case, the averaged equations would
not be valid, and the localisation length would be O(1) as has been found for different
physical systems (Molchanov 1991).

A direct extension of the analysis leading to (2.8)–(2.9) to include the effect of a small-
scale shear flow may be of some interest. It turns out that adding the effect of a small-
amplitude zonal shear flow (εu(Y ), 0), where u(Y ) is a periodic or random function similar
to h(Y ), leaves the analysis virtually unchanged. In particular, the averaged equations
(2.8)–(2.9) continue to hold, but with a new definition for K(η), namely

K(η) =
f2

H2
〈h(Y + η)h(Y )〉 − f

H
〈h(Y + η)u′(Y )〉.

Note that it is only through its correlation with the topography that the shear flow
influences the averaged dynamics. In the absence of topography, the effect of the shear
flow is much weaker, and a scaling very different from the one used here is required to
derive averaged equations (see, e.g., Gama et al. (1994)).

2.2. Hamiltonian structure

The homogeneous quasi-geostrophic equation has a Hamiltonian, or more precisely Pois-
son structure, which proves useful, for instance to derive invariants and to investigate
stability issues (see, e.g., Shepherd (1990)). Here we present the corresponding structure
for the averaged equations (2.8)–(2.9).

Using the vorticity ω = ∇2ψ − λ2ψ and displacement η as dynamical variables, it is
easy to check that (2.8)–(2.9) can be cast in the Poisson form ∂tω = {ω, E}, ∂tη = {η, E}
with a Hamiltonian given by

E =
1
2

∫ ∫ [
|∇ψ|2 + λ2ψ2 +M(η)

]
dxdy

and a Poisson bracket defined for two functionals F and G by

{F ,G} =
∫ ∫ [

δF
δω
β · ∇δG

δω
+ ∂x

(
δF
δω

)
δG
δη
− δF
δη
∂x

(
δG
δω

)]
dxdy.

In the Hamiltonian function, M(η) is defined by M ′′ = 2K and can be interpreted as a
potential energy associated with the topography.

Conservation laws are readily derived for the two Casimir functionals C1 and C2, given
by

C1 =
∫ ∫

ω dxdy and C2 =
∫ ∫

η dxdy,

as well as for the Hamiltonian E . If β = (βx, 0), i.e. if the isobaths are parallel to the lines
of constant Coriolis parameter f so that the system is invariant under translation in the
x-direction, Noether’s theorem can be used to derive an additional invariant, namely the
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momentum

M = −
∫ ∫ (

ηω +
βx
2
η2

)
dxdy.

3. Continuously stratified quasi-geostrophic dynamics
3.1. Averaged equations

We now consider the effect of a small-scale topography on the large-scale dynamics of
a continously stratified quasi-geostrophic fluid. The quasi-geostrophic potential-vorticity
conservation equation for a Boussinesq fluid can be written

∂tq + β · ∇ψ + ∂(ψ, q) = 0, with q = ∂2
xxψ + ∂2

yyψ + ∂z(S−1∂zψ). (3.1)

In these expressions, z is the vertical coordinate, directed upward and S = f−2N2, where
N is the Brunt–Väisälä frequency, a function of z only. All the other quantities are defined
as in the homogeneous case (see §2.1).

Equation (3.1) is supplemented by two boundary conditions at the bottom and top
boundaries defined by z = 0 and z = H, respectively. These conditions express potential-
temperature conservation and read

∂t∂zψ + ∂(ψ, ∂zψ + fSh̃) = 0 at z = 0,
∂t∂zψ + ∂(ψ, ∂zψ) = 0 at z = H.

Here h̃ is the topographic height which is a periodic or stationary random function of
the rapid spatial coordinate Y = ε−1y, as in the previous section. For topographic effects
to appear at leading order in the homogenised equations of motion, the scaling of the
height must be slightly different from the one used in the homogeneous case. It turns out
that a height of order O(ε1/2) is appropriate, so we let

h̃ = ε1/2h(Y ),

with h(Y ) given as in (2.2). In dimensional terms, this scaling can be shown to require
that the typical frequency σ of the large-scale motion is related to the unscaled height h̃
according to

h̃

H
= ε1/2

σ

f

(
L

Li

)2

,

with Li = N0H/f , where N0 is a typical, say bottom, value of N (N is assumed to vary
by at most O(1) over the depth of the ocean). Since, as discussed in the Introduction, we
assume that L/Li = O(1), this implies that h̃/H = O(ε1/2σ/f): the relative topographic
height should be smaller by a factor ε1/2 than the Rossby number. This is consistent
with the quasi-geostrophic assumptions leading to (3.1).

Because the natural aspect ratio in a stratified and rotating fluid is fixed by f/N0,
the influence of the small-scale topography is confined in a shallow boundary layer of
height fLt/N0 near z = 0. It is only in this boundary layer that the flow field vary on the
scale of the topography or, in other words, depend on the stretched, or fast, variable Y ;
this is the screening effect noted by Bobrovich & Reznik (1999). Technically, this implies
that the averaged evolution equations for the large-scale motion we are seeking are to be
derived using a boundary-layer approach which we now detail.

Since the depth of the boundary layer is O(ε) in terms of the large-scale variables, we
start by introducing the fast vertical variable Z = ε−1z. Away from the boundary layer,
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Figure 1. Scaling of the stratified quasi-geostrophic model: the ratio between the typical scale of
motion and the horizontal scale of the topography is ε� 1, and the amplitude of the topography
scales like ε1/2 compared to the total depth H of the ocean. The scaling implies the existence
of a boundary layer of height ε near the bottom boundary where the influence of topography is
felt directly.

in the outer region z = O(1), the streamfunction is expanded according to

ψ = ε
[
ψ(0)(x, z, t) + ε1/2ψ(1)(x, z, t) + · · ·

]
,

where x = (x, y) are the (slow) horizontal coordinates. The amplitude of the stream-
function is taken of order O(ε) as in the homogeneous case since this choice implies
the appearance of a non-trivial nonlinearity at leading order. This leads to the simple
leading-order equation of motion

∂tq
(0) + β · ∇ψ(0) = 0, with q(0) = ∂2

xxψ
(0) + ∂2

yyψ
(0) + ∂z(S−1∂zψ

(0)), (3.2)

namely the linearised potential-vorticity conservation equation. The upper boundary
condition is

∂t∂zψ
(0) = 0 at z = H. (3.3)

The lower boundary condition is found by considering the dynamics within the boundary
layer. In this inner region, with z = O(ε), i.e., Z = O(1), the streamfunction is expanded
as

ψ = ε
[
ψ(0)(x, 0, t) + ε1/2φ(1)(x, Y, Z, t) + εφ(2)(x, Y, Z, t) + · · ·

]
.

The choice of the leading-order streamfunction is made to ensure a proper matching
between the inner and outer expansion. The leading-order inner equation of motion
appears at O(ε−1/2) and takes the form(

∂t + ∂xψ
(0)∂Y

)(
∂2
Y Y φ

(1) + S−1∂2
ZZφ

(1)
)

= 0.

The corresponding boundary condition appears at O(ε1/2) and reads(
∂t + ∂xψ

(0)∂Y
)
∂Zφ

(1) + fSh′∂xψ
(0) = 0 at Z = 0.

A rapidly varying solution to these last two equations should satisfy

∂2
Y Y φ

(1) + S−1∂2
ZZφ

(1) = 0,

and

∂Zφ
(1) = fS [h(Y − η)− h(Y )] at Z = 0,

and φ(1) → 0 as Z →∞. Here, η = η(x, t) is the horizontal displacement across isobaths,
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which obeys
∂tη = ∂xψ

(0) at z = 0. (3.4)
Such a solution φ(1) matches the outer solution which is independent of Y . It is formally
given by

φ(1) = −fS1/2

∫
ĥ(l)

eil(Y−η) − eilY

|l| e−S
1/2|l|Z dl + ψ(1)(x, z = 0, t). (3.5)

At O(1), the inner equation of motion reads(
∂t + ∂xψ

(0)∂Y
)(

∂2
Y Y φ

(2) + S−1∂2
ZZφ

(2)
)

= 0,

with corresponding lower boundary condition appearing at O(ε) in the form(
∂t + ∂xψ

(0)∂Y
)
∂Zφ

(2) + fSh′∂xφ
(1) = 0 at Z = 0.

Averaging these two equations leads to

∂t〈S−1∂2
ZZφ

(2)〉 = 0,

and
∂t∂Z〈φ(2)〉+ fS〈h′∂xφ(1)〉 = 0 at Z = 0. (3.6)

A solution for 〈φ(2)〉 matching the outer expansion is

〈φ(2)〉(x, Z, t) = Z∂zψ
(0)(x, z = 0, t) + ψ(2)(x, z = 0, t),

which obeys (3.6) provided that

∂t∂zψ
(0) + fS〈h′∂xφ(1)〉 = 0 at Z = 0. (3.7)

This furnishes the boundary condition for the leading-order outer equation (3.2). We can
write (3.7) as a function of ψ(0) and η by using (3.5) to eliminate φ(1) from the averaged
term which becomes

〈h′∂xφ(1)〉 = −fS1/2∂xη

∫ ∫
〈ĥ(k)ĥ(l)〉k sgn(l) ei[kY+l(Y−η)] dkdl

= fS1/2∂xη

∫
eikη|k|Ĉ(k) dk

using (2.3).
The averaged equations of motion, (3.2), (3.3), (3.4) and (3.7) with the superscript (0)

dropped for convenience take the final form

∂tq + β · ∇ψ = 0, q = ∂2
xxψ + ∂2

yyψ + ∂z(S−1∂zψ) (3.8)
∂t∂zψ +K(η)∂xη = 0 at z = 0, (3.9)

∂tη − ∂xψ = 0 at z = 0, (3.10)
∂t∂zψ = 0 at z = H. (3.11)

Here, K(η) is the non-local, linear functional of the correlation function C(η) defined by

K(η) = f2S3/2

∫
eikη|k|Ĉ(k) dk =

N3

f

∫
eikη|k|Ĉ(k) dk.

These equations of motion present many similarities with equations (2.8)–(2.9) derived
in the homogeneous approximation; in particular the sole nonlinearity is associated with
the topography and appears in the coefficient K(η). Note, however, that in the stratified
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case this coefficient is not simply the (scaled) topography correlation function but a linear
transform thereof. A simple calculation shows that this linear transform relationship
between K(η) and C(η) may also be written as

K(η) =
N3

f

d
dη
H[C](η),

where H denotes the Hilbert transform, defined for any function f(x) by the Cauchy-
principal-value integral

H[f ](x) =
1
π

∫
f(x′)
x− x′dx

′.

For later use we note that for a sinusoidal topography given by

h(Y ) = h0 sin(pY ), (3.12)

the correlation function is C(η) = h2
0 cos(pη)/2 and

K(η) =
d
dη

[
h2

0N
3

2f
sin(pη)

]
=
h2

0N
3p

2f
cos(pη). (3.13)

As in the homogeneous case, it is important to assess the validity of the multiple-scale
approach leading to the averaged equations (3.8)–(3.11). This requires examining the
condition under which φ(1), given by (3.5), is bounded. A direct calculation from (3.5)
gives

〈(φ(1))2〉 = 2f2S

∫
[1− cos(kη)]k−2Ĉ(k)e−2S1/2|k|z dk + 〈(ψ(1)(x, z = 0, t))2〉.

We can assume that ψ(1)(x, z = 0, t) is bounded since it is determined by a system of
equations analogous to that for ψ(0). Thus φ(1) appears to be bounded provided that
Ĉ(k) = O(1) as k → 0. This is a more favourable situation than in the homogeneous
case discussed in §2.1 (where ψ(1) increased like Y 1/2) so that localisation, if it occurs in
stratified fluids, is likely to have a characteristic length that exceeds the O(ε−1) found
for homogeneous fluids by Molchanov & Piterbarg (1990).

3.2. Hamiltonian structure
The averaged equations (3.8)–(3.9) have a Hamiltonian structure which takes a conve-
nient form when q, η and θ := S−1∂zψ|z=0 are taken dynamical variables. The Hamilto-
nian is given by

E =
1
2

∫ ∫ ∫ [
(∂xψ)2 + (∂yψ)2 + S−1(∂zψ)2

]
dxdydz +

S−1(0)
2

∫ ∫
z=0

M(η) dxdy,

where the streamfunction ψ is functionally related to q and θ according to

∂2
xxψ + ∂2

yyψ + ∂z(S−1∂zψ) = q, S−1∂zψ|z=0 = θ, ∂zψ|z=H = 0,

and where, as before, M ′′ = 2K. The Poisson bracket takes the form

{F ,G} =
∫ ∫ ∫

δF
δq
β · ∇δG

δq
dxdydz +

∫ ∫
z=0

[
∂x

(
δF
δθ

)
δG
δη
− δF
δη
∂x

(
δG
δθ

)]
dxdy.

(3.14)
Three Casimir invariants are readily found; they are given by

C1 =
∫ ∫ ∫

q dxdydz, C2 =
∫ ∫

z=0

θ dxdy and C3 =
∫ ∫

z=0

η dxdy.
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When β = (βx, 0) Noether’s theorem yields the momentum invariant

M =
∫ ∫ ∫

q2

2βx
dxdydz −

∫ ∫
z=0

θη dxdy.

If βx = 0, the volume integral should be omitted.

3.3. Surface quasi-geostrophic dynamics
When β = 0, the interior potential-vorticity dynamics governed by (3.8) becomes trivial.
Assuming that q = 0 and ∂zψ|z=H = 0, one can derive closed evolution equations for
the dynamics of the bottom potential temperature. These equations can be viewed as
resulting from the averaging over small-scale topography of the surface quasi-geostrophic
model studied, among others, by Held et al. (1995). The two conditions q = 0 and
∂zψ|z=H = 0 provide in fact a linear relationship between ψ and ∂zψ at z = 0. This
relation is best expressed in terms of Fourier transforms: let ψ̂ be the Fourier transform
of ψ|z=0, with

ψ(x, y, 0, t) =
∫ ∫

ei(kx+ly)ψ̂(k, l, t) dkdl,

and, similarly, let ∂̂zψ be the Fourier transform of ∂zψ|z=0. Assuming that S is constant
for simplicity, it is easy to establish that

∂̂zψ = −mS1/2 tanh
(
mS1/2H

)
ψ̂, with m = (k2 + l2)1/2. (3.15)

This relation between Fourier transforms implies the existence of a linear, self-adjoint
pseudo-differential operator L such that

∂zψ|z=0 = L ψ|z=0 .

(An explicit form of this operator as a convolution can be obtained from (3.15) using
the convolution theorem.) Using this relationship, the dynamics may be formulated as a
closed system for variables defined on the bottom boundary, namely

∂tLψ +K(η)∂xη = 0, ∂tη − ∂xψ = 0, (3.16)

where ψ now denotes ψ|z=0. This system is formally analogous to that derived in the
homogeneous case (with β = λ = 0), with the important difference that the Lapla-
cian operator relating vorticity and streamfunction in the homogeneous case is replaced
here by the pseudo-differential operator L relating the potential temperature θ to the
streamfunction.

The surface quasi-geostrophic model (3.16) obviously admits a Hamiltonian structure;
with dynamical variables θ = S−1 ∂zψ|z=0 = S−1Lψ and η, the Hamiltonian is given by

E =
1
2

∫ ∫ [
−SθL−1θ + S−1M(η)

]
dxdy,

while the Poisson bracket is given by the surface term in (3.14).

4. Waves in continuously stratified fluids
We can examine the finite-amplitude travelling waves which exist in the presence of

topography and β-effect. These waves can be regarded as the stratified counterparts to
those found by Volosov (1976a,b,c) in the homogeneous case. Consider a streamfunction
and displacement of the form ψ = ψ(x+γy−ct, z) and η = η(x+γy−ct). With constant
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S, the averaged equations (3.8)–(3.11) become

−c
[
(1 + γ2)∂3

xxxψ + S−1∂3
xzzψ

]
+ β∂xψ = 0,

−c∂2
xzψ +K(η)∂xη = 0 at z = 0,
−c∂xη − ∂xψ = 0 at z = 0,

−c∂2
xzψ = 0 at z = H,

where β = βx+γβy. From the interior vorticity equation and surface boundary condition,
both of which are linear, it is possible to derive a linear relationship between ψ|z=0 and
∂zψ|z=0 similar to that derived in §3.3 under the assumption that β = 0. In terms of the
(one-dimensional) Fourier transform ψ̂, with

ψ(x, 0) =
∫

eikxψ̂(k) dk,

we find that ∂̂zψ, the Fourier transform of ∂zψ|z=0, satisfies

∂̂zψ = −mS1/2 tanh
(
mS1/2H

)
ψ̂, with m =

[
k2(1 + γ2) +

β

c

]1/2

. (4.1)

This implies a linear relationship of the form

∂zψ|z=0 = Lβ ψ|z=0 ,

with a pseudo-differential operator Lβ which depends parametrically on γ and c as well
as on β. With this relationship, the travelling-wave problem can be formulated as a single
pseudo-differential equation for η(x): indeed, the two equations for the bottom boundary
condition can be combined to find

c2∂xLβη +K(η)∂xη = 0, (4.2)

and, integrating once,

c2Lβη + L(η) = const.,

where L(η) = N3H[C](η)/f is an indefinite integral of K(η).

4.1. Linear waves
The dispersion relation for linear waves is deduced directly from equation (4.2). The
linearisation is carried out by replacing the function K(η) by the constant K(0). For a
displacement field η proportional to exp[i(kx+ ly− ct)] we find from (4.1) and (4.2) the
dispersion relation

c2(k2 + l2 + β/c)1/2S1/2 tanh
[(
k2 + l2 + β/c

)1/2
S1/2H

]
= K(0). (4.3)

This transcendental expression relates the wave phase velocity c to the wavevector (k, l).
It is equivalent to that obtained by Bobrovich & Reznik (1999, Eq. (3.21b)), under our
additional assumption Lt/Li � 1 which is necessary for a formal asymptotic derivation.

Bobrovich & Reznik (1999) discuss the various solutions to the dispersion relation and
identify homogeneous and baroclinic Rossby modes and a topographic mode. We refer
the reader to this paper for details; here, as an illustration, we take β = 0 and H →∞
to consider only the purely topographic modes whose nonlinear extension is discussed in
the next section. In this case, the dispersion relation reduces to

c2(k2 + l2)1/2S1/2 = K(0).
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Specialising to the case of a sinusoidal topography, the frequency can be expressed as

ω2 =
N2h2

0p

2
k2

(k2 + l2)1/2
(4.4)

using (3.13). This dispersion relation is quadratic in ω: two topographic modes with
opposite directions of propagation are supported by the topography, as is the case in the
homogeneous model. The dependence of the frequency on the wavevector (k, l) is however
different from that found in the homogeneous model; in particular the frequency is seen
here to be scale dependent. Perhaps surprisingly, the frequency does not depend on the
Coriolis parameter f , although rotation is essential for the existence of the topographic
waves. Note however that for an ocean of finite depth H < ∞, a dependence of the
frequency on f appears through the argument of the hyperbolic tangent in (4.3).

It is worth emphasising that the vertical structure of the waves is of the form

exp
[
−N

(
k2 + l2

)1/2
z/f

]
,

so that they are not particularly confined near the bottom boundary when the wavenum-
bers k and l are small; the screening effect, with localisation within a shallow,O(ε) bottom
boundary layer, concerns thus only to the direct, small-scale response to the topography.
The topography, has an indirect, large-scale response in the form of topographic waves
which are not confined in a boundary layer but have an O(1) vertical extent.

The linear dispersion relation (4.4) has a simple nonlinear generalisation for finite-
amplitude waves which we now discuss.

4.2. Nonlinear waves
To examine nonlinear waves, we directly concentrate on the case β = 0. Travelling waves
satisfy the equation

c2L0η + L(η) = const., (4.5)
where L0 is obtained from (4.1) by restricting to β = 0. (Alternatively, this equation
can be obtained by introducing travelling-wave solutions into the averaged surface quasi-
geostrophic equations (3.16).) Simple solutions to this equation can be found in the limit
H →∞, when

L0 → −(1 + γ2)1/2S1/2 d
dx
H,

In this case, (4.5) may be written

c2(1 + γ2)1/2S1/2H[η′](x) =
N3

f
H[C](η(x)) + const.,

where η′ = dη/dx. For a sinusoidal topography (3.12), and with a vanishing constant,
this equation reduces to

H[η′](x) =
N2h2

0

2c2(1 + γ2)1/2
sin [pη(x)] , (4.6)

where we used the form (3.13) for K(η). This can be recognized as the Peierls–Naborro
equation obtained in cristal-dislocation theory (Peierls 1940; Nabarro 1947). This obser-
vation allows solutions to be derived from the work of Toland (1997): up to translation
and addition of integer multiples of 2π, all periodic solutions belong to a unique family
parameterised by a parameter 0 < Γ ≤ 1. These solutions take the form

η(x) =
2
p

{
tan−1

[
Γ−1 tan(kx/2)

]
− tan−1 [Γ tan(kx/2)]

}
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Figure 2. Periodic solutions of the Peierls–Nabarro equations for nonlinear travelling waves
in stratified quasi-geostrophic flow over the sinusoidal topography h0 sin(pY ). The dimension-
less displacement across topography is plotted against the dimensionless spatial coordinate
X = N2h2

0px/[c
2(1 + γ2)1/2] for Γ = 0.125, 0.25, 0.5 and 0.75. Increasing values of Γ corre-

spond to decreasing amplitudes, wavelengths and line widths.

=
2
p

tan−1

[
1
2
(
Γ−1 − Γ

)
sin(kx)

]
.

where k is related to Γ and c according to

k =
N2h2

0p

c2(1 + γ2)1/2

Γ
1 + Γ2

. (4.7)

The nonlinear dispersion relation connecting phase velocity c, wavenumber k and wave
amplitude is deduced by noting that crests and troughs correspond to x = ±π/(2k), so
that the Γ determines the amplitude according to

A =
4
p

(
tan−1 Γ−1 − tan−1 Γ

)
.

This shows, in particular, that pA < 2π. This relationship can be inverted as

Γ = sec(pA/4)− tan(pA/4).

Introducing this result into (4.7) leads to the dispersion relation in the form

ω2 =
N2h2

0p

2
k

(1 + γ2)1/2
cos(pA/4)

which directly extends the linear result (4.4). Nonlinearity is seen to lead to a decrease
in the frequency as the wave amplitude increases; it also results in a change in the wave
form, as illustrated in figure 2.

The limit pA→ 2π, i.e. Γ→ 0, is an interesting one: the periodic solution tends to the
kink, or front, solution

η =
2
p

tan−1

(
N2h2p

c2(1 + γ2)1/2
x

)
for the displacement. The velocity field associated with this displacement has the form of
a solitary wave. This is similar to the results obtained by Volosov (1976a,b,c) for waves
in a homogeneous fluid.
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5. Eady’s model of baroclinic instability
It is interesting to examine how large-scale baroclinic instability is affected by the

presence of a (one-dimensional) small-scale topography. This has recently been considered
by Benilov (2001) who extended Phillips’ two-layer model of baroclinic instability to
include the effect of topography. Here we use the averaged equations (3.8)–(3.11) to
study baroclinic instability in a stratified fluid with topography. For simplicity we focus
on extending the linear stability analysis of Eady’s model; since this entails only minor
modifications to the standard treatment, we only sketch the derivation and refer to
Pedlosky (1987, p. 523) for details.

Eady’s model considers the stability of a vertically sheared flow (Λz, 0, 0), where Λ is
the shear, with β = 0. The interior vorticity q is assumed to vanish, so that the dynamics
is governed by the surface quasi-geostrophic equations (3.9)–(3.11). Due to the basic flow,
these are somewhat modified and take the form

∂t∂zψ − Λ∂xψ +K(η)∂xη = 0 at z = 0, (5.1)
∂tη − ∂xψ = 0 at z = 0, (5.2)

(∂t + ΛH∂x) ∂zψ − Λ∂xψ = 0 at z = H. (5.3)

Compared to (3.9)–(3.11), (5.1)–(5.3) contain additional terms which are associated
with the mean-flow advection on the upper boundary and with the presence of a ba-
sic potential-temperature gradient induced by the shear on both the top and bottom
boundaries.

(Note that we have assumed that the basic-flow velocity is in the x-direction, i.e. par-
allel to the isobaths. This makes the inclusion of the basic flow in the averaged equations
straightforward because all the terms associated with the mean flow involve only (slow)
x-derivatives, so that the equations governing φ(1) remain essentially unchanged. In con-
trast, a different orientation of the basic flow introduces fast and slow derivatives in the
y-direction and modifies the equations for φ(1). Physically this follows from the non-
zero potential-temperature gradient that is imposed in the x-direction by thermal-wind
balance and from its advection by the O(ε1/2) velocity ∂Y φ(1).)

To study the spectral stability of the Eady basic flow, we linearise (5.1)–(5.3) by
replacing K(η) by K(0) and consider normal-mode solutions. The constraint q = 0
imposes the form

ψ =
[
A cosh

(
mS1/2z

)
+B sinh

(
mS1/2z

)]
ei(kx+ly−ωt),

where A and B are two constants, k and l are the horizontal wavenumbers, and m =√
k2 + l2. Introducing this form into (5.1)–(5.3) and eliminating η leads to a homogeneous

linear system for A and B. Non-trivial solutions are found provided that the dispersion
relation between the complex frequency ω and the wavenumbers (k, l) is satisfied. Intro-
ducing the parameters

c =
ω

ΛHk
, µ = mS1/2H and κ =

K(0)
Λ2H

,

the dispersion relation can be written in dimensionless form as

c2 − c+
(

cothµ
µ
− 1
µ2

)(
1 +

κ

c

)
− cothµ

µ
κ = 0.

In the absence of topography, κ = 0 and the quadratic equation for the dimensionless
phase velocity c found in the standard Eady model is recovered (see Pedlosky 1987, p.
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Figure 3. Imaginary part of the phase velocity c of unstable modes as a function of the horizontal
wavenumber µ in Eady’s model of baroclinic instability with small-scale topography for the
topographic parameter κ = 0, 0.02, 0.2 and 0.5.

525). When κ 6= 0, the dispersion relation is cubic and can be easily solved, leading to
three values of c, with at most two complex conjugate values associated with instability.

Figure 3 displays the imaginary part of c of potentially unstable modes as a function
of µ for several values of the topographic parameter κ. It shows that the presence of
topography has a stabilising effect on the flow, reducing Im c as well as the growth rate
kIm c. At the same time, the range of unstable wavenumbers is shifted toward small
scales. Qualitatively similar conclusions were drawn by Benilov (2001) in his study of
baroclinic instability in a two-layer model.

6. Discussion
This paper employs a multiple-scale approach to derive averaged evolution equa-

tions describing quasi-geostrophic motion over a small-scale one-dimensional topography.
Small- but finite-amplitude motion is considered, leading to averaged equations that are
nonlinear, with the nonlinearity entering only through the topographic term. The aver-
aged equations are given by (2.8)–(2.9) in the case of a homogeneous quasi-geostrophic
fluid, already treated by Volosov (1976c,a,b), and by (3.8)–(3.11) in the case of a con-
tinuously stratified quasi-geostrophic fluid. The latter case can be regarded as providing
a nonlinear extension to the linear results of Bobrovich & Reznik (1999) and as com-
plementing the nonlinear results of Volosov & Zhdanov (1983) obtained for a different
scaling regime.

The averaged equations derived in this paper and in its predecessors provide what may
be interpreted as a parameterisation of the effect of small-scale topography on large-
scale flows. This parameterisation has the advantage that it is derived deductively using
an asymptotic approach rather than heuristically; however the simplifying assumptions
which make such an asymptotic derivation possible (weak nonlinearity in particular) sug-
gest that the parameterisation is not adapted for practical implementation in numerical
ocean models. It is nevertheless interesting to note some of the features of the averaged
equations which one may wish to take into account in the design of parameterisations.
Concentrating here on the continuously stratified case, we note that: (i) the small-scale
topography affects only the bottom boundary condition of the quasi-geostrophic model,
leaving the (linearised) interior potential-vorticity equation unchanged; (ii) the modified
boundary condition is second-order in time and so involves an additional dynamical vari-



18 J. Vanneste

able, namely the displacement across topography; and (iii) the correlation function of
the topography characterises entirely its effect on the large-scale flow.

A major limitation of the present work, which makes the results relevant only to
particular oceanic areas such as ridge regions, is the assumption of a one-dimensional
topography. The impact of a two-dimensional topography on linear, homogeneous quasi-
geostrophic motion has recently been investigated by the author (Vanneste 2000a,b). The
averaged equations derived in these papers reveal that the effect of a two-dimensional
topography is significantly more complex than that of a one-dimensional topography. In
particular, the averaged equations turn out to be integro-differential equations, gener-
ally not reducible to a finite set of differential equations. Also, the main topographic
parameter involved in the averaged equation (in fact a function of time) cannot be ex-
pressed directly in terms of the topographic height h but is determined by solving a
variable-coefficient partial-differential equation. In view of this, it is clear that a similar
asymptotic treatment of the continuously stratified quasi-geostrophic model, although
challenging, would be of interest.

A significant part of the present paper is devoted to the study of nonlinear travelling
waves which exist because of the topography. In the continuously stratified model, these
waves satisfy a pseudo-differential equation which presents a certain theoretical interest.
It is shown here to be integrable in the particular case of a sinusoidal topography (and
for a constant of integration taken to vanish) because it reduces to the Peierls–Nabarro
equation whose solutions are explicitly known. However the sinusoidal topography is
probably an oversimplification for applications and other topographies deserve attention.
These lead to pseudo-differential equations similar to the Peierls–Nabaro equation (4.6),
but with the sine function on the right-hand side replaced by other functions. It would
interesting, if only from a theoretical viewpoint, to examine which of these functions and
hence which forms (or whether all forms) of the topography lead to integrable pseudo-
differential equations.

The author thanks G. M. Reznik for pointing out relevant papers by Volosov and
Zhdanov, J. G. B. Byatt-Smith for providing references on the Peierls–Nabarro equation,
and A. M. Davie for helpful comments on the validity of averaging.

REFERENCES

Arnold, V. I., ed. 1988 Dynamical systems III , Encyclopaedia of mathematical sciences, vol. 3.
Springer.

Benilov, E. S. 2000 The stability of zonal jets in a rough-bottomed ocean on the barotropic
beta plane. J. Phys. Oceanogr. 30, 733–742.

Benilov, E. S. 2001 Baroclinic instability of two-layer flows over one-dimensional bottom to-
pography. J. Phys. Oceanogr. In press.

Bobrovich, A. V. & Reznik, G. M. 1999 Planetary waves in a stratified ocean of variable
depth. Part 2. Continuously stratified ocean. J. Fluid Mech. 388, 147–169.

Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced
two-dimensional flow: linear and nonlinear dynamics. J. Fluid Mech. 260, 95–126.

Gill, A. E. 1982 Atmosphere-ocean dynamics. Academic Press.
Held, I., Pierrehumbert, R., Garner, S. & Swanson, K. 1995 Surface quasi-geostrophic

dynamics. J. Fluid Mech. 282, 1–20.
Klyatskin, V. I. 1996 Localization of Rossby waves over a random cylindrical topography of

the ocean bottom. Izv. Atmos. Ocean. Phys. 32, 757–765.
Molchanov, S. A. 1991 Ideas in the theory of random media. Acta Appl. Math. 22, 139–282.
Molchanov, S. A. & Piterbarg, L. I. 1990 Localization of topographic Rossby waves. Dokl.

Akad. Nauk. SSSR 310, 825–829, in Russian.



Nonlinear dynamics over rough topography 19

Nabarro, R. R. N. 1947 Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272.
Pedlosky, J. 1987 Geophysical fluid dynamics. Springer–Verlag.
Peierls, R. 1940 The size of a dislocation. Proc. Phys. Soc. 52, 34–45.
Reznik, G. M. & Tsybaneva, T. B. 1999 Planetary waves in a stratified ocean of variable

depth. Part 1. Two-layer model. J. Fluid Mech. 388, 115–145.
Rhines, P. B. & Bretherton, F. 1973 Topographic Rossby waves in a rough-bottom ocean.

J. Fluid Mech. 61, 583–607.
Sengupta, D., Piterbarg, L. I. & Reznik, G. M. 1992 Localization of topographic Rossby

waves over random relief. Dynam. Atmos. Oceans 17, 1–21.
Shepherd, T. G. 1990 Symmetries, conservation laws and Hamiltonian structure in geophysical

fluid dynamics. Adv. Geophys. 32, 287–338.
Toland, J. F. 1997 The Peierls–Nabarro and Benjamin–Ono equations. J. Funct. Anal. 145,

136–150.
Vanneste, J. 2000a Enhanced dissipation for quasi-geostrophic motion over small-scale topog-

raphy. J. Fluid Mech. 407, 105–122.
Vanneste, J. 2000b Rossby-wave frequency change induced by small-scale topography. J. Phys.

Oceanogr. 30, 1820–1826.
Volosov, V. M. 1976a Contribution to the nonlinear theory of topographic Rossby waves.

Oceanology 16, 427–431.
Volosov, V. M. 1976b Nonlinear theory of barotropic currents above an anisotropic bottom

topography of the ocean. Oceanology 16, 541–547.
Volosov, V. M. 1976c Nonlinear topographic Rossby waves. Oceanology 16, 217–221.
Volosov, V. M. & Zhdanov, M. A. 1982 Nonlinear theory for large-scale flows over anisotropic

bottom relief for a two-layer model of the ocean. Oceanology 22, 516–520.
Volosov, V. M. & Zhdanov, M. A. 1983 The nonlinear theory of large-scale quasi-geostrophic

flows in a continuously-stratified variable-depth ocean. Oceanology 23, 151–154.


