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The decay of the concentration of a passive scalar released in a periodic shear flow with

random time dependence is examined. Periodic boundary conditions are assumed, placing

the problem in the strange-eigenmode regime where the concentration decay is exponential in

the long-time limit. The focus is on the limit of small diffusivity κ � 1 (large Péclet number)

which is studied using a combination of asymtptotic methods and numerical simulations.

Two specific flows are considered: both have a sinusoidal velocity profile, but the random

function of time is either (i) the amplitude of the sinusoid or (ii) its phase. The behaviour of

the passive scalar in each flow is very different. The decay rate (or Lyapunov exponent) λ,

in particular, which characterises the long-time decay in almost all flow realisations, scales

like κ2/3 in (i) and κ3/8 in (ii).

The temporal intermittency of the scalar decay, associated with fluctuations in the speed

of decay, is examined in detail. It is quantified by comparing the decay rate λ with the decay

rates γp of the ensemble-averaged p-th moment of the concentration. The two flows exhibit

some intermittency, with γp 6= pλ. It is however much weaker for flow (i) where the γp and λ

satisfy κ2/3 power laws, than for flow (ii) where the γp are proportional to κ1/2 and therefore

asymptotically smaller than λ. The results for flow (ii) highlight the possible difficulty in

relating the behaviour of the passive scalar in single flow realisations to predictions made for

ensemble-averaged quantities such as concentration moments.

1 Introduction

The aim of this paper is to examine the temporal intermittency that can arise when a passive

scalar decays through advection and diffusion in a flow with complex time dependence. For

smooth flows in bounded domains, it has been recognised since the work of Pierrehumbert

[1] that the passive-scalar decay is exponential in the long-time limit. This is obvious for

time-independent or time-periodic flows — the decay rate is then an eigenvalue or a Floquet

exponent [2] — but less so for flows that are stationary random functions of time. In this

case, one needs to invoke the ergodic multiplicative theory [3, 4] to argue that the decay

rate is (the negative of) the largest Lyapunov exponent associated with the advection–

diffusion equation. The spatial structure of the decaying scalar, termed ‘strange eigenmode’
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by Pierrehumbert [1], is associated with the corresponding (random) invariant subspace [3].

The issue of temporal intermittency arises when the finite-time behaviour of the decaying

scalar is considered. A strongly intermittent decay is characterised by large transient vari-

ations in the rate at which the scalar concentration decreases: for some time this decrease

can be much faster or much slower than that predicted by the decay rate. Over long time

scales, of course, the periods of anomalously fast and slow decay average out to lead to the

infinite-time decay rate. Strong intermittency also implies that there is a large variability

in the scalar decay between different realisations of the flow. This is to be contrasted with

the behaviour in weakly intermittent systems: in these, the decay for even small observation

periods is systematically well predicted from the decay rate, and each realisation of the flow

is roughly identical. The difference is clearly important in practice, since it is often necessary

to predict the behaviour of single realisations of a flow.

To quantify temporal intermittency, it is natural to define finite-time decay rates, in anal-

ogy with the finite-time Lyapunov exponents used for finite-dimensional dynamical systems

[5]. Unlike the (infinite-time) decay rate, λ say, which is deterministic and relevant to almost

all flow realisations, the finite-time decay rates λt are random variables. Their statistical

distribution and the manner with which this distribution collapses to the value λ as t → ∞
describe the nature of the intermittency.

Another way of characterising the temporal intermittency, essentially equivalent to the

analysis of the distribution of finite-time decay rates, considers the decay of ensemble-

averaged moments of the scalar concentration, that is, of ensemble averages of various powers

p of the concentration. This is a standard approach for finite-dimensional dynamical systems

[6–8] where these moment decay rates, which we denote by γp, are termed ‘generalised Lya-

punov exponents’. They turn out to encapsulate the same information as the distribution

of finite-time Lyapunov exponents, at least asymptotically for large time. In terms of these

moment decay rates, temporal intermittency is revealed by a nonlinear dependence of γp

on p. A strong intermittency then implies that the γp cannot be inferred from infinite-time

decay rate λ or, conversely, that λ cannot be inferred from knowledge of a particular γp. The

latter point is the most relevant in practice: it is often easier to develop a theory predicting

the decay rate of some moment, usually the variance (p = 2), and indeed, theories of this
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type have been developed for some classes of flows, notably chaotic, mixing flows [9–14] and

flows with no-slip boundary conditions [15, 16]. The genuine need, however, is for predic-

tions that are relevant to single flow realisations, specifically for the decay rate λ and, if

possible, for some information about the distribution of finite-time decay rates λt. Whether

such predictions can be reliably inferred from variance or other moment decay rates depends

on how intermittent the scalar decay is, with a strong intermittency making this type of

inference impossible.

Although the issue of temporal intermittency for decaying scalar has been raised earlier

[12, 17], it does not appear to have been analysed in the strange-eigenmode regime that char-

acterises the long-time decay in bounded domains. The aim of the present paper is to carry

out such an analysis for two model flows, namely two simple unidirectional shear flows, with

periodic spatial dependence and random time dependence. Random shear flows have been

studied a great deal [18–21]. The main aim of these studies is the explicit demonstration of

the spatial intermittency of the decaying scalar — essentially the non-Gaussian nature of the

distribution of concentration values at fixed time — and the flow that they examine typically

is a linear shear in an unbounded domain. A notable exception is the work by Bronski and

McLaughlin [22] who examined scalar decay in a sinusoidal shear flow, in particular with

periodic boundary conditions for the scalar concentration. We reconsider this flow or, rather,

a slight extension thereof with finite rather than vanishing correlation time. Specifically, we

study advection–diffusion in a velocity field of the form (u, v) = (0, V (x, t)), with

V (x, t) = f(t) sin x (1.1)

for a stationary random function f(t) which we take to be piecewise constant. Periodic

boundary conditions are imposed for the scalar concentration in both the x- and y-directions,

thus ensuring strange-eigenmode decay in the long-time limit. As will become apparent, a

crucial feature of (1.1) is that only the amplitude is random: the spatial structure is fixed.

Our interest is for the decay in the regime where advection dominates diffusion, at least

at the flow scale; this is the large-Péclet-number regime thought to be relevant to many

applications. In this regime, because the scalar decay is slow compared with the correlation

time of f(t), the latter can be formally taken to vanish, and the Bronski and McLaughlin
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[22] model is recovered.

In unidirectional flows such as (1.1), the decay of the scalar is accelerated by the shearing

effect compared with decay by diffusion alone. This acceleration is however limited by the

presence of shearless points, the extrema x = π/2 and x = 3π/2 of the velocity profile.

This has been noted for time-independent flows (f(t) = const.) by a number of authors [23–

25] who found that the concentration decreases to zero very rapidly outside narrow regions

around the velocity extrema. The width of these regions then scales with the diffusivity

κ like κ1/4, leading to a decay rate proportional to κ1/2. Because time-independent flows

provide a reference with which to compare random flows, we present in Appendix A.1 a

boundary-layer solution of the eigenvalue problem which yields the κ1/2 dependence of the

decay rate when f(t) = const. We perform a similar boundary-layer analysis for (1.1) with

time-dependent random f(t) and, after scaling, reduce the advection–diffusion equation to

a pair of coupled stochastic differential equations independent of diffusivity. The behaviour

of the scalar decay, including the temporal intermittency, is completely described by these

equations. We conclude, in particular, that the decay rate λ and the moment decay rates γp

all scale like κ2/3. The intermittency of the decay, although non-zero, turns out to be weak,

so that inferring λ from γ2, say, leads to an error of only a few percent.

A much stronger intermittency is found for the second type of flow that we examine, with

velocity

V (x, t) = α sin(x + φ(t)), (1.2)

where α is a constant and φ(t) is a stationary random function, uniformly distributed in

[0, 2π]. In contrast with (1.1), this flow has a changing spatial structure, in fact, a randomly

translating spatial structure. This makes the scalar evolution much more complicated: as

with (1.1), the concentration is localised in the vicinity of two points, but these move ran-

domly in time and do not coincide with the extrema of (1.2). In other words, the decaying

process leads to the formation of randomly translating structures in the scalar field which

are not phase locked with the advecting velocity field. We document this phenomenon by

presenting detailed results of numerical simulations. These reveal a strong intermittency

which increases as diffusivity decreases. The intermittency becomes in fact arbitrarily large
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as κ → 0, with the moment decay rates γp scaling like κ1/2 while the decay rate λ scales like

κ3/8. Thus, for the flow (1.2) even the power-law dependence of the decay rate in each re-

alisation cannot be inferred from the decay rates of ensemble-averaged quantities. It should

however be emphasised that the strange-eigenmode phase of the scalar decay sets in after an

asymptotically long transient period; by the end of this period the concentration has decayed

to an asymptotically small fraction of its initial value.

The remainder of this paper is structured as follows. In section 2, we introduce our

notation for the advection–diffusion problem and define the various decay rates (finite-time,

infinite-time and of ensemble-averaged moments) used to diagnose temporal intermittency.

We examine the scalar evolution in the velocity fields (1.1) and (1.2) in sections 3 and 4,

respectively. The paper concludes with a Discussion in section 5. Some technical details, in

particular the boundary-layer analyses leading to the variance decay rates, are relegated to

Appendices.

2 Scalar decay in random shear flows

The concentration C(x, y, t) of a passive scalar advected by a shear flow (u, v) = (0, V (x, t))

in two dimensions obeys the advection–diffusion equation

Ct + V (x, t)Cy = κ(Cxx + Cyy), (2.1)

where κ is the diffusivity. Because we consider the effect of varying κ, and in particular

taking the limit κ → 0, while keeping V (x, t) fixed, κ can be thought of as the inverse of the

Péclet number.

For periodic boundary conditions in the y-direction, as assumed here, C(x, y, t) is the

sum of independently evolving Fourier components. We consider one such component and

write the concentration as

C(x, y, t) = Re
[

eily−κl2tĈ(x, t)
]

,

where l is one of the wavenumbers 2nπ/L for n = ±1,±2, · · ·, and L is the domain period

in the y-direction. The complex amplitude Ĉ(x, t) then satisfies

Ĉt + ilV (x, t)Ĉ = κĈxx. (2.2)
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Note that we do not consider the y-independent (l = 0) component which is unaffected by

the flow and hence decays purely diffusively.

We focus on the decay of the concentration when V (x, t) is a random function of time

with smooth spatial structure, and we assume that V (x, t) and Ĉ(x, t) are 2π-periodic in

x. This decay is expected to be exponential in the long time limit; specifically, the ergodic

multiplicative theory [3, 4] applied to the advection–diffusion equation suggests that

Ĉ(x, t) ∼ D(x, t) exp(−λt) as t → ∞, (2.3)

for almost all realisations of V (x, t).1 Here, λ > 0 is the decay rate and is deterministic, and

D(x, t) is a (complex) stationary random function describing what Pierrehumbert [1] termed

the strange eigenmode. λ is best thought of as (the negative of) the Lyapunov exponent of

(2.2), defined by

λ = − lim
t→∞

1

t
log

||Ĉ||(t)
||Ĉ||(0)

, (2.4)

where we use the usual L2 norm

||Ĉ||(t) =

[
∫

|Ĉ(x, t)|2 dx

]1/2

.

Because it is deterministic, λ characterises the decay of almost all realisations of the flow

and provides the most useful measure of the mixing efficiency for large times.

The temporal intermittency of the scalar decay can be quantified by considering the

finite-time decay rates, or finite-time Lyapunov exponents, defined by

λt = −1

t
log

||Ĉ||(t)
||Ĉ||(0)

, (2.5)

and the moment decay rates γp, defined by

γp = − lim
t→∞

1

t
log

E ||Ĉ||p(t)
||Ĉ||p(0)

, (2.6)

1We remain at a heuristic level and do not provide here a rigorous justification for the applicability of

the ergodic multiplicative theory to the advection–diffusion equation. This would require either an infinite-

dimensional version of this theory [26] or reduction to a finite-dimensional problem using inertial-manifold

arguments [27]. Furthermore, statements such as (2.3) would need to be made precise using both forward

and backward evolution [3].
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where E denotes the mathematical expectation and we take a deterministic initial condition.

Note that, because of the form of (2.3), the particular norm chosen for the definitions (2.4)

and (2.6) is irrelevant. Thus, ||Ĉ||p could be replaced in (2.6) by

∫

|Ĉ(x, t)|p dx. (2.7)

What is crucial, however, is that γp characterises the decay of ensemble-averaged moments.

The relationship

λ =
dγp

dp

∣

∣

∣

∣

p=0

, (2.8)

is readily established from (2.4) and (2.6). The connection between the finite-time distribu-

tion of λt and the function γp for p ∈ �
, which are well-known for finite-dimensional linear

systems [5, 6], are expected to also hold for the advection–diffusion equation (2.2). Specif-

ically, if we assume that the probability density function for λt takes the large-deviation

form

p(λt; t) ∼
(

g′′(λ)

2π

)1/2

e−tg(λt), as t → ∞, (2.9)

with g(·) a convex, non-negative (Cramer) function satisfying g(λ) = 0, then it is easy to

show using Laplace’s method that the Legendre-transform formula

γp = inf
λt

[pλt + g(λt)] . (2.10)

holds.

We emphasise that although λt → λ as t → ∞ the non-trivial distribution (2.9) of λt

for finite t implies that γp 6= pλ in general. Thus, the decay rate γp of ensemble-averaged

moments E ||Ĉ||p differs from the decay rate pλ of ||Ĉ||p in almost all flow realisations. This

reflects the intermittency of the passive-scalar decay which is the focus of the present paper.

This intermittency means, in particular, that the decay rate derived for a particular moment,

often p = 2, cannot be used to infer the decay rate in typical realisations, which is λ. In the

next two sections, we examine two types of flows for which the intermittency can be clearly

demonstrated by asymptotic and numerical means.
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3 Flow with fixed spatial structure

3.1 Model

For the first type of flow, we take the velocity field

V (x, t) = f(t) sin x, (3.1)

where f(t) is a zero-mean random function of time. It is then convenient to take the

piecewise-constant function

f(t) = αξn/l for n ≤ t < n + 1, n = 0, 1, 2, · · · ,

where α > 0 is a constant, the ξn are independent normal variables with zero mean and unit

variance, and the division by l is introduced for ease of notation. This type of flow is in the

class of renewing (or renovating [28]) flows, that is, flows which decorrelate completely in

a finite time, taken here to be 1. In such flows, the concentration at the end of each time

interval, that is, Ĉn(x) = Ĉ(x, n) evolves according to a random map. In the absence of

diffusion, this map reads

Ĉ(x) 7→ Ĉ(x)e−iαξ sin x. (3.2)

With diffusion, the map is more complicated to write down. A standard simplification is to

consider that advection and diffusion act successively: thus, a period of advection leading to

the map (3.2) is followed by a period diffusion leading to the map

Ĉ(x) 7→ eκ∂2
xxĈ(x), (3.3)

where exp(κ∂2
xx) denotes the time-1 flow of the heat equation. Combining (3.2)–(3.3), we

write the dynamics as

Ĉn+1(x) = eκ∂2
xx

(

e−iαξ sinxĈn(x)
)

. (3.4)

This is the model that we use for numerical simulations. These are carried out using a

pseudo-spectral representation of Ĉn(x), with the advection step (3.2) carried out on the

grid, and the diffusion step (3.3) carried out in Fourier space. Following Pierrehumbert [29],

we formulate the dynamics on a lattice by constraining the advection to take place over an
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Figure 1: Concentration decay for the advection–diffusion map (3.4) with α = π and κ =

10−3. The norm of the concentration is shown in logarithmic coordinate as a function of the

iteration number n for 5 different realisations of the map.

integral number of grid steps. Depending on diffusivity, we use between 512 and 2048 grid

points and Fourier modes; this proves sufficient for the results to be insenstive to resolution.

Figure 1 shows the decays of the norm of the concentration in 5 typical realisations of the

map (3.4), all taken with the same initial condition Ĉ0 = 1. As expected, the concentration

decays exponentially, with finite-time decay rates λn changing from realisation to realisation.

This of course is a finite-time effect, and if the simulations were carried out for a larger number

of iterations, all the decay rates would converge to the same rate λ. Figure 2 illustrates the

spatial structure of the decaying concentration: it shows Ĉ normalised by ||Ĉ|| as a function

of x, here after n = 2000 iterations of the map. A similar structure is in fact observed at

all n after a brief transient period. The modulus of Ĉ has two well-defined peaks centred at

x = π/2 and x = 3π/2 and decreases sharply away from these. The real and imaginary parts

of Ĉ oscillate over a scale that is roughly that of the peaks. The width of the peaks changes

with n in a random fashion, as does the phase of the oscillations. Numerical experiments

with different values of κ show that the decay rate λ and the typical width of the peaks

in |Ĉ| decrease with κ in a power-law fashion. (Note that the symmetry in the two peaks

results from the fact that Ĉ0(π/2) = Ĉ0(3π/2) = 1.) We now develop an asymptotic theory

that predicts this power-law behaviour and gives a characterisation of the intermittency of
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Figure 2: Normalised concentration of the decaying scalar for the advection–diffusion map

(3.4). |Ĉ| (solid line), Re Ĉ (dashed line) and Im Ĉ (dotted line) normalised by ||Ĉ|| are

shown as functions of x after n = 2000 iterations with κ = 10−3.

the scalar decay for κ → 0.

3.2 Asymptotic results

We start by noting that the decay is slow compared with the correlation time of the velocity

field, taken to be unity. We can thus approximate the piecewise-constant process f(t) by a

white noise, and write the continuous evolution equation

Ĉt + iα sin x Ĉ ◦ Ẇt = κĈxx, (3.5)

where Ẇt is a white noise, and formally t = n. Because the white-noise term emerges as

limit of a coloured noise, this equation should be interpreted in the sense of Stratonovich

[30] indicated by the symbol ◦.
Equation (3.5) is precisely that studied by Bronski and McLaughlin [22], and clearly it

is relevant for velocity fields of the form (3.1) with more general f(t) than the one used

for our numerical simulations. The analysis that we now present is fairly different from

that of Bronski and McLaughlin [22] in that we focus on the small-diffusivity limit κ → 0

and provide an asymptotic model for the single-realisation behaviour of (3.5) whereas they

mostly consider ensemble-averaged moments in the opposite limit κ � 1.
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The numerical simulations show that the concentration is localised near the points x =

π/2 and x = 3π/2 where the shear Vx vanishes, as is the case for constant f(t). This suggests

using a boundary-layer approach. Focusing on the neighbourhood of x = π/2, we let

Ĉ(x, t) = e−iαWtC̃(X, T ),

where Wt is the Wiener process,

x =
π

2
+ κ1/6α−1/3X and t = (κα)−2/3T. (3.6)

Introducing these variables into (3.5), expanding the sine and using the scaling property of

Wt, we find the parameter-free leading-order equation

C̃T − i

2
X2C̃ ◦ ẆT = C̃XX .

A solution with suitable decay for |X| → ∞ is found as

C̃(X, T ) = e−[a(T )X2+b(T )], (3.7)

where the complex amplitudes a(T ) and b(T ) satisfy the stochastic differential equations

ȧ = −4a2 − i

2
ẆT and ḃ = 2a. (3.8)

This simple system encapsulates the statistical properties of the scalar decay in the flow

(3.1). The finite-time decay rates λt, in particular, are given up to scaling by b(T )/T , with

the long-time limit

λ = (κα)2/3 lim
T→∞

1

T
Re b(T ) = 2(κα)2/3Re E a(T ). (3.9)

Note the κ2/3-scaling, which shows that the scalar decay is much slower in the flow (3.1) with

random f(t) than with constant f(t) (in which the decay rate scales like κ1/2, see Appendix

A.1).

Numerical solutions of (3.8) show that a(T ) and b(T )/T quickly reach stationary dis-

tributions, with Re a > 0 as is required for the localisation of the solution (3.7) assumed

for the asymptotics. The form of the solution (3.7) is then consistent with the expected

strange-eigenmode decay (2.3), with an eigenmode structure

D(x, t) = e−iαWt−a(T )X2
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Figure 3: Decay rate λ as a function of diffusivity κ for the advection–diffusion map (3.4)

with α = π. Numerical results (◦) are compared with the theoretical prediction (3.10) scaling

like κ2/3 (solid line).

that is indeed stationary. It is also consistent with the form of Ĉ obtained in numerical

experiments with the map (3.4) and illustrated by Figure 2.

We estimate numerically from (3.8) that 2ReE a(T ) ≈ 0.460, hence we predict the decay

rate to be

λ ∼ 0.460(κα)2/3. (3.10)

Figure 3 compares this prediction with the decay rate found in numerical simulations of

(3.4) for a range of values of κ. To obtain a reliable approximation from such simulations,

it is best to run an ensemble of computations and estimate λ as the average of the finite-n

decay rate λn for large n. A relatively small ensemble, of about 100 realisations, is enough

to obtain a reliable estimate for E λn, which converges to some λ for large n. The results

confirm the validity of the theoretical approximation (3.10), with a good agreement even for

κ moderately small. In fact, for all the values of κ shown in Figure 3, the relative difference

between the approximation (3.10) and the numerical estimate does not exceed 3%.

The moment decay rates γp defined in (2.6) can also be inferred from the form (3.7) of

the solution as

γp = − lim
T→∞

(ακ)2/3

T
log E

∣

∣e−pb(T )
∣

∣ .
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This can be estimated by solving (3.8) numerically, although a large ensemble is required

for reliable results. Our best estimate for the (ensemble-averaged) variance decay rate, for

instance, is

γ2 ≈ 0.881(κα)2/3. (3.11)

This value has been confirmed in two ways. First, we have solved the eigenvalue problem for

the covariance E Ĉ∗(x, t)Ĉ(x′, t) by a combination of asymptotic and numerical means, as is

detailed in Appendix A.2. This reproduces formula (3.11), with an identical numerical factor

up to the third significant digit. The second confirmation is obtained by direct ensemble

simulations of (3.4). In this manner we obtain, for instance, γ2 = 0.0886 for κ = 10−2 and

α = π when (3.11) predicts 0.0877.

The results (3.10) and (3.11) show explicitly that the passive-scalar decay is intermittent:

γ2 6= 2λ, and more generally, γp 6= pλ and γp 6= pγ2/2, as we have verified for p = 4 (results

not shown). The intermittency turns out to be rather weak, however, with a relative error

|γ2 − 2λ|/γ2 of about 4%; it may well be insignificant for most applications. We emphasise

that this weakness is nothing more than a numerical property of the stochastic differential

system (3.8): the intermittency cannot be said to be small in any asymptotic sense. In

the next section, we consider a different class of shear flows leading to a radically different

behaviour for the passive scalar problem, with an intermittency that is asymptotically large

as κ → 0.

4 Flow with translating spatial structure

4.1 Model

The type of flow that we now consider has a velocity field of the form

V (x, t) = α sin(x + φ(t))/l, (4.1)

where φ(t) is a stationary random function of time, distributed uniformly in [0, 2π]. As before,

α is a constant, and the division by the wavenumber l is introduced for ease of notation.

Following section 3, we take φ(t) to be constant for t ∈ [n, n + 1), with independent values

14
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Figure 4: Concentration decay for the advection–diffusion map (4.2) with α = π and κ =

10−3. The norm of the concentration is shown in logarithmic coordinate as a function of the

iteration number n for 5 different realisations of the map.

φn in each interval, and reduce the evolution to a random map. Alternating advection and

diffusion steps, we obtain the random map

Ĉn+1(x) = eκ∂2
yy

[

e−iα sin(x+φn)Ĉn(x)
]

, (4.2)

whose dynamics we now examine.

We have carried out a number of numerical experiments with the map (4.2) for a range

of values of κ, using an implementation similar to that described in section 3.1. Figure 4

shows the decay of ||Ĉ|| in five typical realisations of the map for κ = 10−3 and α = π and

Ĉ0(x) = 1. There are two striking features when compared with the decay obtained with

the map (3.4) and illustrated in Figure 1: the decay occurs at a much larger rate, and it

is much more intermittent. At this point, the intermittency is detected qualitatively in the

existence of clear time intervals during which the decay rate is much larger or much smaller

than its long-time average. Below, we make more quantitative statements by considering

the difference between λ and γp/p.

The evolution of the normalised concentration Ĉ/||Ĉ|| is remarkable and deserves to be

described in some detail. As in the case of flows with fixed spatial structure, the modulus

of the concentration has two well-defined peaks separated by a distance π; what is different,
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Figure 5: Concentration decay for the advection–diffusion map (4.2) with α = π and κ =

10−4. The top panel shows the norm of the concentration as a function of the iteration

number n in one realisation of the map. The bottom panel shows the modulus of the

normalised concentration |Ĉ|/||Ĉ|| in grey scale as a function of n and x. It exemplifies the

random motion experienced by the concentration peaks. Three particular iterates, labelled

a, b and c are identified; the corresponding concentration profiles are shown in Figure 6.

besides the different scaling with κ of the peak width, is the fact that the peaks are moving

over long time scales in a random manner. In addition, the real and imaginary parts of Ĉ

oscillate within the peaks, with a wavelength that changes in time but is typically much

shorter than the peak width. To illustrate the nature of evolution further, we show details of

one particular realisation with κ = 10−4 and α = π in Figures 5–6. The top panel of Figure

5 shows the variance decay, whilst the bottom panel show the corresponding evolution of

|Ĉ|/||Ĉ||. The random motion of the position of the concentration peaks is clearly seen, as

are significant fluctuations in the width of the concentration peaks. It is also noticeable that

rapid motion of the concentration peaks, as for instance for 1700 � n � 2000, is associated

with anomalously fast variance decay. In addition, one can identify periods during which

there are more than two peaks (n ≈ 2300), or the peaks cease to be well defined (n ≈ 3600).
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Figure 6: Normalised concentration of the decaying scalar for the realisation of the map (4.2)

described in Figure 5. |Ĉ| (solid line), Re Ĉ (dashed line) and Im Ĉ (dotted line) normalised

by ||Ĉ|| are shown as functions of x for three iteration numbers n = 600 (a), 1780 (b) and

3575 (c) corresponding to the labels in Figure 5. (Enhanced online.)

Following the evolution more closely, e.g. by examining an animation of |Ĉ|/||Ĉ||, shows

that these periods, which one might term ‘crises’, correspond to a rapid reorganisation of

the concentration structure.

More details of the relationship between the scalar decay and the structure of Ĉ can

be gleaned from Figure 6. This shows the profiles of normalised concentration |Ĉ|/||Ĉ|| for

three different values of n identified on Figure 5, namely (a) 600, (b) 1780 and (c) 3575, and
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chosen to represent different phases in the evolution. For n = 600, the fluctuations in Ĉ have

a moderate scale, shorter than the peak width, but somewhat longer than what an average

scale would be. As a result of this moderate scale, the diffusive damping of the concentration

is slower than average, and there is little motion of the concentration peaks. For n = 1780,

by contrast, the scale of fluctuation is very small; as a consequence, the concentration decays

sharply. Also, because the smallest scales are on the right of each peak, the dissipation is

more intense there, and the peaks move to the left, that is, toward smaller values of x, as

can be seen in Figure 5. The iterate n = 3557 illustrates the passage through a crisis, when

a pair of peaks is being replaced by another, in this case shifted to the right. Again, this

can be explained by the changing scale of the oscillations, which favours one pair of peaks

by dissipating it less strongly than the other. (Figure 6 is enhanced online by an animation

displaying Ĉ/||Ĉ|| as a function of x for 0 ≤ n ≤ 4000 along with ||Ĉ|| as a function of n.)

As the diffusivity κ decreases, the width of the concentration peaks decreases as does the

scale of the oscillations within each peak. The decay rate of the concentration and the speed

at which the peaks move and change their width also decreases with κ. We quantify this

more precisely in the next section.

4.2 Asymptotic results

As in section 3.2, we first point out that the random process in (4.1) can be approximated

using white noises in the limit κ → 0. Writing sin(x+φ(t)) = sin x cos φ(t)+cosx sin φ(t), and

noting that cos φ(t) and sin φ(t) have zero mean, variance 1/2 and vanishing covariance, we

approximate sin(x+φ(t)) in (4.1) by Ẇ 1
t sin x+Ẇ 2

t cos x, where W 1
t and W 2

t are independent

Wiener processes. Thus, rather than the map (4.2), we can study the evolution equation

Ĉt +
iα√
2
Ĉ ◦

(

Ẇ 1
t sin x + Ẇ 2

t cos x
)

= κĈxx. (4.3)

This is the analogue for the flow with translating spatial structure of equation (3.5) obtained

for the flow with fixed structure. Although the equations are similar, the passive-scalar decay

is qualitatively very different in both cases.

Perhaps unsurprisingly given the complicated nature of the dynamics described in the

previous section, we found (4.3) much less amenable to an asymptotic treatment than (3.5):
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we were not able to reduce the dynamics to a few stochastic differential equations, and we

therefore rely on numerical computations to elucidate the dependence of the average decay

rate λ on κ. Analytical progress is however possible for the moment decay rates γp. We start

by decomposing Ĉ into amplitude and phase according to

Ĉ(x, t) = ρ(x, t)eiθ(x,t),

and derive the following two evolution equations for ρ and θ from (4.3):

ρt = κρxx − κρθ2
x, (4.4)

θt = − α√
2

(

Ẇ 1
t sin x + Ẇ 2

t cos x
)

+ κ

(

θxx + 2
ρxθx

ρ

)

. (4.5)

For t = O(1), diffusion can be neglected, and the phase is simply given by

θ(x, t) = − α√
2

(

W 1
t sin x + W 2

t cos x
)

, (4.6)

where we assume that θ(x, 0) = 0. Thus θ typically grows like t1/2. Diffusion first affects the

evolution of ρ; introducing (4.6) into (4.4) and integrating gives the approximation

ρ(x, t) ≈ ρ0(x) exp

[

−α2κ

2

∫ t

0

(

W 1
s sin x + W 2

s cos x
)2

ds

]

, (4.7)

where ρ0(x) is the initial condition. This expression describes the early stages of the evolution

and, in particular, the manner in which two concentration peaks appear near the minima of

the argument of the exponential. These minima move, of course, randomly in time.

The approximation (4.7) does not describe the strange-eigenmode stage of the passive-

scalar decay, since it predicts a typical decay that is not exponential in time but rather

behaving like exp(−t2). It is, however, an approximation valid for an asymptotically long

time in the limit κ → 0: according to (4.7), it is only for t = O(κ−1/2) that the gradients of ρ

become O(1), and hence it is only for asymptotically longer times that these gradients become

significant in (4.4)–(4.5). Figure 7 illustrates this point by comparing the evolution of ||Ĉ||
in a realisation of the map (4.2) (again for κ = 10−4 and α = π) with the prediction deduced

from (4.7). There is a good match for n up to about 600; thereafter, the superexponential

behaviour that (4.7) entails becomes clear, and the predicted decay becomes much faster

than the actual one. We emphasise that the concentration norm has already been reduced
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Figure 7: Norm of the concentration ||Ĉ|| as a function of the iteration number n in one

realisation of the random map (4.2) with κ = 10−4 and α = π: the numerical result for

the map (solid line) is compared with the norm obtained from the asymptotic result (4.7)

(dashed line), which holds only for a finite time.

by several orders of magnitudes when (4.7) ceases to be accurate. This is consistent with

our remark that (4.7) holds for times longer than O(κ−1/2), that is, here n � 100. From a

practical viewpoint, then, (4.7) is valuable, since one may not be interested in the evolution

of the scalar once its concentration has been reduced to a small fraction of its initial value.

An important feature of (4.7) is that leads to an exponential decay for the moments of ρ

and hence of ||Ĉ||. Indeed, in Appendix B we show that (4.7) implies that

E ρp(x, t) ∼ ρp
0(x)e−α(κp)1/2t/2 (4.8)

as t → ∞. We now argue that this result provides the correct large-t asymptotics for the

decay rates of the ensemble-averaged moments of ||Ĉ||, even though it relies on (4.7) which

is a valid approximation only for a finite time. The reason for this is that the ensemble-

averaged moments are dominated by realisations of the flow for which the scalar decay has

been anomalously weak. Thus, at any time, the ensemble-averaged moments are dominated

by realisations for which θ is anomalously small and as a consequence, the gradients of ρ

are small; these are circumstances which ensure the validity of (4.7). In other words, even

though the approximation (4.7) fails at large time for typical realisations, it is applicable
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Figure 8: Moment decay rate γp as a function of the moment number p for the map (4.2)

with κ = 10−4 and α = π. Numerical estimates of γp (◦) are compared with the asymptotic

prediction (4.9) valid for κ � 1 (dashed line). The tangent to the curve γp at p = 0, with

slope given by the decay rate λ estimated from (4.10), is also indicated (dotted line).

for those anomalous realisations which dominate the behaviour of the ensemble-averaged

moments. As a result, we predict the moment decay rates to be asymptotically

γp ∼
α(κp)1/2

2
(4.9)

as κ → 0. This expression can be confirmed for p = 2, that is, for the variance decay rate,

by examining the eigenvalue problem for the concentration covariance. This is carried out in

Appendix A.3. It proves rather difficult to verify (4.9) through direct numerical simulations.

On the one hand prohibitively large ensembles are necessary to obtain estimates of γp with

p > 2; on the other hand, (4.9) is not valid for p � 1 (see below). Nevertheless, our numerical

results, presented in Figure 8 for κ = 10−4 and α = π, appear consistent with the estimate

(4.9).

The estimate (4.9), with its highly nonlinear p1/2 dependence on the moment number p,

underlies the strong intermittency of the passive scalar decay for the flow with translating

spatial structure. The p1/2 has in fact a crucial feature: it is not differentiable at p = 0.

Hence the relationship (2.8) predicts a infinite decay rate (or Lyapunov) exponent λ. This

reflects the fact that the approximation (4.9) is not uniformly valid for p → 0, and that the
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Figure 9: Decay rate λ as a function of diffusivity κ for the map (4.2) with α = π. Numerical

results for λ (◦) are shown together with the best fit of a κ3/8 power law (dashed line).

Also shown are the numerical results for (half) the decay rate γ2 of the ensemble-averaged

variance ( � ), and the κ1/2 power law predicted by the asymptotic result (4.9) (dotted line).

The difference between λ and γ2/2 demonstrates that the temporal intermittency of the

passive-scalar decay becomes asymptotically large as κ → 0.

dependence of λ upon κ is very different from that of γp with p = O(1). Our numerical

results establish this clearly: we found that λ depends on κ in a power-law manner with the

power appearing to be 3/8, that is,

λ ∼ aκ3/8, (4.10)

with a best estimate for the prefactor a = 0.878. (The best fit for an arbitrary power

law gives γp ∼ 0.897κ0.378.) Figure 9 illustrates these numerical results by showing λ as a

function of κ together with the estimate (4.10) for the map (4.2) with α = π. The Figure

highlights the nature of the intermittency of the passive-scalar decay by also showing γ2/2

which clearly differs largely from λ.

Once (4.10) is known, it provides the slope of the tangent of the curve γp at p = 0. For

κ = 10−4, the numerical value obtained for a is consistent with our numerical results for γp,

as the plot of the tangent in Figure 9 indicates. The κ3/8 of the slope of γp at the origin,

and the (κp)1/2 dependence of γp for p = O(1) suggest that there is a cross-over between
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two different regimes for p = O(κ1/4). The Legendre transform formula (2.10) then implies

that the Cramer function governing the distribution of finite-time decay rates λt, while some

O(1) function for λ = O(κ3/8), is proportional to κ/λt for much smaller values of λt.

In summary, flows of the type (4.1) prove to be extreme examples of the temporal inter-

mittency that is possible in passive-scalar decay. With the different power-law dependence

of λ and γp on κ, the intermittency, measured for instance by |γ2 − 2λ|/γ2, is arbitrary large

in the limit κ → 0. We have not been able to develop an asymptotic theory for the sys-

tem (4.2) which describes the strange eigenmode structure and evolution in a κ-independent

manner. Extensive numerical simulations for different values of κ have however led to the

identification of some scalings in addition to that of the decay rates (4.9)–(4.10). Specifically,

the scale of variation of ρ appears proportional to κ1/8, with the form exp[−b(x − c)2/κ1/4],

where b and c O(1) functions of time, giving a good match for the structure of ρ in the

neighbourhood of its peak values. Also, the evolution of ρ, that is, the change in the values

of the parameters b and c just introduced, appears to take place over an O(κ−3/4) time scale.

Together with (4.10) this implies that the concentration has decayed by a facto rproportional

to exp(−dκ−3/8), for some order-one constant d, by the time the strange-eigenmode stage is

reached.

5 Discussion

The two random shear flows considered in this paper illustrate the intermittent nature of

the decay of a passive scalar advected and diffused in a bounded domain. For the first

flow, with fixed spatial structure, the intermittency turns out to be weak, even though not

asymptotically small the limit of vanishing diffusivity (large Péclet number). In this case

the intermittency can probably be ignored for practical purposes: the decay rate of the

ensemble-averaged p-th moment is nearly linear in p, and γ2/2 for instance can be used to

predict the decay rate λ in individual realisations of the flow. It should be stressed, however,

that because the intermittency is of order one in an asymptotic sense and only numerically

small, it may well be significant for other flows with fixed spatial structure, for instance given

by a superposition of Fourier modes rather than a single mode.
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The second type of flow that we consider, with randomly translating spatial structure,

displays a spectacular form of intermittency in the limit of small diffusivity. For this flow, the

power-law dependence on diffusivity of the decay rate λ differs from that of the moment decay

rate γp, with respective dependences in κ3/8 and κ1/2, respectively. Thus in each individual

realisation, the passive scalar concentration decreases at a rate that is much larger than what

ensemble-averaged results might suggest. As explained, this is because ensemble averages

are dominated by anomalous realisations in which the scalar decay is much slower than is

typical. We also note that the time scale necessary for the long-time stage of decay (the

strange-eigenmode stage) to be reached is asymptotically long, so that the concentration is

reduced to a vanishingly small fraction of its initial value by the time this stage is reached.

This may limit the relevance of the strange-eigenmode stage for applications.

Although the paper is mainly focused on the issue of intermittency, it is useful to note

what the effect of randomness is on the efficiency of the mixing as measured by the decay

rate λ. As Appendix A.1 recalls, the decay rate for a time-independent sinusoisal flow (and

more generally for any flow with extrema), is proportional to κ1/2. Making the amplitude of

the sinusoid a zero-mean random function of time as in (3.1) unsurprisingly diminishes the

efficiency of the mixing, with a decay rate scaling like κ2/3. Making the phase of the sinusoid

vary randomly in time as in (4.1), by contrast, makes the mixing more effective; this is

because the extrema of the velocity profile, which limit mixing when the spatial structure of

the flow is fixed, constantly change position so that no regions of the fluid remain unaffected

by shear. The result is a decay rate proportional to κ3/8. In a natural way, this is larger

than the O(κ1/2) decay rate achieved for time-independent flows with extrema, but smaller

than the O(κ1/3) found for monotonic velocity profiles [23, 24]. Of course, the latter cannot

be continuous in periodic domains. Note that through a change of reference frame the flow

(4.1) can be reinterpreted as the two-dimensional velocity field (u, v) = (φ̇, α sin x/l); this

has a time-independent shear and a random uniform flow across the shear.

We conclude this paper by returning to the issue of temporal intermittency. Our results

show that this intermittency can be significant for a (somewhat contrived) class of shear flows.

It is natural to ask whether similar results hold for more general flows and, in particular, for

the class of two-dimensional mixing flows in periodic domains which have attracted so much
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attention in the last few years [1, 9, 11–14, 29]. Recently, Haynes and Vanneste [12] showed

that two distinct regimes of scalar decay are possible in these flows, depending on the scale

of the flow relative to the domain size. In the first regime, termed locally controlled, the

scalar decay is limited by small regions of the fluid which have experienced anomalously low

stretching and hence have relatively high scalar concentration. In the second regime, termed

globally controlled, the scalar field has a large-scale structure roughly determined by the

gravest mode of the Laplacian in the domain. It is likely that the temporal intermittency

properties differ between the two regimes. It can in fact be anticipated to be weak in the

locally controlled regime, where some self-averaging is expected to take place because of the

smallness of the scalar structures involved. Haynes and Vanneste [12] reported only small

differences between the decay rate γ2 and half the (ensemble-averaged-)variance decay rate

γ2/2 in both regimes. It would clearly be desirable to assess in more details the nature of

the intermittency for these mixing flows, particularly because the practical use of theoretical

predictions relies implicitly or explicitly on the assumption that it is negligible.
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A Three eigenvalue problems

A.1 Constant flow

For reference we derive the decay rate of a passive scalar in the (non-random) constant flow

V (x) = α sin x/l (A.1)

in the limit κ → 0. The decay rate is the real part of the eigenvalue λ satisfying

−λĈ + iα sin x Ĉ = κĈxx,

where Ĉ(x) is the eigenfunction. As discussed in Giona et al. [24], the eigenfunction is

localised near the extrema of V (x), here at x = π/2 and 3π/2. The eigenvalue problem can
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therefore be solved using a boundary-layer method. Focusing on the maximum at x = π/2,

we let

x =
π

2
+ κ1/4α−1/4X and λ = iα + (κα)1/2λ̃

and find the leading order equation

−λ̃Ĉ =
iX2

2
Ĉ + ĈXX .

Introducing a solution of the form Ĉ = exp(−aX2), we find that

a =
1

4
− i

4
and λ̃ =

1

2
− i

2
.

Thus the decay rate is

Re λ =
(κα)1/2

2
. (A.2)

This formula also applies to flows more general than (A.1), with any number of (non-

degenerate extrema), in which case α/|l| is the minimum value of |V ′′| at these extrema.

A.2 Flow with fixed spatial structure

In this Appendix we derive a closed evolution equation for the concentration covariance

Γn(x, x′) = E Ĉ∗

n(x)Ĉn(x′) (A.3)

for the map (3.4). We then solve the corresponding eigenvalue problem asymptotically in

the limit κ → 0. We also verify that this eigenvalue problem is identical to leading order to

the one that emerges from the continuous-time approximation (3.5).

From (3.4), we obtain that the covariance evolves according to the deterministic map

Γn+1(x, x′) = eκ(∂2
xx+∂2

x′x′
)
[

e−α2(sinx−sinx′)2/2Γn(x, x′)
]

. (A.4)

This can be written in a more explicit form by introducing the Green’s function G(x− y) of

the heat equation in [0, 2π], such that

exp(−κ∂2
xx)h(x) =

∫ 2π

0

G(x − y)h(y) dy,
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for any function h. (Note that y is used here as a dummy integration variable; there should

be no confusion with its earlier use as streamwise coordinate.) In the limit κ → 0, G(x− y)

reduces to the Green’s function of the diffusion equation in an infinite domain, that is

G(x − y) ∼ e−(x−y)2/(4κ)

(4πκ)1/2
. (A.5)

The long-time decay of Γn(x, x′) and hence of the ensemble-averaged variance

E ||Ĉ||2 =

∫

Γn(x, x) dx

is controlled by the solution of the eigenproblem associated with (A.4). Noting that, ac-

cording to the definition (2.6), the eigenvalue is exp(−γ2), we write this eigenvalue problem

as

e−γ2Γ(x, x′) =

∫ 2π

0

∫ 2π

0

G(x − y)G(x′ − y′)e−α2(sin y−sin y′)2/2Γ(y, y′) dydy′. (A.6)

We now examine this eigenvalue problem in the limit κ → 0. We first note that, for

κ = 0, the eigenvalue problem reduces to

e−γ2Γ(x, x′) = e−α2(sin x−sinx′)2/2Γ(x, x′).

Clearly, the spectrum for γ2 becomes the range of α2(sin x − sin x′)2. For 0 < κ � 1, we

expect the eigenfunctions associated with small gamma2 to be localised near the minimum

of (sin x − sin x′)2, that is, along the lines x′ = x and x′ = π − x (and their periodic copies).

The eigenfunction corresponding to the minimum value of γ2 is localised near the intersection

x = x′ = π/2 of these lines. We identify the relevant scale of localisation as κ1/6 and hence

introduce

x =
π

2
+ κ1/6α−1/3X, γ2 = (κα)2/3γ̃2, (A.7)

(cf. (3.6)) with similar definitions for X ′, and regard Γ as a function of X and X ′. Expanding

in Taylor series and using (A.5) in (A.6) then leads to

− γ̃2Γ = ΓXX + ΓX′X′ −
(

X2 − X ′2
)2

8
Γ. (A.8)

The boundary conditions completing the formulation of the asymptotic eigenvalue problem

are of course decay for |X|, |X ′| → ∞.
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Finding the smallest eigenvalue γ̃2 of (A.8) provides the leading-order approximation

to the ensemble-averaged variance decay rate. This needs to be done numerically. We

have obtained an approximation to γ̃2 and the corresponding eigenfunction by solving the

evolution equation associated with (A.8) numerically, using a finite-difference discretisation.

Starting from Gaussian initial condition we obtain the approximation γ̃2 ≈ 0.8806, consistent

with the results of section 3.2 as well as the structure of the eigenfunction Γ(X, X ′, t) (not

shown).

For completeness, we now establish that the eigenvalue problem (A.8) also follows from

the continuous-time equation (3.5) which approximates the map (3.4) for κ → 0. From (3.5),

we find that

∂t

[

Ĉ∗(x, t)Ĉ(x′, t)
]

= κ
[

Ĉ∗

xx(x, t)Ĉ(x′, t) + Ĉ∗(x, t)Ĉx′x′(x′, t)
]

+iα(sin x − sin x′)Ĉ∗(x, t)Ĉ(x′, t) ◦ Ẇt.

Upon transforming into the corresponding Ito form and taking the expectation, we obtain

the Schrödinger equation [cf. 22]

Γt = κ(Γxx + Γx′x′) − α2

2
(sin x − sin x′)2Γ.

Introducing eigensolutions exp(−γ2t)Γ(X, X ′) with the scaled variables (A.7) and expanding

as κ → 0, we recover the eigenvalue problem (A.8). We emphasise that this eigenproblem

differs from the one that arises in a linear shear, as studied by Majda [18] and McLaughlin

and Majda [20].

A.3 Flow with translating spatial structure

We derive and solve asymptotically the eigenvalue problem that governs the covariance (A.3)

for the map (4.2). Because (4.2) is spatially homogeneous, the covariance depends only on

x − x′, and it is therefore best written as

Γn(x) = E Ĉ∗

n(x′)Ĉn(x′ + x).

From (4.2) we obtain that this function evolves according to

Γn+1(x) =

∫ 2π

0

G(x − x′)J0(2α sin(x′/2))Γn(x
′) dy′, (A.9)

28



where

G(x) =

∫ 2π

0

G(x − x′)G(x′) dx′

J0(·) is the 0-th Bessel function of the first kind, and G(x − x′) is the Green’s function of

heat equation, as in Appendix A.2. Using (A.5) gives the asymptotic behaviour

G(x) ∼ e−x2/(8κ)

(8πκ)1/2
as κ → 0.

The large-n decay of Γn and hence of the decay rate γ2 of the variance are determined by the

maximum eigenvalue of the operator on the right-hand side of (A.9). Solving this eigenvalue

problem asymptotically for κ → 0 gives an approximation to γ2. First note that for κ = 0,

the eigenvalue problem becomes

e−γ2Γ(x) = J0(2α sin(x/2))Γ(x).

The corresponding spectrum for e−γ2 (A.9) becomes the range of J0(2α sin(x/2)), with max-

imum λ = 1 and associated quasi-eigenfunction Γ(x) = δ(x). We therefore expect γ2 for

κ � 10 to be near 0, with eigenfunction localised near y = 0. We identify the relevant scale

for this localisation as κ1/4. We introduce the rescaled variables X and γ̃2 defined by

x = κ1/4α−1/2X and γ2 = κ1/2αγ̃2 (A.10)

and approximate the eigenvalue problem as

(

1 − κ1/2αγ̃2 + · · ·
)

Γ(X) =
1

(8πα)1/2κ1/4

∫

∞

−∞

e−(X−X′)2/(8κ1/2α)

×
(

1 − ακ1/2

4
X ′2 + · · ·

)

Γ(X ′) dX ′

= Γ(X) − κ1/2αY 2

4
Γ(X) + 2κ1/2αΓ′′(X) + · · ·

To leading order, the covariance Γ(X) and decay rate γ2 thus satisfy the eigenvalue problem,

Γ′′ +

(

γ̃2

2
− X2

8

)

Γ = 0, (A.11)

with solutions decaying for |X| → ∞ provided that γ̃2/(
√

2) = 1/2 + m, m = 0, 1, · · ·. This

leads to the variance decay rate and associated eigenfunction

γ2 = α
(κ

2

)1/2

+ o(κ1/2) and Γ(x) = exp

(

− αx2

4(2κ)1/2

)

+ o(1),
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in agreement with (4.9).

We conclude this Appendix by showing that the eigenvalue problem (A.11) also follows

from the continuous-time equation (4.3) which we claim approximates (4.2) for κ → 0. From

(4.3) we compute

∂t

[

Ĉ∗(x, t)Ĉ(x′, t)
]

= κ
[

Ĉ∗

xx(x, t)Ĉ(x′, t) + Ĉ∗(x, t)Ĉx′x′(x′, t)
]

+
iα√
2
Ĉ∗(x, t)Ĉ(x′, t) ◦

[

Ẇ 1
t (sin x − sin x′) + Ẇ 2

t (cos x − cos x′)
]

.

Transforming into the Ito form, taking the expectation and replacing x − x′ by x leads to

Γt = 2κΓxx − α2 sin2(x/2)Γ.

The associate eigenvalue problem reduces to (A.11) to leading order in κ when the scaling

(A.10) is introduced.

B Expectation of ρp

In this Appendix, we show that (4.7) implies (4.8). We represent the two Wiener processes

W i
t , i = 1, 2 by their Karhunen–Loève expansion [31, 32], which reads

W i
t =

∞
∑

k=0

ζ i
kλ

1/2
k φk(t), where λk =

4

(2k + 1)2π2
, φk(t) =

√
2 sin(λ

−1/2
k t),

and the ξi
k are i.i.d. N(0,1) variables. Using the orthogonality of the φk(t) we obtain from

(4.7) that [21]

E ρp(x, t) = ρp
0(x)E exp

[

−α2κpt2

2

∑

k

λk

(

ξ1
k sin x + ξ2

k cos x
)2

]

= ρp
0(x)E

∏

k

exp

[

−α2κpt2

2
λk

(

ξ1
k sin x + ξ2

k cos x
)2

]

= ρp
0(x)

∏

k

1

2π

∫

∞

−∞

∫

∞

−∞

e−α2κpt2λk(ξ1 sin x+ξ2 cos x)2/2e−[(ξ1)2+(ξ2)2]/2 dξ1dξ2

= ρp
0(x)

∏

k

1

2π

∫

∞

0

∫ 2π

0

e−α2κpt2λkr2 sin2 ϕ/2e−r2/2r drdϕ.

To deduce the last equality, we have introduced the polar coordinates (r, ϕ) defined by

ξ1 = r cos(ϕ − x) and ξ2 = r sin(ϕ − x).
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Carrying out the integration with respect to r, then that with respect to ϕ, we finally find

E ρp(x, t) = ρp
0(x)

∏

k

1

(1 + α2κpt2λk)
=

ρp
0(x)

cosh1/2 [α(κp)1/2t]
.

The approximation (4.8) follows for large t.
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