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We consider the linear evolution of a localised vortex with Gaussian potential vorticity
that is superposed to a horizontal Couette flow in a rapidly rotating, strongly stratified
fluid. The Rossby number, defined as the ratio of the shear of the Couette flow to the
Coriolis frequency, is assumed small. Our focus is on the inertia-gravity waves that are
generated spontaneously during the evolution of the vortex. These are exponentially
small in the Rossby number and hence are neglected in balanced models such as the
quasi-geostrophic model and its higher-order generalisations.

We develop an exponential-asymptotic approach, based on an expansion in sheared
modes, to provide an analytic description of the three-dimensional structure of the inertia-
gravity waves. These are emitted as a burst of four wavepackets propagating downstream
of the vortex. The approach employed reduces the computations of inertia-gravity-wave
fields to a single quadrature, carried out numerically, for each spatial location and each
time. It makes it possible to unambiguously define an initial state that is entirely free
of inertia-gravity waves, and it circumvents the difficulties generally associated with the
separation between balanced motion and inertia-gravity waves.

1. Introduction

The fast rotation and strong stratification of the atmosphere and oceans lead to a
time-scale separation between the slow advective motion termed balanced motion on the
one hand, and the fast inertia-gravity waves (IGWs) on the other hand. Because of this
time-scale separation, the interactions between the two types of motion are weak, and
to a first approximation at least, the balanced motion evolves independently from the
IGWs. This feature, now well supported by a number of theoretical studies (e.g., Babin et
al. (2000), Majda & Embid (1998), Reznik et al. (2001)), is a first key to the usefulness of
balanced models, which filter out IGWs; a second is the observation that, largely because
of the low-frequency nature of the forcing, the IGW activity is weak in most parts of the
atmosphere and oceans. That is not to say, however, that IGWs can be neglected in all
circumstances: they are crucial, for instance, to the middle-atmospheric circulation and
to oceanic mixing. As a result, there is a strong interest in identifying and studying the
mechanisms of IGW generation (e.g. Fritts & Alexander 2003).

The so-called spontaneous generation is one such mechanism which has attracted a
great deal of attention in recent years. This describes the way in which the natural evo-
lution of a balanced flow leads to the emission of IGWs. It should be contrasted with the
generation of IGWs caused by the adjustment of a flow that is initially unbalanced (e.g.
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Reznik et al. 2001, and references therein). Spontaneous generation is now well under-
stood in the small-Froude-number regime, where it is caused by Lighthill-like radiation
of IGWs with asymptotically large spatial scales and hence, frequencies that match those
of the balanced motion (Ford et al. (2000), Plougonven & Zeitlin (2001)). Less well un-
derstood is the arguably more relevant small-Rossby-number regime, where there is a
frequency gap between IGWs of all scales and balanced motion. On the basis of simple
mechanistic models, governed by ordinary differential equations (ODEs; Lorenz & Krish-
namurthy (1987), Warn (1997), Vanneste (2004), Vanneste (2007)), it has been argued
that the IGW-generation in this regime is exponentially weak in the Rossby number. This
leads to a number of subtle issues (such as the unambiguous separation between balanced
motion and IGWs) which, although largely resolved for ODE models, remain challenging
for the partial differential equations governing realistic geophysical flows. Even the direct
numerical simulation of IGW generation in idealised flows at small Rossby number has
proved highly delicate, and it is only in the last few years that reliable results, in partic-
ular on the IGWs emitted in baroclinic life cycles, have been obtained (e.g. O’Sullivan
& Dunkerton 1995; Zhang 2004; Plougonven & Snyder 2005, 2007; Viudez & Dritschel
2006; Viudez 2006). These results are still partial, however, and do not answer such
fundamental questions as the Rossby-number-dependence of the IGW amplitudes.

Therefore, there is a need for analytic treatments which give a precise description of
IGW generation in simple model flows. Such a treatment was provided by Vanneste &
Yavneh (2004) and Olafsdéttir et al. (2005) who use exponential-asymptotic techniques to
estimate the amplitude of the IGW oscillations that appear in the evolution of a Couette
flow pertubed by sheared modes, that is, plane waves with time-dependent wavenumber
in the cross-stream direction. In this paper, we make use of their results to compute the
IGWs generated in a more realistic flow. Specifically, we study the IGWs that are radiated
when a three-dimensional vortex is sheared by a Couette flow. This is a significant step
toward the application of exponential asymptotics to realistic flows, particularly because
the vortex and hence the region of wave generation are localised in space. This is in
contrast with the sheared modes of Vanneste & Yavneh (2004) which have infinite energy.
The process that we examine may also be argued to occur in the atmosphere and oceans,
where vortices and large-scale shears are commonplace.

Our analysis takes as its starting point the equations of motion for a rotating strati-
fied fluid under the Boussinesq and hydrostatic approximations. We consider the linear
evolution of a vortex with Gaussian potential vorticity placed in a uniform horizontal
shear flow. The ratio of the shear amplitude to the Coriolis frequency defines a Rossby
number € which is assumed to be small. In terms of potential vorticity, the evolution is
trivial: the ellipsoidal surfaces of constant potential vorticity are deformed advectively,
with their semi-axes slowly expanding and contracting whilst tilting in the horizontal.
In the quasi-geostrophic approximations, and indeed in any balanced approximation, all
the dynamical fields are slaved to the potential vorticity and hence undergo an analo-
gous slow evolution. In the full Boussinesq model, however, exponentially small IGWs
are emitted by the vortex and radiate away rapidly. We use an exponential-asymptotic
approach to provide a largely analytic description of these waves.

Our approach relies on the fact that, at a linear level, a localised disturbance in a Cou-
ette flow can be described as a superposition of independently evolving sheared modes.
As mentioned above, the generation of IGW-like oscillations by a single sheared mode
has been studied by Vanneste & Yavneh (2004) and Olafsdéttir et al. (2005). They show
how fast IGW oscillations are switched on through a Stokes phenomenon, which occurs
precisely when the phase lines of the sheared mode are perpendicular to the Couette
flow, and they derive an analytic expression for the amplitude of the IGW oscillations.
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Superposing the IGW contributions of a continuum of sheared modes, we obtain an ap-
proximation for the IGW field generated by a vortex as a triple integral. Approximating
this by a combination of asymptotic and numerical means provides a detailed description
of the structure of the IGWs emitted. This takes the form of four wavepackets which are
generated when the horizontal semi-axes of the ellipse are approximately aligned with
the streamwise and cross-stream directions. Subsequently these wavepackets propagate
freely horizontally and vertically.

It is worth emphasising that our analytic approach eliminates most of the conceptual
difficulties encountered when attempting to demonstrate spontaneous IGW generation.
In particular, the asymptotic treatment makes it possible to unambiguously define an
initial state of the vortex that is completely balanced, even though spontaneous IGW
generation takes place immediately afterwards. The IGWs are also completely disentan-
gled from the balanced motion to which we pay in fact little attention. This state of
affairs contrasts sharply with more numerical treatments of the problem of IGW genera-
tion, where sophisticated methods are required both for the initialisation of the balanced
state and for the diagnosis of the IGWs generated (cf. Viudez & Dritschel 2004). Of
course, a limitation of our treatment is that, so far, it applies to very specific flows and
under the severe restriction of linearisation.

This paper is organised as follows. The equations of motion and the special solution
under study are introduced in §2. The expansion of this solution in terms of sheared modes
and the choice of potential-vorticity distribution are discussed in §3. The asymptotic
analysis leading to the explicit description of the IGWs is described in §4. There we review
the relevant exponential-asymptotic results for sheared modes, exploit them to express
the vertical vorticity associated with IGWs as a triple integral, and sketch the method
used to estimate this integral. Some results, illustrating the spontaneous generation of
IGWs in an anticyclonic flow, are presented in §5. The paper concludes with a discussion
in §6. A large part of the work reported in this paper is rather technical. Therefore §§3-4
only summarise the method employed, and we refer the reader to the two appendices for
a more detailed analysis.

2. Model

We study the spontaneous generation of inertia-gravity waves by a slow balanced
motion in a rotating stratified fluid. The fluid domain is assumed to be unbounded
in the three spatial dimensions. We model the fluid using the Boussinesq and hydrostatic
approximations and write the equations of motion as

DU — fV = —&,, (2.1)
DV + fU = -9, (2.2)
B=29,, (2.3)

DB+ N*W =0, (2.4)
Uy +V,+ W, =0. (2.5)

Here U = (U, V, W) are the usual Cartesian components of the velocity, D; = ;+U -V is
the material derivative, f is the Coriolis parameter, ® is the geopotential, related to the
pressure P and constant mean density p by P = ®/p, B = —gp/p is the buoyancy (with
p the density perturbation), and N is the constant Brunt—Viisild frequency. Note that
the hydrostatic approximation is made for convenience only; no conceptual difficulties
would arise if it were relaxed, although the computations would be considerably more
involved.
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We consider solutions of (2.1)—(2.5) which consist of two parts: a horizontal Couette
flow, with constant vorticity —3, and a small-amplitude perturbation. We therefore write
the dynamical fields as

E 2
(U,V,W,®, B) = (Ey,0,0,—ny,()) (2.6)
—"_(u(x?y? Z7 t)7v($7 y7 Z7t)7w(x7y7 Z7 t)?SO(x7y7 Z7 t)7b(x7y7 Z7 t))7

and derive linearised equations of motion for the perturbation fields (u, v, w, ¢, b). These
equations are identical to (2.1)—(2.5), with upper-case variables replaced by their lower-
case counterparts, and Dy = 0; + Xyd,.. They imply that the potential-vorticity pertur-
bation

q=N?C+(f - )b,
is conserved:
Diqg=(0: +X0,)g=0, hence q(z,y,z1t)=qo(xr— Zyt,y, 2), (2.7)

where g is the initial distribution of ¢. Although the approach of this paper applies to
arbitrary localised distributions of potential distribution, we concentrate in what follows
on a particularly simple situation where qq is given by

m3/2N f (@+XTy)?  y* =2
_ mPNf _|\Erdy) Yy A2 2.8
q(z,y,2) B aragos exp{ [ Ja? + 1a2 + 404%} } ’ (2.8)

where oy, i = 1,2,3 and T are constants. The factor 7r3/2Nf/(23a1a2a3) is introduced
for later convenience, taking advantage of the linearity of the problem. According to
(2.7), the potential vorticity at later time is given by

ENF [ [E-De-Tw? v P,
of- | ljo e

+
p)
2319003 4a3

Q(Ly,Z,t) = 4a§ 404%

This describes a three-dimensional Gaussian vortex which gets deformed and tilted in the
horizontal under the action of the Couette flow. See figure 1. The parameter T' controls
the initial tilt against the shear and is such that the three axes of the ellipsoidal level
surfaces of ¢ are aligned with the (z,y, z)-axes at t = T. If ay = as = as, in particular,
q is spherically symmetric at ¢t = T.

Our interest is in the behaviour of other fields which, unlike g, can display IGW activity.
We focus on the rotation-dominated regime where the Rossby number, naturally defined
as

__Iz
f )
is small. In this regime, suitably initialised flows are well described by balanced models
(quasi-geostrophic and higher-order) which filter out IGWs completely (e.g. Warn et al.
1995). In these models all the dynamical fields can be deduced from ¢ and so, apart from
fine details depending on each specific balanced model, their evolution is completely un-
derstood from (2.9). In the rest of the paper we demonstrate how IGWs, not captured by
balanced models, are emitted spontaneously in the course of this evolution. We describe
these IGWs using an asymptotic method and show that they are exponentially small in
E.
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FIGURE 1. Schematic of the evolution of the perturbation potential vorticity ¢ in the Couette
flow for ¥ > 0 and T > 0. The leftmost surface represents a particular level surface of g at
t = 0 when level surfaces are ellipsoids tilted against the shear; the central sphere represents
the same level surface at t = T when level surfaces are ellipsoids with axes aligned with the
coordinate axes; the rightmost surface represents the level surface at ¢ > T when level surfaces
are ellipsoids tilted with the shear. The centres of the ellipsoids, which are fixed in time, have
been offset in the x-direction for clarity.

3. Sheared modes

Small-amplitude perturbations to a Couette flow which are localised in space can be
conveniently represented as superpositions of sheared modes; specifically, the perturba-
tion fields can be written as

u(z,y, z,t) = / a(k, 1, m, t)e!FrHU=k=0y+m2) qrdidm, (3.1)
R3

with similar expressions for v, w, ¢ and b. Note that this representation differs from the
usual Fourier transform in that the wavevector associated with each mode and given by
(k,l — kXt,m) depends on time.

Introducing the expansion (3.1) into the linearised perturbation equations leads to
a system of ODEs in time for the amplitudes (4,9, w, o, l;), with (k,l,m) appearing as
parameters. This system of ODEs is derived in McWilliams & Yavneh (1998), Vanneste
& Yavneh (2004) (for non-hydrostatic flows), and Olafsdéttir et al. (2005). It reduces to
a single second-order equation for the amplitude

¢ =ikd —i(l — Skt)a

of the vertical component of the perturbation vorticity. This reduction relies on the
conservation (2.7) of the potential vorticity. In terms of the amplitude § of ¢ in the
sheared-mode expansion, this conservation becomes

gt =0, hence (j(kalamat) = qAO(kJum)u (32)
where §p is the Fourier transform of gg. From (2.8), we find gy to be given by

do(k,1,m) = N fe~loik’ +e3(1=kET)* +ajm?] (3.3)
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Taking (3.2) into account, and non-dimensionaling time by the inverse shear |X| leads

to the following ODE for ¢ (see, e.g., Vanneste & Yavneh (2004) or Olafsdéttir et al.
(2005) for a derivation):

1+ (t— ol/k)? .

&[G+ bl — 01/R)G] + elt = 01/R) = o, (3.4)
where
2t
b(t) = ———= 3.5
0 = s, (35)
20¢ 1412
c(t) = (1 —o¢) (1 13 t2> 2R (3.6)
and o = sign ¥ indicates whether the shear is anticyclonic (o = 1) or cyclonic (o = —1).
A second non-dimensional numbers appear in (3.4) in addition to &, namely
_fm
b=

which can be interpreted as the inverse square-root of a Burger number and will be
treated as O(1).
Now, the explicit dependence of (3.4)~ in ol/k, o and N? is readily eliminated by

introducing the new dependent variable ((k,, m,t) defined by

Clh, 1, t) = %f(k,l,m,t — ol/k)
_ %ef[aszJrag(lfkaT)erang]5(k7 I,m,t— Ul/k), (37)

where T has also been non-dimensionalised by |X|. Using (3.2), this transformation re-

duces (3.4) to
o (A% d¢ s 1442

with b(t) and ¢(t) still given by (3.5)—(3.6). This equation is the hydrostatic limit of that
derived by McWilliams & Yavneh (1998) and Vanneste & Yavneh (2004). It is identical to
that derived by Olafsdéttir et al. (2005). These three papers focused on a single sheared
mode, that is, on a single wavevector (k,l,m). Here we exploit the asymptotic results
of the latter two papers to compute the vertical component of the vorticity ((z,y, 2, )
associated with a localised potential vorticity perturbation. According to (3.7), it is
related to the solutions of (3.8) obtained for different values of (k,l,m) by

1 - .
C(x,y,z,t):—/ Go(k, 1, m)C(k, 1, m,t — ol /k)e!FetU=k=0y+m2) qrdidm.  (3.9)
RB

2
We now use an explicit asymptotic form for f to derive an approximation to the IGW-
component of {(z,y, 2, t).

4. Asymptotic analysis

In Olafsdéttir et al. (2005), it is shown that solutions of (3.8) which are well balanced
for t < 0 develop fast IGW oscillations for ¢ > 0. This generation of oscillations can be
identified as a Stokes phenomenon: a well balanced, oscillation-free dominant solution
of (3.8) switches on a subdominant homogeneous solution as the Stokes line Ret = 0
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is crossed. The switching on is continuous (Berry 1989), but takes place over a short
O(e'/?), so we can write the solution as

Ck, 1, m,t) = Coat (B, 1) + Cigw (3, ) H(t), (4.1)

where H(t) denotes the Heaviside function and the notation emphasises that fbal and
(Nigw depend on (k,l,m) through 8 only. The balanced part Cba Of the solution is given
by an asymptotic series whose details are unimportant for our purpose. The IGW part,
which is a homogeneous solution of (3.8), is given to leading order in & by

Can(B) ~ — /2|6|7Te*ﬂ(1+ﬁ270ﬁ26)/(4\5|6) V14 024+ t2sin R(t,€) — o|B|t cos R(t, )
igw\Ms
5

(1482 +2)* (14 52)3/

3

(4.2)
where

<) = 5 (t L+@ -+ + (144 <t+\/\/11++—ﬁﬁﬁ>>

_ﬂﬂm<ﬁwﬁ:@:?>

2 ,/1+52

Note that Olafsdéttir et al. (2005, equations (4.7) and (4.8)) give this result for o = —1
only (with a typo in argument of the exponential independent of ¢); the derivation is
however readily extended to the case ¢ = 1. Note also that

dR \/1+62+t2+0(1)

E(tﬂg): |6|5

can be recognised as the non-dimensional frequency of hydrostatic IGWs with wavevector
(k,—okt,m).

Together with (3.9), (4.2) provides an explicit expression for the IGW part of {(x, y, 2, t).
Some care is needed, however, to ensure that meaningful initial conditions are satisfied at
t = 0. Equations (4.1)—(4.2) are obtained assuming that there are no IGW-oscillations for
t < 0; they then describe the spontaneous generation of oscillations that are present for
t > 0. The shift of ¢ by ol/k involved in (3.9) means that different sheared modes, with
different [/k, generate oscillations at different times. In particular, modes with ol/k < 0
generate oscillations for ¢ < 0. This is problematic since it implies that IGWs are present
at all times, when a natural initial condition is that the flow is completely balanced, that
is, completely free of IGWs, at ¢ = 0. This condition can in fact be imposed without
difficulty by recognising that one can add to (4.1) arbitrary combinations of the homo-
geneous solutions of (3.8), hence, in particular, an arbitrary multiple of Eigw. Thus, we
replace (4.1) by

C(ky1,m,t) = Coat (B, 1) + Cigw (3, t)[H (t) + C(k, 1, m)], (4.3)

and choose C(k, [, m) to eliminate the IGW component of {(z,y, z,t) for t = 0. It is clear
from (3.9) that this is achieved by taking

C(k,l,m)=—1 for ol/k <0 and C(k,l,m)=0 for ol/k > 0.
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With this choice and at ¢t > 0, (3.9) becomes

1
Ty, 2,t) = — qo k,1,m)Cou(t — al/k)elFrtU=oktiy+m2) qrq1qm
Y E

/(/ Lot [T )wtstom

X C]gw(ﬁ t — Ul/k) ik(z+(l—okt)y+8z) didkdm
= Cbal(xayvzvt) +<igw($,y,2,t).

We focus on the IGW component which, taking (3.3) into account, takes the more
explicit form

7 N I A A A ECEET

N —[a2k?+aZ(l—koT)* +aim?|+ik(z+(I—okt)y+Bz) didkdm (4 4)

with éigw given in (4.2). This is a closed-form expression for the IGWs radiated sponta-
neously by the sheared vortex in the limit € < 1. Three observations can already be made
about this expression. First, it is obvious from (4.2) that (igw is exponentially small in €.
A crude estimate for its magnitude, based on the maximum amplitude of figw (attained
for |8 = 1), is exp[—m/(2¢)]. This gives a rough idea of the importance of the IGWs
radiated, even though the exponential dependence of (izw on e depends of course on
(x,y,2,t). A second observation is that, because of the O(1) prefactor in (4.2), the IGW
amplitude is larger for an anticyclonic shear (o = 1) than for a cyclonic shear (o = —1).
A third observation relates to the role of the parameter T' controlling the initial tilt of
the potential-vorticity distribution against the shear. It can be seen from (4.4) that the
dominant contribution to (jzw comes from wavenumbers satisfying [ ~ o¢kT'. Since phase
cancellations are minimized in the integral for [ = okt, we can expect the maximum
of IGW generation for ¢ ~ T. Thus by taking T large enough, we can ensure a good
separation between the initial time, when we impose the absence of any IGWs, and the
time at which significant wave generation occurs.

To evaluate (4.4) in practice, it is necessary to make further analytical progress to
limit the amount of computation required. We proceed in four steps: (i) the integration
variables in (4.4) are changed from (k,I,m) to (k,5,7), with 7 = ¢t — ol/k; (ii) the
integration with respect to k is carried out explicitly; (iii) an asymptotic method is used
to approximate the integral with respect to 7; and (iv) the final integration with respect
to [ is computed numerically. Details of the necessary calculations are given in Appendix
A.

The most delicate point in these calculations arises in step (iii) where the integral in
7 is found to be dominated either by a saddle point or by one of the two endpoints,
depending on (z,y, z,t). To deal with this, we have implemented a version of Bleistein
(1966)’s method which gives an uniform approximation to this type of integrals and is
discussed in Appendix B. Note that the saddle point needs to be determined numerically
for each value of (z,y,2,t) and 8. An important outcome of the asymptotic treatment
in (iii) is that for t = O(1) (igw varies over scales of the order of e~/2, much larger than
the vortex scale. An identical scaling has been found in Vanneste (2006) in much simpler
model of IGW radiation.

In the next section, we present some illustrative results of our approach and describe
the structure of the IGWs generated by a vortex.
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5. Results

We report results obtained for 7' = 3 in the case of ¢ = 1, that is for an anticyclonic
flow. Our choice of the ellipsoidal potential vorticity (2.9) takes the semi-axes to be
a1 = ag and a3 = f/N. This implies that at the time ¢t = T = 3, when maximum wave
generation can be expected, the potential-vorticity distribution is spherically symmetric
in coordinates stretched by the Prandtl ratio N/ f in the vertical.

We have chosen to present results for the Rossby number € = 0.25. This is a moderately
small value, giving significant amplitudes for the IGW generated, but also a value for
which our asymptotic approximations have a reasonably good accuracy. Qualitatively,
the results for other values of £ are similar, except that the amplitude of the IGWs
radiated increases rapidly with € as expected from the order of magnitude exp[—7/(2¢)].

As mentioned above and discussed in more detail in Appendix A, the spatial scale
of the IGWs radiated by the vortex is e~'/2. Furthermore, the vertical dependence is
through Nz/f (see (A1)—(A2)). It is then natural to regard the spatial structure of the
IGWs as depending of the scaled coordinates (X,Y,Z) = ¢'/?(x,y, Nz/f). With the
choice ag = N/ f, the vertical vorticity Cigw(X,Y, Z,t) becomes independent of f and N.

For both the computation and the presentation of the results, we can take advantage
of symmetries of the problem: (g is left invariant by the reflection about the plane
z = 0 and by the rotation by 7 around the z-axis. Because the IGWs are also very
weak upstream of the vortex, we can restrict our attention (for ¢ = 1) to the octant
{z > 0,y > 0,z > 0}, keeping in mind that there is a symmetric IGW activity in the
other three octants {x > 0,y > 0,2 <0}, {x <0,y <0,z >0} and {x <0,y <0,z <0}.

Figures 2 and 3 summarise our results for ¢ = 0.25 and ¢ = 1. They show (igw in
horizontal (X, Y')-planes corresponding to the three altitudes Z =0, Z = 10 and Z = 20
and for the times t = 1,2,---, 7 (figure 2) and t = 8,9, 10 (figure 3). The range of values
of X is extended for the three later times to show the full extent of the IGWs radiated; for
these times, the results on the plane Z = 0 are not shown since (jgw has become weak at
small altitudes. It is worth emphasising that because our approach is essentially analytic,
(igw is obtained at each point in space and time in a completey independent fashion,
so the choice of time interval and spatial gridding is entirely dictated by visualisation
considerations.

The figures reveal how the sheared vortex (only a very small ellipsoid in the scaled
coordinates employed) radiates four packets of comparatively large-scale IGWs (one in
each of the four downstream octants). As expected, the bulk of the IGW radiation occurs
around t = T = 3. At these early times, the IGW activity is confined near Z = 0, but the
packets rapidly propagate vertically; as they do so, they are affected by the horizontal
shear which tilts the phase lines towards the X-axis and reduces horizontal scales. The
propagation and shearing of the IGWs is not the only part of the response to the vortex:
in particular, at Z = 0, there is a clear stationary pattern for X < 10. This can be
attributed to the contribution in the integral with respect to 7 of the endpoint 7 = 0.
This corresponds to the sheared modes with [ = okt, that is, to the modes whose IGW
oscillations are precisely switched on at time t. The y-independent spatial structure of
these modes (see, e.g., (3.9)) explains why the stationary pattern makes a small angle with
the Y-axis. With its wider X-range, figure 3 demonstrates how dispersion spreads the
packets as they propagate. Nevertheless, the evolution is largely dominated by advection,
and most of the wavepacket energy surrounds the ray = + z = oty, as the asymptotic
derivation of Appendix A suggests should be the case.

To conclude, we point out that we have carried similar computations in the case of a cy-
clonic flow (¢ = —1). Apart from the obvious changes in the location of the wavepackets,
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FIGURE 2. Vertical vorticity (igw associated with the IGWs radiated by an ellipsoidal vortex in
an anticyclonic horizontal Couette flow. The parameters are e = 0.25 and T' = 3, and the scaled
spatial coordinates (X,Y, Z) = ¢'/?(z,y, Nz/f) are used. (igw is shown as a function of (X,Y),
for Z =0, 10 and 20 and for t = 1,2,---,7. The vortex is localised near the origin; its shape is
indicated by the contour line corresponding to ¢ = exp(—30). (Continues on the next page.)

always located downstream of the potential-vorticity ellipsoid, the structure of the IGWs
is similar to that just described. A significant difference, however, is that the amplitude
is smaller by an O(1) factor, as expected.

6. Discussion

In this paper, we have given an explicit description of the IGWs that are generated
spontaneously by a simple balanced flow. The regime considered is the small-Rossby-
number, quasi-geostrophic regime where the IGWs can be expected to be exponentially
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FIGURE 2. continued.

small in the Rossby number. The exponential smallness has been demonstrated previously
for toy models; our results show that it also holds in a more realistic context of localised
solutions of the three-dimensional Boussinesq equations. The type of solutions consid-
ered, consisting of a localised potential-vorticity perturbation superposed to a horizontal
Couette flow, is very specific, and is guided by the possibility of a complete asymptotic
treatment relying on an expansion in sheared modes. The results nonetheless usefully
complement recent numerical work which demonstrates the mechanism of spontaneous
generation of IGWs in more complicated and realistic flows but does not provide as
clear-cut a description of the waves as that given here. The advantages of an asymptotic
approach, when available, are evident when one considers the difficulties in initialising
balanced flows and in extracting IGW fields from data that are typically encountered in
numerical studies of IGW generation (see Viudez & Dritschel 2004, for a technique ad-
dressing the difficulties). These are completely avoided here: the exponential-asymptotic
approach allows us to define an initial state that is unambiguously free of IGWs, and
to study the IGWs in isolation from the much larger balanced motion. In view of these
advantages, it would be highly desirable to develop exponential-asymptotic techniques
that apply to a broader class of flows than that considered in this paper.

We conclude by returning to some of the assumptions that we made and discuss how
they may be relaxed. A first assumption is the adoption of the hydrostatic approxi-
mation. This is made for convenience only, since the explicit form (4.2) for the IGW-
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FIGURE 3. Same as Figure 2, but for the later times ¢t = 8, 9 and 10. The altitude Z = 0,
where the IGW activity is weak, is not shown.

component of sheared modes can be generalised to the non-hydrostatic case using the
results of Vanneste & Yavneh (2004). We note that relaxing the hydrostatic approxi-
mation is in fact necessary if the large-time behaviour of the IGWs is to be modelled
accurately: because of the increase in the cross-stream wavenumber |I| ~ |Zkt|, the hori-
zontal wavenumber is only negligible compared to the vertical one in the IGW dispersion
relation if ¢ < N/(2f). A second assumption is that of an ellipsoidal potential-vorticity
distribution. This was made for definiteness, and any localised potential vorticity could
in principle be chosen, although analytical progress with the resulting integral form of
Cigw Will only be possible for simple enough choices. An interesting choice, in view of the
sharp potential-vorticity gradients often observed in the atmosphere and oceans, would
be that of a piecewise-constant potential vorticity, and in particular of a patch of uniform
potential vorticity. For an ellispoidal patch, preliminary computations suggest that two
integrations could be carried out analytically, as is the case in this paper. The asymptotic
evaluation of the second differs entirely from the one presented here and would require
careful consideration. Nonetheless, we can already remark that a piecewise-constant po-
tential vorticity does not affect the conclusion that the IGWs generated spontaneously
are exponentially small in the Rossby number. Thus spatial smoothness does not ap-
pear essential for exponential smallness, unlike temporal smoothness which is, of course,
critical.

Finally, our results rely on the linearisation of the dynamics of perturbations to the
horizontal Couette flow. This approximation is critical in two respects: first, it reduces
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the evolution of the potential vorticity to a simple advection by a known flow, and
second it makes it possible to treat the perturbation as a superposition of sheared modes
and hence to reduce the dynamics to ordinary differential equations. Treating a fully
nonlinear problem would require not only to obtain an approximation to the potential-
vorticity dynamics that is valid to all orders in the Rossby number, but also to develop
exponential-asymptotic techniques for partial-differential equations.

JV was funded by a NERC Advanced Research Fellowship.

Appendix A. Evaluation of (g

This Appendix details the method employed to estimate the triple integral (4.4) giving
the IGW part of the vertical vorticity (igw for the initial potential vorticity (2.8).

A.1. Formulation

A first step is to change the integration variables from (k,l,m) to (k,7,03) with 7 =
t — ol/k. Noting that the Jacobian of the transformation is Nk2/f and we find after
some calculations that

[o%¢) t o
Gonloz) =2 [ [ GuulBr) [ KO coslB(, b dhdrds, (A1)
—o0 J0 0
where
AB,7) =i +a3(t—t+T)*+aiN?6%/f? and B(B,7) =z —ory+LNz/f. (A2)
We remark that these expressions indicate that a natural vertical coordinate is Nz/f, as

is usual with the quasi-geostrophic scaling used in this paper. Since (jgw is independent
of k, we can carry out the integration with respect to k explicitly to find that

o) t
Cigw (T, y, 2,1) = \/E/ / Cigw(B, 7)e™ B (B7)/(4AB.T)
—oo J0

1 BQ(ﬁ,T)
x (2A3/2(5,T) T 1A572(3, 1)

) drdp.

Because Eigw depends on 7 and f in a complicated manner (see (4.2)), it is not possible
to perform further explicit integrations. We can however take advantage of the smallness
of € to approximate (igw.

To estimate the small-¢ behaviour of the inner integral

t 2 1 B2(6 7')
_ : —B2(8,7)/(4A(B.7)) _ ,
D2, = VR [ G017 (75~ w5) &

we substitute the function &gw by its leading behaviour (4.2). Writing the sine and cosine
as sums of imaginary exponentials, this gives the asymptotic relation

t
Ig(iv,y,z,t) ~ Im / 9(677—, g)e_f(B;T)/EdT7 (A3)
0
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where
_ B*B,7) w
f(ﬁﬁ)—am+ (|ﬁ|+|ﬁ|) (A4)
o 7 2 21, [ ZF 1+ 3% 472
+2|5| <7’ 1+824+7m24+ (14591 ( m , (A5)

6 2|6 \/1+7’2 < 1 _ B2(677') )eh(ﬁ’T)
eI (14 B2+ m2)VA(1 + B2)V/4 \2A(8,7)  4452(3,7) ’

and

hB,7)=—0o M+M 1+ 52 +72 + iarcsin Ll
) \/m VitRVI+72) )

We have written the integral (A 3) in the form of a Laplace integral. In doing so, we
have treated the first term in f(8,7) as an O(1) term in spite of the explicit factor e.
This is because a distinguished limit is achieved in (A 3), and the largest values of I3
are attained, when (z,%, z) are of order e~'/? and hence B? = O(¢~ ") in the first term
of f(3,7). In what follows, we will therefore treat '/2(z,, z) as O(1) parameters, but
we will also retain terms necessary for our estimate of (A 3) to be valid uniformly when
B=0().

The integral (A 3) can be dominated by the saddle point of f(/3,7), by one of the
endpoints of the interval of integration, or simultaneously by the saddle and one of the
endpoints. To handle this behaviour in a continuous manner, a uniform asymptotic-
method is called for; we use Bleistein (1966)’s method which is designed to uniformly
combine the contributions from an endpoint and from a saddle point in an integral.
Details of this method are presented in Appendix B. There we show that if the dominant
endpoint is 7. = 0 and the saddle point of f(3, ) is 75, a uniform approximation to (A 3)
is

Is(z,y, 2,1) ~ Im {eb/s [\/?eﬁ/(%) (1 + erf <\/%)) (o + a1€) + (Bo + Bie) 5} } ,

(A6)

where a and b satisfy

a2

f(Te):bv and f(Ts):b_?u
and ag, By, @1 and (3 are defined in terms f and g in (B7)—(B8) and (B11)-(B12).

Note that we have included the first two terms in the expansion near each of the saddle
point and endpoint: this proves necessary to obtain an approximation accurate over a
wide enough range of values of (z,vy, z,t). When the saddle point 75 is close to the other
endpoint 7, = t we obtain an analogous approximation as explained in Appendix B.

Note that there is no explicit analytic expression for the (complex) saddle point 75, but
that it can always been found numerically. It is therefore possible to compute the value
of Ig from (A 6) numerically as is required for the subsequent numerical integration over
s.

Figure 4 demonstrates the validity of the estimate (A 6) and the usefulness of Bleistein’s
method. It compares a numerical evaluation of I3 with several asymptotic estimates as a
function of X = ¢/2z for € = 0.1 and other parameters fixed. The left panel illustrates
the shortcomings of using separately the saddle-point and endpoint contributions. The
right panel validates the use of Bleistein’s method applied with either the endpoint 7, = 0
or 7o = t.
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FIGURE 4. Integral Ig as a function of X = ez fore = 01, 0 = -1, Y = /2y = 8,
z=0,t=1and T = 0. The left panel compares a numerical evaluation of Iz (solid line)
with asymptotic estimates giving the endpoint contribution (dash-dotted line) and saddle-point
contribution (dashed line). The right panel shows the estimate obtained using Bleistein’s method
uniformly combining the contributions from the saddle point and from the endpoint 7. = 0 (solid

line) or 7o =t (dashed line).

A.2. Numerical implementation

We proceed as follows for the numerical computation of (igyw. For fixed z, y, z and ¢, we
find the saddle point 75 numerically for each value of 3 and then compute an approxima-
tion to I3 using Bleistein’s method. We use either 7, = 0 or 7, = t as the endpoint for
Bleistein’s method, depending on which is closer to the saddle. Integrating the approxi-
mated values of Iz numerically using Simpson’s method gives an approximation of (igy.
The integration range for [ is infinite, but we can integrate over a finite range using the
fact that Ig is strongly peaked in neighbourhood of |3| = 1, as can be expected from the

second term in (A 5).
The computations can be minimised by taking advantage of some symmetries: it is

easy to check that

Iﬁ(xa_y72767t):IB(_x7y7_2767t)7 (A7)

Iﬁ(x7y7_2767t):Iﬁ(xuywza_ﬁut)a (A8)
and hence that

Cigw(‘rv -Y, th) = Cigw(_xvya _th)a (A 9)

Cigw(xayu _Zat) = <igw($a Y, th)' (A 10)

Thus we can be restrict our efforts to the region x > 0 and z > 0. Computations can be
further reduced by exploiting the fact that the integrand of /3 depends on x and z through
x + [z only. Finally, we note that non-negligible values of Iz are essentially restricted to
the regions between the rays z + 8z = 0 and  + B8z = oty. Since I is dominated by
values of |3] near 1, this means that the IGW response is mainly confined to between
the rays « + z = 0 and = + z = oty. Certainly, there is hardly any response upstream of
the flow, hence we restrict computations to the octant {x > 0,0y > 0,2z > 0}.
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Appendix B. Bleistein’s method

Bleistein’s method (Bleistein 1966) provides an asymptotic expansion for Laplace-type
integrals of the form

I(t) = /0 t g(r,e)e /e dr, (B1)

whose main contribution comes from a saddle point of f(7) and from an endpoint of
the integration range. This method uniformly combines the contributions from the sad-
dle point and endpoint, and it is particularly useful when the two points coalesce as a
parameter changes.

The idea of Bleistein’s method is to write an approximation to I(t) of the form

/oo ei(w2/2faw+b)/sh(w) dw,
0

where a new variable w is introduced such that w = a corresponds to the saddle point
7s of f, and w = 0 corresponds to the relevant endpoint, 7. which we take as 7. = 0 in
the derivation. Comparing with (B 1) gives

2

f(T)z%—anrb, (B2)
and
f(re)=b and f(r)=b— “; (B3)
It follows that
a=£v2(f(re) = f(1)), (B4)

which can be considered as a measurement of the distance between the values of f at the
saddle and the endpoint. The sign of a in chosen in order to ensure that the order of the
endpoints and saddle is identical in the coordinates 7 and w.

With this notation,

t ' w(t) d
I e A e L F

w(®) (B5)
_ / ef(w2/27aw+b)/5h0(w) dw,
0
where w(t) corresponds to the endpoint ¢ and ho(w) = g(7(w))d7/dw. Next, we expand
ho(w) around the saddle point and the endpoint simultaneously by writing

ho(w) = ag + Bo(w — a) + w(w — a)ke(w), (B6)

where the coefficient g represents the expansion around w = a and the coefficient §y
represents the expansion around w = 0. Hence we take
ho(a) — ho(0
ap = ho(a) and By = Ml
a
Now, differentiating equation (B 2) with respect to w and noting that w = a corresponds
to 7 = 75 leads to
dr (w—a) (w—a) 1

= lim

wea dffdr  wea ) (T —75)  [(rs) d7/dw],_,’

dw|,_,
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so that
9(Ts
Qo = ho(a) = 7% (B 7)
Similarly,

hola) = ho(0) _ _9(r) . 9(0)
a a /f/I(Ts) f/(o)
We are now in position to estimate I(t). Introducing (B6) in (B5) and extending the
integration range to infinity we obtain, after integration by parts,

I(t) ~ e/ () {ao\/ﬁeaz/(%) (1 + erf (L» + 605}
2 V2e (B9)

o d
+e /0 e—<w2/2—aw+b>/5@ (wko(w)) dw.

Bo = (B8)

The remaining integral is 0(53/ 2) and hence in principle negligible. However, for the prob-
lem in this paper, we found that the accuracy of the first two terms was not sufficient to
provide reliable results with typical relevant values of € and the range of parameters con-
sidered. We therefore derive additional terms in the asympotic expansion of the integral
1(t).

To find a third term in the expansion, we expand the integrand of the integral remaining
in (B9) around w = 0 and w = a in the same manner as before. Thus, we write

d

hi(w) = 70 (wko(w)) = a1 + f1(w — a) + w(w — a)ki (w), (B10)

where
hl(a) — hl (O) '

a

oy =hi(a) and 1 =

In terms of the function hg(w) these coefficients are

1
a1 = §hg(a)7

2 B11
50— Sh8(@) — ho(@) + o(0) + ahg(0) _ acn = o + Ho(0) B
1 a3 B a? '
To compute them, we use similar methods as before to obtain
1oy = 29 (0)f'(0) — 9(0)£7(0) | 4(0)
100 = 7P 70
hi(a) = 129" (73) ' (15)? — 129/ (1) " (1) /"' (1) — 39(7s) " () S M) (75) + 5g (1) f” (1)
0 - 12[f/I(TS)]7/2 !
(B12)

Substituting hj(w) in (B9) by its expansion (B 10) then gives

I(t) ~ o b/(2¢) |:\/§ea2/(26) (1 + erf <\/%>) (a0 + are) + (Bo + Bie) e

oo d
Lo / o (2D (il () d,
0

where the remaining integral now contributes at order O(£%/?).
Further terms in the asymptotic expansion could be obtained by expanding successively
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the derivative of the functions k,, . This is Bleistein’s method, giving a recursive scheme
to find an asymptotic expansion of the integral. In this paper we neglect the O(g%/?)
terms and hence ignore the integral remaining in (B 13).

When the saddle point 75 is close to the other endpoint 7, = ¢ we derive an analogous
approximation by by substituting (¢ — ) for 7 in the expressions above. This amounts to
changing b from b = f(7. = 0) to b = f(7. = t), adjusting the value of a accordingly and,
substituting £ (7)) by (=1)"f") (7)) and ¢(™ (75) by (=1)"¢™ (1) in the coefficients
«; and (3;.
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