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This paper discusses some of the mechanisms whereby fast inertia-gravity waves can be generated

spontaneously by slow, balanced atmospheric and oceanic flows. In the small-Rossby-number regime

relevant to mid-latitude dynamics, high-accuracy balanced models, which filter out inertia-gravity

waves completely, can in principle describe the evolution of suitably initialised flows up to terms

that are exponentially small in the Rossby number ε, i.e, of the form exp(−α/ε) for some α > 0.

This suggests that the mechanisms of inertia-gravity-wave generation, which are not captured by

these balanced models, are also exponentially weak. This has been confirmed by explicit analytical

results obtained for a few highly-simplified models. We review these results and present some

of the exponential-asymptotic techniques that have been used in their derivation. We examine

both spontaneous-generation mechanisms which generate exponentially small waves from perfectly

balanced initial conditions, and unbalanced instability mechanisms which amplify unbalanced initial

perturbations of steady flows. The relevance of the results to realistic flows is discussed.
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1 Introduction

The atmosphere and oceans are typical examples of two-time-scale systems. As a result of fast

rotation and strong stratification, their dynamics can be separated into a slow, or balanced, part

evolving on an advective time scale L/U , and a fast part consisting of inertia-gravity waves (IGWs)

evolving on time scales shorter than the inertial period f−1. Thus, the Rossby number

ε =
U

fL
,

which gives an estimate of the time-scale separation between the two types of motion, is generally

small. A large time-scale separation leads to a weak coupling between the slow and fast components

of the dynamics. For the atmosphere and oceans, which are forced mostly at low frequency, this has

the consequence that the level of IGW activity often remains low; as a result, the dynamics can be

represented accurately by balanced models, that is, models which filter out IGWs completely. This

has been formalised by introducing the notion of slow manifolds, which are submanifolds of the

state space on which the fast, IGW motion is weak (Leith 1980, Lorenz 1980, Warn et al. 1995). A

balance relation (such as geostrophic balance), which slaves fast dynamical variables to slow ones,

is then regarded as the definition of a slow manifold, while the corresponding balanced model (such

as the quasi-geostrophic model) describes the dynamics constrained to this slow manifold.

By definition, slow manifolds are nearly invariant, in the sense that the full dynamics is nearly

tangent to them. A natural question, therefore, is how close to completely invariant they can be.

The answer to this question is clear in the case of finite-dimensional systems (MacKay 2004). In

the absence of dissipative processes (the relevant assumption for large-scale atmospheric or oceanic

dynamics), exactly invariant slow manifolds do not exist generically. Physically, this means that

fast (or unbalanced) motion cannot be eliminated completely by initialisation, that is, by projection

of initial data onto a slow manifold: fast motion in the form of IGWs will emerge spontaneously

in the flow evolution in spite of any attempt made at eliminating them from the initial conditions.

This implies a fundamental limitation to the accuracy of balanced models as well as the existence

of a physical mechanism for the generation of IGWs from balanced motion.

The high accuracy that can be achieved by balanced models is remarkable, however. Indeed, the

perturbative procedures used to define the slow manifolds (expansions in powers of ε or, equivalently,

iterations) can in principle by carried out systematically to obtain a hierarchy of slow manifolds
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which are approximately invariant to higher and higher formal accuracy O(εN ) for N = 1, 2, · · ·.

Restricting the dynamics to these slow manifolds then leads a hierarchy of balanced models which

approximates to O(εN ) the evolution of balanced initial conditions. The non-existence of a truly

invariant slow manifold is reflected in the divergence of the perturbative procedures as N → ∞

which limits the accuracy that can be achieved for fixed ε.

A maximum accuracy is attained by employing optimal truncation, that is, by stopping the

perturbative procedures at an order N(ε) which minimises the error. General arguments then

suggest that the most accurate balanced models obtained in this manner should have an error that

is exponentially small in ε, that is, of the type exp(−β/ε) for some β > 0. This can be proved for

finite-dimensional toy models of geophysical fluids such as the Lorenz–Krishnamurthy (LK) model

(Lorenz 1986, Lorenz & Krishnamurthy 1987) and others using standard methods (Gelfreich &

Lerman 2002, Cotter & Reich 2006). For infinite-dimensional models of geophysical fluids, proofs

are much more delicate and as yet only partial results have been obtained (Wirosoetisno 2004,

Temam & Wirosoetisno 2007). One might nonetheless expect the exponential accuracy to hold

true at least when the flows involved are sufficiently simple. Note that a key requirement for the

exponential smallness in infinite-dimensional systems is that the frequency separation holds at all

spatial scales; this is ensured in the small-Rossby-number regime on which this paper focuses.

The existence of exponentially accurate slow manifolds has an important physical implication:

unbalanced, IGW phenomena which appear spontaneously from balanced motion are necessarily

exponentially weak in the limit of small Rossby number. The qualifier “spontaneous” is crucial

here, since it rules out all forms of IGW activity that can be eliminated by suitable initialisation.

This marks out a genuine physical mechanism for the generation of IGWs. This is is contrast with

standard geostrophic adjustment (e.g. Reznik et al. 2001, and references) which describes the flow

response to an initial imbalance that can have a variety of origins.

In the last few years, substantial efforts have been made to study the mechanism of sponta-

neous IGW generation and estimate its importance as source of atmospheric IGW activity. In the

small-Rossby-number regime significant progress has been made along two lines of investigation.

On the one hand, high-resolution numerical models of the three-dimensional fluid equations have

been used to demonstrate that spontaneous IGW generation does occur in semi-realistic flows such

as baroclinic life cycles (e.g. O’Sullivan & Dunkerton 1995, Zhang 2004, Plougonven & Snyder
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2005, 2007, Viudez & Dritschel 2006, Viudez 2006). To date, however, the amplitude dependence

of the IGW on the Rossby number has not been established in these models. On the other hand,

theoretical analysis of highly-simplified models, typically described by ordinary differential equa-

tions, has established the exponential smallness of IGW generation explicitly (Vanneste & Yavneh

2004, Vanneste 2004, Ólafsdóttir et al. 2005). This has been achieved by obtaining asymptotic

estimates for the IGW amplitude using the tools of exponential asymptotics (e.g. Olde Daalhuis

2003). The aim of the present paper is to review these analytical results while providing some

background on the asymptotic methods employed. These methods shed some light on the nature

of IGW generation, showing, for instance how a unique (non-invariant) optimal slow manifold can

be defined, how the IGWs generated cannot be estimated from the knowledge of the leading-order

balanced motion only, and how singularities of the balanced motion for complex values of time are

crucial for the IGW amplitude. These conclusions are drawn on the basis of drastically simplified

atmospheric models, but they likely hold true in more realistic situations, even though their explicit

demonstration would be very challenging in this case.

This paper also discusses a set of recent results closely connected to the spontaneous generation

of IGWs. These concern the instability of balanced flows to IGW-like or more generally unbalanced

perturbations (McWilliams & Yavneh 1998, Yavneh et al. 2001, Molemaker et al. 2001, 2005,

Plougonven et al. 2005, Vanneste & Yavneh 2007). In these papers, simple steady flows, which

are stable under any balanced approximation, are shown to be in fact (spectrally) unstable for the

full equations. These instabilities involve unbalanced growing modes and hence are filtered out by

balanced approximations. The exponential accuracy of the latter for small Rossby number suggests

that the growth rates of the instabilities should be exponentially small. This has been confirmed,

either numerically or analytically. Furthermore, the widths of the instability regions in parameter

space (e.g., wavenumber space) are also shown to be exponentially small.

These steady-flow instabilities can be seen as simple, analytically-tractable examples of a generic

mechanism, namely the instability of the slow manifold to infinitesimal perturbations off it. This

mechanism differs from the spontaneous generation discussed above in that an initial imbalance

is necessary. Unlike in the case of geostrophic adjustment, however, the amplitude of this initial

imbalance does not affect the IGW-type behaviour at later times, since this is controlled by satura-

tion mechanisms which are likely independent of the initial conditions. The effect of spontaneous
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generation and of unbalanced instabilities can therefore be expected to be similar, both providing

mechanisms of IGW generation that may be difficult to distinguish in general time-dependent flows.

This paper is organised as follows. The construction of slow manifolds for two-time-scale sys-

tems is reviewed in section 2. This section briefly discusses an iteration scheme for the systematic

improvement of the accuracy of slow manifolds, and it explains how this may be used to establish ex-

ponential accuracy (at least for finite-dimensional models). It also emphasises the crucial difference

between the small-Rossby-number regime considered in this paper, and the small-Froude-number

regime. In the latter regime, time-scale separation holds only for a limited range of scales, leading

to Lighthill-type wave generation, with power-law rather than exponential scaling of the wave am-

plitudes (see Saujani & Shepherd 2002, Ford et al. 2002). Section 3 is devoted to the asymptotic

analysis of simple models of spontaneous generation of IGWs. It starts by a discussion of the

forced harmonic oscillator which provides an elementary example of the spontaneous generation of

exponentially-small fast oscillations analogous to IGWs. In this model, the slow part of the motion

is represented by the forcing term, assumed to be determined a priori and independent of the evo-

lution of the fast variables. This misses a central aspect of the dynamics of two-time-scale systems,

namely that there is in general no exact split between slow and fast variables. Nevertheless, the

forced harmonic oscillator provides an instructive example which serves to illustrate key asymptotic

techniques (such as optimal truncation and Borel summation) that can be applied to somewhat

more sophisticated applications. Two such applications, namely the Lorenz–Krishnamurthy model

and sheared disturbances, are considered next. We review the explicit results obtained for these

and comment on how they might generalise to more realistic models of the atmosphere and oceans.

The unbalanced instabilities with exponentially small growth rates are examined in section 4. The

instabilities considered there can be interpreted as resulting from the linear resonance between

waves of a variety of types (Kelvin waves, IGWs, and edge waves); as a result they typically involve

modes with asymptotically large wavenumbers, so that they can be analysed in some detail using

WKB approaches. The paper concludes in section 5 with a discussion.

2 Slow manifolds

The dynamical decoupling between balanced flow on the one hand, and IGWs on the other relies on

the existence of gap in the frequency spectrum of the equations of motion for a rotating stratified
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fluid on the f -plane. When these are linearised and wave solutions of the form exp(ik · x) are

introduced, the dispersion relation is found to have the three branches

ωbal = 0 and ωigw = ±
(
f2 sin2 ϑ + N2 cos2 ϑ

)1/2
, (2.1)

where ϑ is the angle between the wavevector k and the horizontal. These branches are identified as

the balanced or vortical mode, and upward and downward propagating inertia-gravity waves. The

frequency spectrum (2.1) implies two time scales for the nonlinear equations of motion: the inertia-

gravity time scale, bounded from below by f−1 (assuming a Brunt–Väisälä frequency N > f), and

the nonlinear, advective time scale L/U . Choosing the latter as reference time scale, the equations

of motion can then be written in the form

∂s

∂t
= Ns(s, f), (2.2)

∂f

∂t
+

1
ε
Lf = Nf(s, f) (2.3)

when suitable dependent variables are used (Warn et al. 1995). These distinguish the single slow

field s (potential vorticity or a linearised version thereof) from the two fast fields f = (f1, f2)

(divergence and ageostrophic vorticity, for instance). In (2.2)–(2.3), L is a linear operator, with

purely imaginary spectrum satisfying

specL ⊂ {iω : ω ∈ R, |ω| ≥ 1}, (2.4)

and ε = U/(fL) � 1 is the Rossby number. The other expressions, Ns and Nf , group the nonlinear

terms whose dependence on ε has been ignored for convenience. Note that the toy models for balance

such as the LK model are also of the form (2.2)–(2.3).

Since ε � 1, the dynamics can be simplified using asymptotic methods developed for two-time-

scale systems. The most standard of these is averaging, whereby (2.2)–(2.3) are averaged over the

fast O(ε−1) time scale to leave only slow equations for s and for slowly-varying amplitudes of the

fast variables f. Averaging has been applied only recently in the geophysical context, however (e.g.

Majda & Embid 1998, Babin et al. 2000, Wirosoetisno et al. 2002, and references), and with rather

theoretical motivations. Instead, what has been extensively employed, is the idea of balance, which

seeks to filer out fast inertia-gravity waves completely, mainly on the ground that these are weak

in most of the atmosphere and oceans as well as poorly constrained by observations.
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Figure 1: Schematic of a slow manifold for a three-dimensional system. The slow manifold M has

the dimension of the set of slow variables s, and is nearly invariant so that the vector governing the

evolution (red arrows) is nearly tangent to it. The slowness of the evolution on M is indicated by

the fact that some distance away from it the vector field has a large component in the direction of

the fast variable f.

2.1 Construction of slow manifolds

At a basic level, balance starts by noting that f = O(ε) is a solution of (2.3). So one can define a

first slow manifold by the balance condition f = 0, which corresponds to geostrophic balance, and

project the dynamics onto it, leading to the simplest balanced model ∂ts = Ns(s, 0), namely the

quasi-geostrophic model. The idea can be refined to obtain more and more accurate slow manifolds.

By slow manifold, we mean, following MacKay (2004), a submanifold M of the state space (s, f),

with dimension fixed by the number of variables in s, which is approximately invariant and on

which the time scale of evolution is large compared to what it is away from it. The accuracy of a

slow manifold can be defined by the size of the component of the vector field (∂ts, ∂tf) transverse

to it. See Figure 1 for an illustration.

Several procedures can be devised to derive slow manifolds with systematically improved accu-

racy. They seek to determine a balance relation of the form

f = F(s) (2.5)

such that the superbalance equation

εNs(s,F)∂sF + LF = εNf(s,F) (2.6)

obtained by introducing (2.5) into (2.3) and using (2.2) to eliminate ∂ts, be satisfied with as small
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a remainder as possible. Once an expression for F has been found, the corresponding balanced

model is derived by constraining the dynamics on the slow manifold to obtain the closed evolution

equation

∂ts = Ns(s,F(s))

for s. See 2 for an illustration.

Approximate solutions to (2.6) can be obtained systematically by introducing power-series ex-

pansion for F or by devising iterative procedures. Both types of methods provide successively

improved approximations F(n), n = 1, 2, · · · , with F(0) = 0. The simplest iterative procedure is

εNs(s,F(n))∂sF
(n) + LF(n+1) = εNf(s,F(n)), (2.7)

which requires at each iterate the inversion of the linear operator L. An alternative is

εNs(s,F(n+1))∂sF
(n) + LF(n+1) = εNf(s,F(n+1)). (2.8)

This construction is more costly, because a nonlinear equation needs to be solved at each iteration,

but it has an attractive feature: the slow manifolds f = F(n)(s) at each n exactly contain the steady

solutions of (2.2)–(2.3). This is seen from the fact that steady solutions, with Ns(s, f) = 0 and

Lf− εNf(s, f) = 0 evidently satisfy (2.8). As argued by MacKay (2004), it is natural to impose this

property, since steady solutions are unambiguously slow. However, constructions of slow manifolds

which differ from this given in (2.8) by negligible errors may not satisfy this property. This is, in

particular, the case of the iteration (2.8). On the other hand, the slow manifolds obtained by setting

the nth derivatives of the divergence and ageostrophic vorticity to 0 (e.g. McIntyre & Norton 2000,

Mohebalhojeh & Dritschel 2001, and references) do contain all steady solutions.

2.2 Exponential accuracy

Regardless of the procedure followed for the derivation of balanced relations, whether iterations as

described here or power-series expansions, two key points can be made. First, there is in principle

no obstacle to carrying out the procedure to an arbitrary order n and so define slow manifolds with

arbitrary accuracy εn. Second, the procedure is asymptotic and not convergent: the error

En(s) = ε−1LF(n)(s)−Nf(s,F(n)(s)),

9



s

f

s

Figure 2: Schematic illustrating the evolution of an initially balanced solution: the solution (red)

starts on a slow manifold (blue) but leaves it when fast oscillations appear. A projection of this

solution on the slow manifold, and the trace of this projection on the slow plane (where it could be

tracked by a balanced model) are also shown.

which estimates the component of the motion transverse to the slow manifold f = F (n), is formally

O(εn), but for fixed ε it increases rapidly as n → ∞. One cannot expect, in fact, to find an

exactly invariant slow manifold which would satisfy (2.6) exactly. The best that can be done then

is to choose the value of n = N(ε) which minimise the error for a fixed ε. This is the standard

procedure in asymptotics (e.g. Bender & Orszag 1999): divergent series are truncated optimally,

with a number of terms N(ε) that minimises the remainder. The remainder typically grows with

n like some factorial, so that optimal truncation can be expected to lead to an exponentially small

remainder. For instance, when the remainder is proportional to n!εn, the choice N ∼ ε−1 gives a

remainder of the form ε−1/2 exp(−1/ε) which is exponentially small in ε.

The exponential smallness of the optimal remainder En(s) can be proved directly for the iteration

scheme (2.7) for finite-dimensional models (Gelfreich & Lerman 2002, Cotter 2004, Cotter & Reich

2006) and for the primitive equation under the assumption that the viscosity is O(1) (Temam &

Wirosoetisno 2007). It is likely that the proofs can be extended to the more complicated scheme

(2.8) which has the advantage of a better accuracy near steady flows. The general conclusion of

this type of analysis is that slow manifolds can be defined which are invariant up to exponentially

small errors, in the sense that motion transverse to the slow manifold is exponentiall smaller than

motion parallel to it. From the physical viewpoint, this means that unbalanced phenomena that

are genuinely spontaneous are exponentially small.
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2.3 Lighthill radiation

It is probably worth emphasising the difference between the small-Rossby-number regime considered

here, and the small-Froude number regime treated in great detail by Ford (1994) and Ford et al.

(2000) in the context of the shallow-water model (see Saujani & Shepherd 2002, Ford et al. 2002,

for a discussion). In the latter regime, the spectrum of the linear operator in (2.3) is not bounded

from below by a large parameter. To see this is the context of the Boussinesq model, we write the

dispersion relation (2.1) scaled by U/L as

ωigw = ε−1
(
sin2 ϑ + s2 cos2 ϑ

)1/2
,

where s = N/f . In terms of the Froude number F = U/(NH), where H is a typical vertical scale,

and of the aspect ratio δ = H/L,

s =
ε

δF
.

Now, the small-Froude-number regime corresponds to the assumptions F � 1 and ε = O(1). It is

then clear that the frequency is not necessarily large: waves with cos ϑ = O(δF ) have order-one

frequencies. Thus, even though there is a small parameter F such that ‘most’ inertia-gravity modes

have large, O(F−1) frequencies, this does not hold for all wavenumbers, and the frequency spectrum

is not bounded from below by (a multiple of) F−1. A result, the slow manifold theory as described

here does not apply.

If one assumes that the balanced motion is localised in an O(1) region of space, waves with

kL = O(F ) � 1 and mH = O(1) are slow and resonate with the balanced motion. This type of

resonance between slow motion and long waves with similarly slow frequencies is typical of Lighthill

radiation. This type of radiation is generic for non-dispersive waves, acoustic waves (Lighthill

1952, Crow 1970) and gravitational waves (Einstein 1918) in particular; in the geophysical context

it has been examined for gravity waves for shallow-water (Ford et al. 2000, and references) and

continuously stratified flows (Plougonven & Zeitlin 2001) (see Vanneste (2006) for Lighthill radiation

in a model extending the LK model).

The asymptotic treatment of Lighthill radiation takes advantage of the spatial separation be-

tween waves and slow motion, and shows that wave generation by balanced motion is small in F ,

although in an algebraic rather than exponential manner. In this treatment, the balanced motion

acts as a punctual source for the waves which can be computed consistently from the leading-order
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approximation to the balanced motion. When basic invariants are taken into account, the source

appears as a quadrupole.

Note that in the case of internal gravity waves, the dispersion relation indicates that waves with

large horizontal wavelengths are not the only ones which can resonate with the balanced motion.

The condition cos θ = O(δF ) can be also met, for instance, for kL = O(1) and mH �= O(F−1) �

1. Radiation of waves with short vertical wavelengths mH � 1 is therefore possible, but unless the

slow motion has itself some fine vertical scales, this can be expected to be exponentially small in

F .

3 Spontaneous generation

We now return to the small-Rossby-number regime on which this paper concentrates. The con-

clusion of the previous section is that slow manifolds of exponential accuracy can defined, at least

formally in the PDE case. This indicates that truly spontaneous unbalanced phenomena, that is,

those which cannot be completely eliminated by initialisation, are at most exponentially small.

This has now been demonstrated in several model flows, and in toy models such as the Lorenz-

Krishnamurthy model.

3.1 Forced harmonic oscillator

Perhaps the simplest example of generation of exponentially small fast oscillations is the forced

oscillator, governed by

ε2ẍ + x = g(t), (3.1)

for some g(t), say with g → 0 as t → ±∞. The solutions to this equation are the sum of the

rapidly oscillating homogeneous solutions exp(±it/ε), which might be thought of as representing

IGWs, and a particular inhomogeneous solution. If defined properly, the latter can be free of fast

oscillations, at least for some time, and so be identified as the slow or balanced solution. It can be

found asymptotically, starting with x(0)(t) = g(t). Higher corrections can be found using a series

expansion

xs =
N∑

n=0

ε2nx(n)(t), (3.2)
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with

x(n) = (−1)n d2ng

dt2n
. (3.3)

No fast oscillations appear at any order, and optimal truncation shows that an exponential accuracy

can be achieved. However, the exact solution

x =
1
ε

∫ t

−∞
g(t′) sin

t− t′

ε
dt′, (3.4)

obtained assuming that x, ẋ → 0 as t → −∞, immediately shows that there may be oscillations if

g(t) has poles in complex time. In the asymptotic evaluation of this integral, the balanced solution

can be identified with the contribution of the endpoint t′ = t which is obtained by successive

integration by parts to recover (3.3). The poles of g(t) do contribute to exponentially small terms.

The closest to the real axis, located at t∗ and t̄∗ say, will give the dominant contribution. If

g(t) ∼ a

t− t∗
as t → t∗, (3.5)

with t∗ = α − iβ, β > 0, for instance, a computation based on closing the integration contour in

the complex plane indicates that the fast oscillation

xf ∼ −2πε−1e−β/εIm ia ei(t−α)/ε, (3.6)

which is clearly exponentially small in ε, appears for t > α. The appearance of the oscillatory term

is an instance of the Stokes phenomenon in which an exponentially small term is switched on at

the tail of an optimally truncated asymptotics series when a parameter (here t) crosses a Stokes

line (here Re t = α) in the complex plane (e.g. Ablowitz & Fokas 1997).

The phenomenon is illustrated by Figure 4 obtained for the forcing function g(t) = sech t which

has its poles nearest to the real t-axis at ±iπ/2. The left panel shows numerical solutions of

(3.1) for several values of ε. The fast oscillations generated across the Stokes line Re t = 0 (since

α = 0) appear clearly, with amplitudes that vary very rapidly with ε and can be verified to agree

with formula (3.7). The right panel of the Figure shows the difference xr between the numerical

solution of (3.1) and the balance approximation (3.2) for ε = 0.15 and several truncations N . It

demonstrates how optimal truncation can be used to isolate the fast oscillations from the slow

balanced motion: when an optimal truncation N = 4 (or N = 5, not shown) is used, the dominant

part of xr consists in the fast oscillations switched on at t = 0, and the balanced part has been

virtually eliminated.
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Figure 3: Solutions x(t) of the harmonic-oscillator equation (3.1) with forcing g(t) = sech (t)

balanced for t → −∞. Left panel: the solutions obtained for ε = 0.2, 0.25, 0.3, 0.35 (with decreasing

vertical offsets) illustrate the switching on of fast oscillations at t = 0 and the sharp decrease of

their amplitude with ε. Right panel: the difference xr(t) = x(t) − xs(t) between the numerical

solution obtained for ε = 0.15 and the balanced approximation (3.2) truncated at N = 1 (dotted

line), 2 (dashed line), 3 (dash-dotted line) and 4 (solid line).

By examining balanced series near optimal truncation, it is possible to capture the manner

in which the fast oscillations appear as the Stokes line is crossed (Berry 1989). It is instructive

to perform this analysis for the solution (3.4) of the linear equation (3.1). This is carried out in

Appendix A, where we derive the result

xf ∼ −2πε−1e−β/εErf
(

t− α

(2βε)1/2

)
Im ia ei(t−α)/ε, (3.7)

where Erf is a scaled and shifted error function (see (A.5)) making the transition between 0 and 1

as its argument changes from −∞ to +∞. This formula shows precisely how the switching on of

the oscillations occurs over a time interval of order O(ε1/2), intermediate between the slow and fast

time scales of system. It is confirmed by Figure 4 which compares the prediction (3.7) with the

estimate xr obtained by subtracting from the numerical solution the optimally truncated balanced

approximation (3.2). The forcing is g(t) = sech t, as in Figure 4, ε = 0.15, and the truncation of

the balanced approximation is N = 5. The asymptotic prediction and numerical approximation of

the fast oscillations are found to match very accurately.

The asymptotic analysis of Appendix A separates the slow balanced motion from the fast
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oscillations to a higher-than-exponential accuracy. However, because there remains a small error,

the two components of the motion are not defined unambiguously. It is interesting to note that, in

principle, it is possible to remove any ambiguity and separate balanced motion from fast oscillations

completely. One approach consists in defining the balanced part of the motion by its asymptotic

expansion (3.2), requiring that it holds in a large sector of the complex t-plane. The sector needs

to be large enough to include regions where the fast oscillations have switched dominance with the

balanced solution. (This enforces the exact vanishing of the oscillations for, if these had a non-zero

amplitude, they would be larger than the balanced solution in these regions and the asymptotics

(3.2) would not hold.) Another approach uses Borel summation. This provides an interpretation

of the divergent series (3.2) which we now demonstrate.

Borel summation relies on the observation that the terms in (3.2) grow like (2n)! (see (A.3)).

Thus the function X(t; ξ) defined by

X(t; ξ) =
∞∑

n=0

(−1)n

(2n)!
d2ng(t)
dt2n

ξn

converges for |ξ| < 1 and can be continued analytically for |ξ| > 1. Formally, the series (3.2) can

be recovered from X(t; ξ) by the Laplace-like transform

x =
∫ ∞

0
X(t; ε2s2)e−s ds. (3.8)

This transform defines x uniquely once the integration contour in the complex s-plane is specified.

Now, X(t; ε) has singularities in the complex s-plane, and these correspond to fast oscillations. Thus

choosing the contour in (3.8) to include none of these defines a perfectly balanced, oscillation-free

solution. However, if such a balanced solution is chosen initially, it does not remain balanced for all

times because the singularities move with t and can subsequently cross the integration contour and

contribute an oscillatory term to the integral (3.8): this is how the Stokes phenomenon appears in

the Borel summation.

The singularities of X in the ξ-plane are controlled by the poles of g(t). Considering the

behaviour of g(t) near the pole t∗, we see from the asymptotics (A.3) that X has the behaviour

X ∼ a

t− t∗

∞∑
n=0

(−1)n

(
εs

t− t∗

)2n

=
a(t− t∗)

(t− t∗)2 + (εs)2
,

when εs ≈ ±i(t − t∗). The pole at s = −i(t − t∗)/ε crosses the integration contour in (3.8) when

t = α. For t larger, it yields the contribution to x which, together with the complex-conjugate
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Figure 4: Comparison between the fast oscillations for g(t) = sech t and ε = 0.15 predicted from

(3.7) (solid line) and their estimate obtained by subtracting from the numerical solution the bal-

anced approximation (3.2) truncated at N = 5.

contribution associated with the second pole t̄∗ of g((t), corresponds precisely to the fast oscillation

(3.7).

Several important conclusions, with implications for the process of wave generation, can be

drawn from the elementary example (3.1). First, the exponential smallness of the oscillations

depends crucially on the smoothness of g(t): the smoother it is, the farther its singularities will be

from the real axis, and the smaller the wave excitation. If g(t) is not analytic in a strip around the

real t-axis, then the fast oscillations are are not exponentially small in ε but power-law like, with

the power depending on the degree of regularity of g(t).

Second, the amplitude of the oscillations can also can also be understood in terms of Fourier

transform ĝ(ω) of g(t). For large frequency ω, this is governed, again, by the singularities of g(t)

nearest the real axis. With (3.5), the asymptotics is in fact

ĝ ∼ −iae−βωe−iαω. (3.9)

The fast oscillations can be thought of as being resonantly excited by the forcing. The result (3.7)

can then be explained by the fact that, according to (3.9), the contribution of the forcing with

resonant frequency ω = ε−1 is precisely proportional to exp(−β/ε). This crude argument only

gives the exponential dependence in (3.7); the prefactor and the details of the switching on can

however be determined from a careful analysis in the frequency domain similar to that carried out
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in Appendix A in the time domain.

A third conclusion is that a detailed knowledge of g(t) is crucial if one is to determine the

oscillations switched on accurately. The position of the poles determine the exponential dependence,

the order of the pole the power-law dependence in ε of the prefactor, and the ε-independent part

of the prefactor. This has the important consequence that if g(t) is also a function of ε, given

perturbatively as

g(t; ε) = g0(t) + εg1(t) + · · · , (3.10)

all the terms gn(t) in the expansion for n ≤ N , where N is the optimal number of terms, need

to be known in order to estimate xf correctly. If some gn(t) for n ≥ 1 has a pole nearer the real

t-axis than g0(t), then an estimate of xf based on the leading-order approximation g0(t) gives an

incorrect exponential dependence for xs. More likely, all the gn(t) have the same pole, but with an

increasing order:

gn(t) ∼ an

(t− t∗)n+1
, (3.11)

for instance. In this case, each of the terms εngn(t) of g(t) contributes to xs with the same ε-

dependence, so that an estimate of the oscillations switched on based on g0(t) gives a value for xs

that differs from the correct one by an O(1) factor. Thinking of g(t) in the forced oscillator as a

caricature for the balanced motion in more sophisticated models, we conclude that knowledge of

the balanced solutions to all algebraic orders, at least near the singularities, is in general necessary

in order to estimate correctly the amplitude of the fast oscillations generated spontaneously.

3.2 Lorenz–Krishnamurthy model

The Lorenz–Krishnamurthy (LK) model (Lorenz 1986, Lorenz & Krishnamurthy 1987) has been

used extensively to study slow manifolds and spontaneous wave generation. It is a simple set of five

ODEs of the form (2.2)–(2.3) for three slow variables s = (u, v, w) and two fast variables f = (x, y)

derived heuristically from the f -plane shallow-water equation. It reads

u̇ = −vw + εbvy,

v̇ = uw − εbuy,

ẇ = −uv, (3.12)

εẋ = −y,
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x

θ

Figure 5: Schematic of the mechanical equivalent of the Lorenz–Krishnamurthy model: a slow

pendulum, described by the angle φ, is coupled to a stiff spring with extension x.

εẏ = x + buv,

with ε (a variant of) the Rossby number, and b a rotational Froude number (inverse square-root

of the Burger number). Some intuition about the behaviour of the LK model is gained if the

constancy of u2 + v2 is exploited to reduce the system to four equations (Camassa 1995, Bokhove

& Shepherd 1996). Scaling time, we can take u = cos(θ/2) and v = sin(θ/2); with the rescaling

(w, x, y) 7→ (w, x, y)/2, (3.12) reduces to

θ̇ = w − εby, (3.13)

ẇ = − sin θ, (3.14)

εẋ = −y, (3.15)

εẏ = x + b sin θ. (3.16)

In this form, the LK system can be recognised as describing the dynamics of a slow nonlinear

pendulum with angle θ from the vertical coupled in some manner with a stiff spring (with constant

ε−1) of extension x; see Figure 5. (A similar set of equations governs the dynamics of elastic

pendulum or stiff spring, also used as a toy model for studying slow manifolds (Lynch 2002).) The

problem of finding a slow manifold has then the following interpretation: for a given pendulum

angle and angular velocity, find the initial spring extension and speed which minimise the spring’s

subsequent oscillations. The oscillations which are generated in spite of this optimal initialisation

are the analogue of waves generated spontaneously in fluids.

For ε = 0, the pendulum decouples from the spring, and the corresponding equations of motion
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Figure 6: Dependence on b of the prefactor κ appearing in the asymptotic formula (3.17) for the

amplitude of the spontaneous fast oscillations in the Lorenz–Krishnamurthy model.

can be solved in terms of elliptic functions. The solutions are periodic, except for the homoclinic

solution which asymptotes to θ = ±π as t → ±∞. For ε 6= 0, balanced solutions can be found order

by order. These have poles in the complex t-plane whose order increases with the order in ε in the

manner indicated by (3.10)–(3.11). Thus, to estimate the fast oscillations generated spontaneously

by the balanced motion requires to analyse the dynamics to all orders in the neighbourhood of the

singularities. This analysis is carried out in Vanneste (2004) first for the homoclinic solution, with

a single pair of dominant poles at t∗ = −iπ/2 and t̄∗ = iπ/2, then for the periodic solutions with

u(0) = cn (t/k, k), v(0) = −sn (t/k, k) and w(0) = −dn (t/k, k),

where 0 ≤ k < 1 is a fixed parameter. These solutions have a periodic array of contributing poles

at t∗ = 2nkK(k) ± ikK ′(k), n = 0,±1,±2, · · ·, where K and K ′ are elliptic integrals of the first

and second kinds. A Borel summation technique is used to obtain the fast oscillations switched on

in the form

xf = −2πε−2κ e−β/ε cos
t− α

ε
, (3.17)

where, as before, β is the imaginary part of the poles nearest to the real axis: β = kK ′(k). In

(3.17), κ is a function of b which is deduced from the late asymptotics of xs near the poles, found by

solving numerically of (nonlinear) algebraic recurrence relations. This function is shown in Figure

6. It increases with b from b = 0 to b ≈ 1, then oscillates with a decreasing amplitude. The

zeros for discrete values of b > 0 indicates that for these particular values, the amplitude of the

inertia-gravity oscillations is even smaller than exp(−β/ε).

In the limit of small b corresponding to weak coupling between the pendulum and the spring,
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κ ∼ b. This results can be obtained directly by substituting the leading-order approximation for

θ into the right-hand side of (3.16) and solving the resulting forced-oscillator equation (see Lorenz

& Krishnamurthy 1987). This can be interpreted as the use of a Lighthill-like approach for the

LK model; a key point is that this approach gives an incorrect estimate for the fast-oscillation

amplitude when b is finite.

It is interesting to note that the generation of the fast oscillations is a linear process in the

sense that the exponentially small oscillations that are switched on every time a Stokes line is

being crossed (i.e., periodically in time in the LK model) simply superpose linearly. This means

that the amplitude of the fast oscillations typically grows over time. Note, however, that the initial

conditions can be tuned in such a manner that initial oscillations combine with those generated by

the Stokes phenomenon to yield periodic solutions. This is how the existence of exactly periodic

solutions, noted by Lorenz (1986) and Bokhove & Shepherd (1996) as exact (but not slow) solutions

of the superbalance equation (2.6) for the LK model, can be interpreted from the exponential-

asymptotic viewpoint. (The existence of these periodic solutions is also guaranteed by general

persistence arguments; see MacKay (2004) and Gelfreich & Lerman (2002).)

3.3 Sheared disturbances

There is no doubt that spontaneous generation of exponentially small IGWs takes place in rapidly

rotating fluids in a manner that is analogous to the generation of fast oscillations in the LK model.

Yet this is delicate to demonstrate explicitly because the methods of exponential asymptotics

are difficult to adapt to PDEs. They require a substantial amount of explicit information on

the balanced solution which is rarely available for solutions non-trivial enough for spontaneous

generation to take place.

The sheared disturbances in a rotating Boussinesq fluid studied in McWilliams & Yavneh (1998)

and Vanneste & Yavneh (2004) provide an example of a flow for which the IGWs generated sponta-

neously can be described completely explicitly. This is possible because the spatial structure of this

type of solutions is so simple that the evolution is governed by ODEs which can be treated using

standard exponential-asymptotic methods. Sheared disturbances date back to Kelvin (Thomson

1887) and consist of plane waves superposed to a horizontal Couette flow u = (Σy, 0, 0) in an

unbounded domain. The Rossby number is ε = |Σ|/f , where Σ is the shear, and if one makes the
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hydrostatic approximation (not made in Vanneste & Yavneh (2004)), there is only one additional

parameter, namely b = mf/(kN) = O(1). The effect of the shear means that plane waves have a

cross-stream wavenumber that changes linearly in time. All the perturbation fields can in fact be

written in the form

u = û(t) exp [i(kx + (l − kΣt)y + mz] , (3.18)

involving time-dependent amplitudes û(t), v̂(t), etc. The ODEs for these amplitudes can be reduced

to a single second-order inhomogeneous ODE for a single field such as the amplitude of the vertical

vorticity ζ̂, once the constancy of the potential-vorticity amplitude q̂ is taken into account. This

ODE reads

ε2

(
d2ζ̂

dt2
− 2t

1 + t2
dζ̂

dt

)
+
(

(1∓ ε)
(

1∓ 2ε

1 + t2

)
+

1 + t2

b2

)
ζ̂ =

1 + t2

b2
q̂, (3.19)

when time is non-dimensionalised using |Σ|−1 as a reference time, and shifted so as to have the

cross-stream wavenumber l = 0. In (3.19), we have taken advantage of the linearity to scale ζ by

N2; similarly, there is no loss of generality in taking the potential-vorticity amplitude q̂ = 1. The

∓ sign corresponds to Σ ≷ 0, that is, to anticyclonic and cyclonic flows, respectively. Note that

(3.19) can be rewritten as a system of three equations of the form (2.2)–(2.3), for example with

f = (ζ̂, dζ̂/dt) and s = q̂, but with a time-dependent L.

A balanced solution of (3.19) is readily constructed by straightforward perturbation expansion,

starting as

ζ̂s =
1 + t2

1 + b2 + t2
+ · · · (3.20)

The inertia-gravity oscillations are homogeneous solutions of (3.19) and can be captured using a

WKB expansion

ζ̂f = ei
R t
0 ω(t′) dt′/ε (g0(t) + εg1(t) + · · ·) , (3.21)

where the frequency

ω = ±1
b

(
1 + b2 + t2

)1/2 (3.22)

can be recognised as the non-dimensionalisation of the inertia-gravity frequency (2.1) in the hydro-

static approximation and for the wavevector (k,−kt, m) (cf. (3.18) with l = 0). Now, the balanced

motion (3.20) has poles in complex time, at t∗ = i(1 + b2)1/2 and t̄∗. These are precisely the turn-

ing points of (3.21), that is, the locations in the complex time plane where the frequency (3.22)
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vanishes. In the vicinity of these points there is, of course, no frequency separation between (3.20)

and (3.21), and so it is unsurprising that oscillations (3.21) can be generated. A more detailed

analysis confirms that there is indeed a Stokes phenomenon for the Stokes line Re t = 0 joining t∗

to t̄∗ across which inertia-gravity oscillations in the form (3.22) are switched on. The amplitude of

these oscillations is easily estimated. This is done by noting that the amplitude is roughly O(1)

near the turning points, and decreases by a factor

e−β/ε = exp
(

i
ε

∫ t∗

0
ω(t′) dt

)
(3.23)

for t = 0, the point at the Stokes line is crossed for real t. The factor β evaluates explicitly as

β =
π(1 + b2)

4b
,

and controls the exponential smallness of the fast oscillations switched on, as in sections 3.1 and 3.2.

The analysis of Vanneste & Yavneh (2004) and Ólafsdóttir et al. (2005) gives the full leading-order

asymptotics of the oscillation amplitude which, in addition to the exponential dependence (3.23)

contains a factor ε−1/2 as well as an O(1) prefactor. Note that it is only through the latter that the

sign of the shear Σ influences the oscillation amplitude. It turns out that this amplitude is larger

for anticyclonic shear than for cyclonic shear.

The sheared-disturbance example just described is useful because it demonstrates the sponta-

neous generation of exponentially small inertia-gravity oscillations in a case where explicit asymp-

totic computations can be carried out. It concerns a rather unrealistic flow, however, if only because,

in the unbounded domain assumed, both the basic shear and the disturbance have infinite energy.

It is nonetheless possible to envision that the mechanism at work leads to spontaneous generation

in more realistic situations. One such situation concerns the evolution of a localised perturbation,

such as a localised vortex, in a horizontal shear. If it the localisation is sufficient, the shear can

be approximated by a Couette flow. The results obtained for sheared disturbances can then be

exploited directly by writing all the dynamical fields of localised perturbations as superpositions of

sheared modes. For instance, the zonal velocity reads

u =
∫ ∫ ∫

û(k, l,m, t) exp [i(kx + (l − kΣt)y + mz] dkdldm,

where û(k, l,m, t) is an amplitude to be determined. The corresponding vertical-vorticity amplitude

ζ̂(k, l,m, t) then satisfies an equation of the form (3.19), with t replaced by t − l/(Σk): thus its
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balanced and IGW components can be deduced directly from (3.20)–(3.21). An initial condition

can be imposed by specifying the (localised) potential vorticity and requiring that the solution is

fully balanced. In the subsequent evolution, the sheared modes undergo a Stokes phenomenon at

the time t = l/(Σk) which depends on their wavenumber. The superposition of the inertia-gravity-

wave oscillations generated at each of these times represents an inertia-gravity wavepacket which is

emitted spontaneously as a result of the shear and subsequently propagates freely. A consequence

of the superposition is that the Stokes phenomenon is smeared out in the sense that it does not

occur abruptly at a fixed time, but takes place continuously. The explicit computation of the form

of the inertia-gravity wavepacket is a quite involved task, which is carried out in Ólafsdóttir (2006)

andÓlafsdóttir et al. (2007).

The examples of this section illustrate how the generation of IGWs can be associated to the non-

trivial dependence of the balanced flow on time. The mountain-wave example examined by Muraki

(2003) illustrates a complementary situation, where it is the spatial dependence of a steady balanced

solution which is associated with the wave generation. In general, one can of course expect that

the complete spatio-temporal structure of the balanced flow controls the wave emission. However,

it remains unclear how that can be captured by analytical methods.

4 Unbalanced instabilities

So far we have been concerned by the evolution of flows which are initialised in such a way that there

are no IGWs at t = 0. This can be conceived in the models described because the asymptotic treat-

ments allows the definition of a unique, perfectly balanced state, through the use of resummation

for instance. The wave generation that takes place subsequently is then truly spontaneous.

A different process whereby significant levels of IGW activity can be attained is the unbalanced

instability of balanced flows. In this case, gravity-wave-like perturbations initially present in the

flow are amplified by an instability mechanism leading to finite-amplitude gravity waves. If the

instability mechanism is genuinely unbalanced, then it should be absent from any balanced model

of the flow. The exponential accuracy of balanced models then suggests that the growth rate of

the instability is exponentially small in the Rossby number.

This expectation is borne out by the stability analysis of several simple steady flows. For these,

there is no ambiguity in the initial state of balance, and perturbations can be restricted to be
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unbalanced by taking their initial potential vorticity to vanish. In most of the flows studied, the

instabilities are associated with the linear resonance between different types of wave modes. In

the case of the vertically sheared flows studied by Plougonven et al. (2005) and Molemaker et al.

(2005), it is the resonance between an edge wave and an inertia-gravity wave that leads to an

instability; for the horizontally sheared flows considered by Yavneh et al. (2001), Molemaker et al.

(2001), McWilliams et al. (2004), and Vanneste & Yavneh (2007) it is the resonance between either

two Kelvin waves, two IGWs, or a Kelvin wave and an IGW. For the resonance to be achieved,

unbalanced modes need to be phased-locked by the background shear, which is only possible if

their phase speed is of the same order as the background-flow speed. For IGWs with horizontal

wavenumber k, this gives the condition

ωigw = (f2 sin2 ϑ + N2 cos2 ϑ)1/2 ≈ kU,

or, in non-dimensional terms, (
sin2 ϑ + s2 cos2 ϑ

)1/2 ≈ εkL. (4.1)

If U is bounded, this is possible in the regime s ≥ 1 of interest to us, for disturbances with a large

streamwise wavenumber

k = O(ε−1L−1) � 1, (4.2)

provided that the vertical wavenumber be also large,

m = O(ε−1H−1) � 1, (4.3)

so that cos ϑ remains bounded. The first constraint on unstable modes which can be rephrased as

the fact the Rossby number based on the unstable-mode scale, namely εkL must be of order one.

Note that a similar reasoning applied for the shallow-water system leads to the conclusion that

phase locking is impossible at small ε, so that unbalanced instabilities require finite ε (see Ford

(1994) and Dritschel & Vanneste (2006)). Note also that the condition means that the instability

processes are restricted to the models governed by PDEs, since ODE models typically involve

motion at fixed spatial scales which are independent of the Rossby number. This is a caution

against taking the formal representation (2.2)–(2.3) too literally when dealing with PDE models:

because the nonlinear term on the right-hand side of (2.3) involves unbounded operators (spatial

derivatives), it may become as large as (or even larger than) the linear term Lf/ε if the variables f

have small spatial scales.
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The condition (4.2) is useful because it gives the possibility of using a WKB approach to solve

the eigenvalue problem giving the instability growth rates. In spite of the fact that there is some

form of frequency matching between the flow and inertia-gravity frequency, the growth rates found

in this manner turn out to be exponentially small. This because the modes whose resonance

leads to instability are localised exponentially in different parts of the flow, with localisation scale

proportional to ε, so that their coupling is exponentially weak. The WKB analysis has been carried

out explicitly for a horizontal Couette flow (Vanneste & Yavneh 2004) but could also be applied

to other types of flows such as those studied by Molemaker et al. (2005) and McWilliams et al.

(2004). In the latter situation, the effect of the critical layer would need to be taken into account.

We finally note that another type of instability, also with exponentially small growth rate, has

been examined by McWilliams & Yavneh (1998). This is the rotating, stratified version of the

standard elliptical instability (e.g. Kerswell 2002) of flows with elliptic streamlines. Taking advan-

tage of the linear dependence of the velocity field in the spatial coordinates, perturbations can be

written as plane waves with time-dependent wavevector and amplitude. The wavevector is periodic

in time, and as a result the single amplitude equation that can be derived has periodic coefficients.

It is in fact analogous to (3.19), with periodic coefficients and zero right-hand side. McWilliams &

Yavneh (1998) found numerically that the solution to this equations can be exponentially growing

certain wavenumbers, and that the growth rate scales exponentially with ε. We note that asymp-

totic approximations for the growth rate could be obtained by applying the theory of Hill equation

with large parameter developed by Weinstein & Keller (1987).

5 Discussion

This paper discusses how some simple mechanisms of IGW generation at small Rossby number can

be captured asymptotically. A key point is that, in the simple models studied, suitably defined

balanced models, which filter out IGWs completely, can describe the motion up to errors that

are exponentially small in the Rossby number. IGW generation and, more generally, spontaneous

unbalanced phenomena, do nonetheless take place, with an amplitude that is, by necessity, ex-

ponentially small. Analysing these phenomena asymptotically thus requires to use the so-called

exponential-asymptotic techniques that go beyond the standard order-by-order perturbation meth-

ods. These techniques apply with relative ease to highly truncated models governed by ODEs such
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as the LK model but remain difficult to implement for PDEs. (See Vanneste (2006) however for

the exponential-asymptotic analysis of a mixed ODE/PDE model.) As a result, the exponential

smallness of IGW amplitudes has been demonstrated explicitly for toy models only.

If this exponential smallness holds for the real atmosphere and oceans, it implies that significant

IGW generation can only take place in regions where the Rossby number is not small but larger

than, say, one. Furthermore, in the regions where it is significant, the generation is likely to be

highly heterogeneous in space and time since the exponential dependence sharply amplifies the

local variations in the Rossby number.

So far, rigourous results guaranteeing the exponential smallness of IGW-like oscillations have

been obtained in the contexts of ODE models (with the exception of Temam & Wirosoetisno (2007)

which assumes large dissipation). In the absence of general results for PDEs, it is of interest to

speculate about which mechanisms may lead to IGW amplitudes that are significantly larger. A

crucial ingredient for exponential smallness is the smoothness in time of the balanced motion or,

equivalenty, the exponential decay of the frequency spectrum of the balanced motion. If this fails to

hold, IGW amplitudes can be much larger, scaling for instance like a power of the Rossby number

for power-law frequency spectra. For laminar flows, the exponential decay of the spectrum is not

in doubt. For more realistic turbulent flows however, the situation is much more complex.

A simple scaling argument suggests that quasi-geostrophic turbulence and, by extension, tur-

bulence in more accurate balanced models, should be characterised by exponential frequency spec-

tra. The argument notes that the frequency ω of eddies is related to their inverse scale k by

ω2 ∝
∫ k
k0

k′2E(k′) dk′ (Kraichnan 1971). This is essentially independent of k if the energy spectrum

E(k) is steeper than k−3, as is thought to be the case for quasi-geostrophic turbulence in the en-

strophy cascade. When this is the case, the frequency spectrum is controlled by the large-scale flow,

which is presumably smooth in time, and so the spectrum can be expected to decay exponentially.

This is a crude argument, of course, which would need to be assessed by a more detailed analysis

(see Babiano et al. 1987, for some results showing very steep (though perhaps not exponentially de-

caying) frequency spectra). In particular, it not yet clear whether the relevant frequency spectrum

should be Eulerian or Lagrangian (see Tennekes 1975, for different predictions for both), although

one intuitively expects the latter to be determinant. In addition, it should be kept in mind that

the energy spectrum can be shallower than k−3 even for small-Rossby-number dynamics: in the
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presence of a horizontal boundary, for instance, surface effects can lead to kinetic-energy spectra

in k−5/3 (e.g. Pierrehumbert et al. 1994, Tulloch & Smith 2006).

Some aspects of the unbalanced instabilities discussed in section 4 are worth emphasising. The

resonance of IGWs through which the instabilities arise is made possible by two facts: (i) order-one

nonlinear frequencies kU are achieved for asymptotically large horizontal wavenumbers k; and (ii)

the IGW dispersion relation allows for O(1) frequencies with large k if the vertical wavenumbers

m are also large (see (4.1)–(4.3)). The first point highlights that the infinite-dimensional nature of

fluids is a crucial ingredient of the instabilities. The second shows how the details of the dispersion

relation matter. This points, in particular, to the limitation of the shallow-water model for the

study of unbalanced phenomena in the atmosphere and oceans: the instabilities discussed in this

paper have no immediate shallow-water analogues because shallow-water surface waves with large

k necessarily have large frequencies.

Note that the resonance mechanisms underlying the instabilities result from effects that are

ignored in the formal representation (2.2)–(2.3) of geophysical-fluid models. In spite of this, the

instabilities turn out to be exponentially weak. The explanation for the exponential smallness

in this case appears to be the spatial localisation of the unstable modes rather than frequency

separation. The two effects are however closely related since in can be argued that localisation is

necessary for modes to be unstable (see Vanneste & Yavneh 2007).

There remains a number of outstanding issues that need to be addressed if the generation

of unbalanced motion at small Rossby number is to be fully understood. As mentioned, one of

these is the question of whether there are any mechanisms that lead to IGW amplitudes that

are larger than exponentially small. Another one is the development of asymptotic techniques

providing predictions for wave amplitudes in realistic flows. Yet another one is the the potential

role of unbalanced motion as a dissipative mechanism for balanced flows (e.g. McWilliams et al.

2001). Related to this are questions about the maintenance of balance and the part played by wave

radiation in this maintenance. Future work will examine some of these issues.
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A Stokes phenomenon

In this Appendix we derive the formula (3.7) describing the switching on of the fast oscillations for

the forced oscillator (3.1). We start by writing

εx = Im eit/εI, where I =
∫ t

−∞
g(t′)e−it′/ε dt′. (A.1)

To all algebraic orders in ε, the integral I is approximated by the contribution of its endpoint t′ = t.

Successive integrations by parts give

I = ie−it/ε
N−1∑
n=0

(−iε)n dng(t)
dtn

+ RN ,

consistent with (3.2)-(3.3), with the remainder

RN = (−iε)N

∫ t

−∞

dNg(t′)
dt′N

e−it′/ε dt′. (A.2)

A key point is that for large N , the Nth derivative of g(t′) is controlled by the singularities t∗ and

t̄∗ nearest to the real axis. Thus we have

dNg(t′)
dt′N

∼ (−1)NN !
(

a

(t′ − t∗)N+1
+

ā

(t′ − t̄∗)N+1

)
. (A.3)

With this result, we can estimate the remainder (after an additional integration by parts) as

|RN | ∼
(

ε

[(t− α)2 + β2]1/2

)N+1

N !

This indicates that the optimal truncation should take N ∼ [(t − α)2 + β2]1/2/ε, leading to an

exponentially small error.

We now focus on the neighbourhood of the Stokes line crossing at t = α. The optimal truncation

then dictates that

N =
[
β

ε

]
+ γ − 1, (A.4)

where the square brackets denote the integral part, and γ = O(1) (the −1 is introduced for conve-

nience). Using (A.3), we write the remainder (A.2) as

RN = (iε)NN !
∫ t

−∞

(
a

(t′ − t∗)N+1
+

ā

(t′ − t̄∗)N+1

)
e−it′/ε dt′.

With our choice Im t∗ = −β < 0, only the first of the two terms in the brackets contributes

significantly to this integral. Taking (A.4) into account, we therefore have

RN ∼ (iε)NN !aeiα/ε

∫ t−α

−∞
e−[it′+β log(t′+iβ)]/εe−γ log(t′+iβ) dt′
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after shifting t′ by α. This integral can then be estimated by expansion near the saddle point t′ = 0

of it′ + β log(t′ + iβ). This leads to

RN ∼ (iε)NN !ae−iα/εe−(N+1) log(iβ)

∫ t−α

−∞
e−t′2/(2βε) dt′.

Using Stirling’s formula and the definition of the shifted error function

Erf (·) =
1
2

(1 + erf (·)) , (A.5)

this simplifies after a number of cancellations into

RN = −2πiae−β/εErf
(

t− α

(2βε)1/2

)
. (A.6)

Returning to (A.1), we see that, to leading order, the remainder of the optimally truncated expan-

sion corresponds to the rapidly oscillating term

xf ∼ −2πε−1e−β/εErf
(

t− α

(2βε)1/2

)
Im ia ei(t−α)/ε.

switched on as t goes through α. Note that this term is larger, by a factor proportional to ε−1/2,

than the last term in the series xs truncated at n = N .
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Einstein, A. 1918, Über Gravitationswellen, Sitzunberg. K. Preuss. Akad. Wiss. pp. 154–167.

Ford, R. 1994, The instability of an axisymmetric vortex with monotonic potential vorticity in

rotating shallow water, J. Fluid Mech. 280, 303–334.

Ford, R., McIntyre, M. E. & Norton, W. A. 2000, Balance and the slow quasi-manifold: some

explicit results, J. Atmos. Sci. 57, 1236–1254.

Ford, R., McIntyre, M. E. & Norton, W. A. 2002, Reply to comments by S. Saujani and T.

G. Shepherd on “Balance and the slow quasi-manifold: some explicit results”, J. Atmos. Sci.

59, 2878–2882.

Gelfreich, V. & Lerman, L. 2002, Almost invariant elliptic manifold in a singularly perturbed

Hamiltonian system, Nonlinearity 15, 447–457.

Kerswell, R. R. 2002, Elliptical instability, Ann. Rev. Fluid Mech. 34, 83–113.

Kraichnan, R. H. 1971, Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid

Mech. 47, 525–535.

30



Leith, C. E. 1980, Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos.

Sci. 37, 958–968.

Lighthill, M. J. 1952, On sound generated aerodynamically, I. General theory, Proc. R. Soc. Lond.

A 211, 564–587.

Lorenz, E. N. 1980, Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci. 37, 1685–1699.

Lorenz, E. N. 1986, On the existence of a slow manifold, J. Atmos. Sci. 43, 1547–1557.

Lorenz, E. N. & Krishnamurthy, V. 1987, On the nonexistence of a slow manifold, J. Atmos. Sci.

44, 2940–2950.

Lynch, P. 2002, The swinging spring: a simple model for atmospheric balance, in I. Roulstone

& J. Norbury, eds, Large-scale atmosphere-ocean dynamics, Vol. II: Geometric methods and

models, Cambridge University Press, pp. 64–108.

MacKay, R. S. 2004, Slow manifolds, in T. Dauxois, A. Litvak-Hinenzon, R. S. MacKay &

A. Spanoudaki, eds, Energy Localisation and Transfer, World Sci., pp. 149–192.

Majda, A. J. & Embid, P. 1998, Averaging over fast gravity waves for geophysical flows with

unbalanced initial data, Theoret. Comput. Fluid. Dynamics 11, 155–169.

McIntyre, M. E. & Norton, W. A. 2000, Potential vorticity inversion on a hemisphere, J. Atmos.

Sci. 57, 1214–1235. Corrigendum: 58, 949-949 (2001).

McWilliams, J. C. & Yavneh, I. 1998, Fluctuation growth and instability associated with a singu-

larity of the balance equations, Phys. Fluids 10, 2587–2596.

McWilliams, J. C., Molemaker, J. M. & Yavneh, I. 2001, From stirring to mixing of momentum:

Cascades from balanced flows to dissipation in the oceanic interior., in Aha Huliko’a Proceedings

2001, U. of Hawaii, pp. 59–66.

McWilliams, J. C., Molemaker, M. J. & Yavneh, I. 2004, Ageostrophic, anticyclonic instability of

a geostrophic, barotropic boundary current, Phys. Fluids 16, 3720–3725.

Mohebalhojeh, A. R. & Dritschel, D. G. 2001, Hierarchies of balance conditions for the f-plane

shallow water equations, J. Atmos. Sci. 58, 2411–2426.

31



Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2001, Instability and equilibration of

centrifugally-stable stratified Taylor-Couette flow, Phys. Rev. Lett. 86, 5270–5273.

Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2005, Baroclinic instability and loss of balance,

J. Phys. Oceanogr. 35, 1505–1517.

Muraki, D. J. 2003, Revisiting Queney’s flow over a mesoscale ridge. Preprint.
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