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The decay of a passive scalar in a sinusoidal shear flow translating in the cross-stream
direction at a constant speed u is studied in the limit of small diffusivity κ. The decay
rate, obtained by solving an eigenvalue problem, is found to tend to a non-zero constant
as κ → 0 when u is of order κ1/2. This result, establishing that fast decay is possible in
shear flows, is however fragile: because of the existence of pseudomodes, the addition of
a small noise leads to decay rates that decrease to 0 with κ as κ2/5.

1. Introduction

The aim of this paper is to provide an example of a unidirectional flow in which
the decay of a passive scalar is fast. By fast decay, we mean that the rate at which
fluctuations of the scalar concentration decay in the long-time limit is independent of the
diffusivity κ as this tends to zero (or, equivalently, independent of the Péclet number as
this tends to infinity). Fast decay in this sense is known to occur in some two-dimensional
random flows (see, e.g., Pierrehumbert 1994; Antonsen et al. 1996; Tsang et al. 2005;
Haynes & Vanneste 2005). A crucial ingredient of these flows, in addition to the spatial
smoothness and bounded domain ensuring exponential decay, is that they are stretching:
particle trajectories separate exponentially fast, leading to a rapid thinning of the scalar
structures down to a diffusive scale proportional to κ1/2. Here, by contrast, we consider
a flow in which the particle separation is only linear in time.

The flow under study is a simple sinusoidal shear flow, translating in the cross-stream
direction at a constant speed u. In the absence of translation, u = 0, the scalar decay rate
decreases to 0 as κ1/2 when κ → 0 (Bajer et al. 2001; Gleeson et al. 2004; Giona et al.

2004). However, we show that if u is chosen suitably, specifically taken proportional to
κ1/2, the decay rate tends to a non-zero constant. We note that the effect of a translation
u 6= 0, or rather, of the equivalent addition to a steady shear of a uniform cross-stream
flow, has been studied in the context of homogenisation (Childress & Soward 1990; Majda
& McLaughlin 1993). The results of these studies are however not relevant to the long-
time decay considered here, because this is controlled by scalar structures with scales
much smaller than the flow scale.

The possibility of fast decay in translating shear flows suggest that they might be
useful in mixing devices. There are, however, several caveats to keep in mind when
comparing their efficiency with that of the stretching flows more typically considered for
this purpose (Wiggins & Ottino 2004). First, the fast-decay property applies only to scalar
concentration with vanishing average in the streamwise direction, since this average is
unaffected by the flow. Second, the fast decay characterises only the long-time behaviour
of the scalar, and the time taken to reduce the concentration fluctuations by a fixed,
order-one factor is much longer in shear flows, even with u 6= 0, than in stretching flows.
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Third, and this is a point which we discuss in some detail, the property of fast mixing is
not a robust one. Specifically, although the long-time decay is in principle controlled by an
eigenmode of the advection–diffusion operator, pseudomodes (i.e., approximate solutions
of the eigenvalue problem with exponentially small errors) play a major transient role:
in the presence of small noise (including round-off errors in numerical simulations), they
control the decay rate which we show scales like κ2/5.

2. Formulation

We consider the decay of a passive scalar advected by the steadily translating shear
flow

v = (0, α sin(x − ut)) , (2.1)

where α and u are two positive constants. The domain is taken to be doubly periodic,
and in the scaled spatial variables chosen for (2.1) it reads (x, y) ∈ [0, 2π] × [0, 2πL],
where L is its aspect ratio. The concentration C(x, y, t) of the passive scalar obeys the
advection–diffusion equation

Ct + α sin(x − ut)Cy = κ(Cxx + Cyy),

where κ is the molecular diffusivity. Because this equation is independent of y, its solution
can be expressed as a sum of independent Fourier modes. Concentrating on one such
mode, we write

C(x, y, t) = Re Ĉ(x, t)eily−κl2t,

where l is one of the wavenumbers n/L, with n = 0, 1, 2, · · · , and obtain

Ĉt + iαl sin(x − ut)Ĉ = κĈxx. (2.2)

The y-independent mode l = 0 is unaffected by advection and decays purely diffusively;
we ignore this mode in what follows, assuming that the initial concentration satisfies

∫ L

0

C(x, y, 0) dy = 0.

It is convenient to make (2.2) time independent by introducing the coordinate x′ =
x− ut, that is, by using a frame of reference translating with speed u in the x-direction.
It is also convenient to non-dimensionalise t, u and κ by introducing t′ = αlt, u′ = u/(αl)
and κ′ = κ/(αl). Omitting the primes, this transforms (2.2) into

Ĉt − uĈx + i sinx Ĉ = κĈxx. (2.3)

In this formulation, u is the ratio of the translation speed of the flow pattern (2.1) to the
maximum flow speed, and κ is an inverse Péclet number.

3. Eigenvalue problem

We are interested in the long-time decay of the concentration. Clearly, this is controlled
by the spectrum of the operator associated with (2.3). Specifically, we write

Ĉ(x, t) = θ(x) exp(−λt),

to find the eigenvalue problem

−κθxx − uθx + i sinx θ = λθ, with θ(x + 2π) = θ(x). (3.1)
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The corresponding spectrum consists of a countable set of eigenvalues λ with positive
real parts. The eigenvalue with the smallest real part, which we simply denote by λ, gives
the decay rate of the concentration as t → ∞. We now examine the dependence of this
eigenvalue on κ and u in the large-Péclet-number limit κ → 0.

We first note that when the shear is steady, that is, when u = 0, the decay rate is
proportional to κ1/2. Indeed, a simple boundary-layer analysis (extended below) gives

Re λ ∼
κ1/2

2
for u = 0, (3.2)

with the corresponding eigenfunction θ(x) localised near either of the extrema x = π/2
and x = 3π/2 of the velocity profile. The vanishing of the shear at these two points limits
the efficiency of the mixing and leads to the κ1/2 power law (Bajer et al. 2001; Giona
et al. 2004). Intuitively, one may expect that a non-zero translation speed u 6= 0 makes
the mixing more efficient by constantly shifting the position of the velocity extrema. This
is not necessarily the case, however: a short computation shows that

Re λ ∼
κ

2u2
for u = O(1). (3.3)

This is asymptotically smaller than (3.2), so an O(1) translation decreases the mixing
efficiency. However, (3.3) indicates that Re λ increases as u decreases, leaving open the
possibility that Re λ ≫ κ1/2 for some asymptotically small but non-zero u. We examine
this possibility by considering the case where u = O(κ1/2). We therefore let

u = κ1/2w with w = O(1). (3.4)

In this regime, the decay rate Re λ belongs to either of two eigenvalue branches, depend-
ing on w. The first branch continues (3.2) as u increases from 0 and can be approximated
by a boundary-layer analysis; the second branch continues (3.3) as u decreases from O(1)
values and can approximated using a WKB expansion. We present these two approxima-
tions next.

3.1. Boundary-layer analysis

Motivated by the solution for u = 0, we seek a localised solution and introduce the
expansions

θ(x) = e−wx/(2κ1/2)
[

Θ(0)(X) + κ1/2Θ(1)(X) + · · ·
]

and λ = w2/4+ i + κ1/2λ(1) + · · · , where X = κ−1/4(x− π/2) and the functions Θ(i)(X)
are assumed to be localised near X = 0. This gives the leading-order eigenvalue problem

Θ′′ +

(

λ(1) + i
X2

2

)

Θ = 0.

The solution of interest, with smallest Re λ, is simply given by the Gaussian

Θ(0)(X) = e−(1−i)X2/4, with λ(1) = (1 − i)/2.

Hence we obtain the approximation

Re λ =
w2

4
+

κ1/2

2
+ O(κ) (3.5)

for the decay rate.
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3.2. WKB analysis

We introduce the WKB solution

θ(x) =
(

φ(0)(x) + κ1/2φ(1)(x) + · · ·
)

ef(x)/κ1/2

, (3.6)

with λ = λ(0) + κ1/2λ(1) + · · · , into (3.1) and find at leading order that

f(x) = −
wx

2
±

∫ x

0

(ν + i sinx′)1/2 dx′, with ν =
w2

4
− λ(0). (3.7)

An eigensolution is found if ν can be chosen to ensure that f(2π) = f(0). Since the −
sign in (3.7) yields a decreasing Re f(x), we focus on the + sign and obtain the condition

∫ 2π

0

(ν + i sinx)1/2 dx = πw + 2niπκ1/2, n = 0,±1,±2, · · · . (3.8)

In fact, we can take n = 0 since other values n = O(1) correspond to an O(κ1/2) change
in λ that can be absorbed in λ(1). For ν > 0, (3.8) with n = 0 can be satisfied by
taking the principal branch of the positive square root. Thus, to leading order, we find
the eigenvalue

λ(0) =
w2

4
− ν0(w), (3.9)

where ν0(w) is defined by its inverse w0(ν), the elliptic integral

w0(ν) =
1

π

∫ 2π

0

(ν + i sinx)1/2 dx (3.10)

=
4Γ(3

4 )2

π3/2
F (− 1

4 ,− 1
4 , 1

2 ;−ν2) +
π1/2ν

Γ(3
4 )2

F (1
4 , 1

4 , 3
2 ;−ν2). (3.11)

The second line, giving the integral in terms of hypergeometric functions, is useful in what
follows.† It is easy to check from (3.10) that for large w, ν0(w) = w2/4−1/(2w2)+O(w−3),
so that (3.9) can be identified as the continuation of (3.3) for w ≫ 1.

At O(κ1/2), we obtain an equation for φ(0) with solution

φ(0)(x) =
1

(f ′ + w/2)1/2
exp

[

−
λ(1)

2

∫ x

0

dx′

(f ′(x′) + w/2)

]

.

Imposing periodicity gives the purely imaginary corrections λ(1) = nib, where n =
0,±1,±2, · · · and b is an easily computed constant. It is only at the next order that
the real parts of λ depends on n: the n = 0 branch is the relevant one for the long-time
decay problem, since the corresponding Re λ is the largest by an O(κ) amount.

So far, we have derived the approximation (3.9) under the assumption that ν > 0. As
w increases from large values, however, ν0(w) decreases from a positive value to attain 0
for

w = w∗ :=
4Γ(3

4 )2

π3/2
= 1.0787 · · · with λ(0) = λ∗ :=

w2
∗

4
= 0.2909 · · · . (3.12)

For ν < 0, we continue to use (3.9) interpreting the integral in (3.10) as the analytic
continuation of the this integral for ν > 0. This continuation, which involves contributions
along branch cuts for Re x = 0, π, 2π, is precisely given by (3.11). Note that obtaining the
form of the eigenfuction near x = 0, π, 2π would require the use of matched asymptotics,

† We thank A. B. Olde Daalhuis for the derivation of this expression.
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since (3.7) breaks down for ν < 0 when the principal branch of the square root. We avoid
this computation here and rely on the analytic dependence of eigenvalues on parameters
(e.g. Kato 1976).

Thus, our WKB analysis gives the approximation

Re λ =
w2

4
− ν0(w) + O(κ). (3.13)

3.3. Summary

Our asymptotic analysis provides the two possible approximations (3.5) and (3.13) for
the decay rate in the regime (3.4), corresponding to two different eigenvalue branches. It
is easy to verify that the two approximations intersect for

w = w∗ − κ1/2s∗ + O(κ), (3.14)

where w∗ is given in (3.12) and s∗ = π1/2/(2Γ(3
4 )2) = 0.5901 · · · . For w smaller (respec-

tively larger) than (3.14), (3.5) (respectively (3.13)) gives the smaller, i.e. relevant, decay
rate. That this is non-zero in the limit κ → 0, shows that fast mixing can be achieved in
a shear flow by a suitable choice of the translation speed. This choice takes w = O(1),
i.e. u = O(κ1/2), to achieve a distinguished limit in the eigenvalue problem (3.1) which
leads to eigenfunctions with O(κ1/2) spatial scales as is required for an O(1) decay rate.
Physically, this corresponds to a balance between the two opposite effects that the trans-
lation of the sinusoidal flow can have on the scalar damping: an enhancement caused
by the continuous shift of the shearless regions of the flow, and an inhibition caused by
periodic reversal of the shear. The largest possible decay rate is obtained by taking w as
in (3.14) and is given by

Re λ =
w2

∗

4
+ κ1/2 1 − s∗

2
+ O(κ) = 0.2909 · · ·+ 0.2049 · · · κ1/2 + O(κ). (3.15)

The conclusion just drawn presumes that there are no eigenvalue branches with real
parts smaller than (3.5) or (3.13). Since this is difficult to establish by asymptotic means
only, we rely on numerical solutions of the eigenvalue problem (3.1) to confirm that this
is the case and verify the predictions (3.5)–(3.15).

3.4. Numerical results

Our numerical procedure is based on a truncated Fourier expansion of θ which transforms
(3.1) into a matrix eigenvalue problem, solved by a standard procedure. A truncation
retaining 200 to 300 Fourier modes proves sufficient to achieve convergent results for
10−3 ≤ κ ≤ 1. As we discuss below, the results for significantly smaller κ are crucially
affected by round-off errors.

The results are summarised in Figure 1. The left panel shows the real part of the first
few eigenvalues (ordered according to their real parts) for κ = 10−2 as a function of
the translation speed u. The comparison with the asymptotic formula (3.5) and (3.13)
confirms that these provide an excellent approximation to the eigenvalue with the smallest
real part. The right panel shows this particular eigenvalue only, but for three values of κ
and as a function of the scaled speed w. The eigenvalues collapse to the κ-independent
approximation (3.13) to the right of the branch intersection; to the left of this intersection,
they match well the approximation (3.5) which gives curves separated by a constant
O(κ1/2) term. (The limit of (3.5) for κ → 0, that is, the curve w2/4 is indicated by
the dotted line.) The right panel demonstrates the high accuracy of the asymptotic
approximations (3.5) and (3.13). In fact, it is likely that the error made for Re λ is much
smaller than the O(κ) our computations suggest.
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Figure 1. Real part of the eigenvalues of the advection–diffusion operator in (3.1) as a function
of the translation speed u. Left panel: numerical results for κ = 10−2 (◦) are compared with the
two asymptotic estimates (3.5) (dashed line) and (3.13) (solid line) for the eigenvalue with the
smallest real part. Right panel: numerical estimates of the eigenvalue with smallest real part for
κ = 10−1 (△), 10−2 (◦) and 10−3 (�) are plotted against w = u/κ1/2. The asymptotic estimates
(3.5) (dashed lines) and (3.13) (solid lines) are also shown, with the dotted line indicating the
limit of (3.5) as κ→ 0.
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Figure 2. Left panel: evolution of the L2 norm ||Ĉ|| of the concentration in simulations of the
advection–diffusion equation (2.3) with κ = 10−3, 10−2 and 10−1 (solid lines with decreasing
thickness) in lin-log coordinates. The exponential decay expected in the long-time limit for κ→ 0

is also shown (dashed line). Right panel: profiles of Re Ĉ(x) (solid line) and |Ĉ(x)| (dotted line)

normalised by ||Ĉ|| obtained for κ = 10−3 at t = 300.

Our analysis of the eigenvalue problem (3.1) allows us to conclude that a suitable choice
of u ensures that the passive-scalar concentration decays exponentially with a decay rate
that is independent of κ as κ → 0. This exponential decay appears in the long-time limit
only, and it is therefore important to estimate the time taken for this limit to be reached.
Here, of course, the shear flow (2.1) compares unfavourably with exponentially stretching
flows: whilst for the latter the exponential behaviour sets in after a time that scales like
log(1/κ), for our shear flows a much longer, O(κ−1/2) is necessary. This is because the
stretching is only linear in time, and the spatial scales need to be reduced to O(κ1/2)
values for the O(1) decay rate to be established.

To confirm this, we present the results of numerical simulations of the advection–
diffusion equation (2.3). The left panel of Figure 2 shows the evolution of the L2 norm
||Ĉ||(t) of the concentration in three simulations with κ = 10−3, 10−2 and 10−1, respec-



Fast scalar decay in a shear flow 7

10
−6

10
−4

10
−2

10
−2

10
−1

10
0

κ

Re λ

10
−6

10
−4

10
−2

10
−1

κ

γ

Figure 3. Left panel: Real part of the smallest eigenvalue of (3.1) obtained numerically for

w = u/κ1/2 = 1 as a function of the diffusivity κ. Results of double-precision (◦) and single–
precision (△) computations are shown, together with the asymptotic result Reλ ∼ λ∗ (dotted
line). The departure from this asymptotic behaviour for κ . 10−3 can be attributed to round-off

errors; this leads to the decay of Reλ according to the κ2/5 power law indicated by a dashed line.
Right panel: decay rate γ as a function of κ in simulations with external noise with amplitude
A = 10−3 (△), 10−2 (�) and 10−1 (◦). A κ2/5 dependence similar to that in the left panel is
indicated by the dashed line.

tively. The corresponding values of u have been chosen to maximise Re λ according to
the asymptotic formulas (3.5)–(3.13). As a result, the decay rate is nearly independent
of κ, and ||Ĉ||| decays at approximately the same rate, well approximated by λ∗, in the
three simulations. The exponential phase of the decay is seen to occur after a phase of
much slower decay which lasts for a time consistent with the expected κ1/2 scaling. The
structure of the decaying scalar after a long time, here t = 300, is shown in the right
panel of Figure 2. The pattern is that predicted by the eigenfunction analysis, with a
time-independent profile for |Ĉ|/||Ĉ|| and a phase propagation observed in Re Ĉ and
Im Ĉ.

The numerical results presented so far have been limited to only moderately small
diffusivities κ ≥ 10−3. This is because we found that neither the eigenvalue problem nor
the time-evolution problem could be solved reliably for smaller diffusivities. To illustrate
this, the left panel of Figure 3 shows results of the numerical computation of Re λ using
double- and single-precision arithmetic. These show that the prediction that Reλ tends to
a non-zero value as κ → 0 is not robust: the noise introduced by round-off errors leads to
Re λ = o(1). More specifically, Re λ → 0 with what appears to be a κ2/5 power law. The
prefactor of the power law changes between double- and single-precision computations
(effectively a change in the noise intensity), but the behaviour is robust to changes in other
details of the numerical implementation such as truncation and algorithm choice. Note
that the eigenvalues found numerically are also consistent with the numerical solutions
of the time-evolution problem. In this case, the evolution is not exponential, but a decay
rate can be defined, say as γ = t−1 log[||C||(t)/||C||(0)], which nearly coincides with the
eigenvalue.

We argue that the behaviour of Reλ and γ in the presence of round-off error is relevant
physically, since the noise induced is not fundamentally different from other, physical
noises such as fluctuations in the advecting velocity field or in the concentration field.
This is confirmed by the right panel of Figure 3 which shows the decay rate γ estimated
from numerical simulations of the time-evolution problem (2.3) perturbed by the small
multiplicative noise Aη(x, t)Ĉ(x, t), where A is an amplitude, ranging from 10−3 to 10−1,
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Figure 4. Left panel: spectrum (symbols) and ε-pseudospectra of the advection–diffusion op-

erator in (3.1) with κ = 10−3 and w = u/κ1/2 = 1. The contours mark the boundary of the
ε-pseudospectra with ε = 10−1, 10−2, · · · , 10−8. Right panel: construction of a pseudomode.
The real parts of f(x) (dotted line), defined in (3.7), of its derivative (dashed line), and of

the rough approximation ψ = exp[f(x)/κ1/2] to the WKB solution obtained for w = 1 and
λ = 0.0267 + i 0.930 are shown in an interval of x surrounding the local maximum x∗ = 0.89 of
Re f(x).

and η(x, t) is a space-time white noise. The κ2/5-dependence of γ observed with round-off
error is recovered, with a prefactor that decreases as the noise level increases. In view of
its relevance, both physical and numerical, it is worthwhile examining the cause of this
κ2/5 power law. In the next section, we attribute it to the existence of pseudomodes for
the operator in (3.1), that is, approximate solutions of (3.1) with exponentially small
errors.

4. Pseudomodes

As discussed by Reddy & Trefethen (1994), advection–diffusion operators such as that
in (3.1) have spectra that are highly sensitive to perturbations in the large-Péclet limit
κ → 0. This can be quantified by noting that the ε-pseudospectrum (Trefethen 1997;
Trefethen & Embree 2005) can be an O(1) distance away from the spectrum for ε ex-
ponentially small in κ. This is illustrated by the left panel of Figure 4 which shows
the spectrum and pseudospectra of (3.1) for κ = 10−3 and w = 1 computed using
the EigTool package (Wright 2002). Significant distances between the spectrum and the
boundary of the pseudospectra for small ε are observed, notably for small Re λ in the
region Imλ ≈ ±1. The nature of the pseudospectra can be explained by the existence
of exponentially accurate pseudomodes (Dencker et al. 2004; Trefethen 2005). In our
context, pseudomodes with Re λ < λ∗ implies that the passive-scalar decay can be signif-
icantly slower than exp(−λ∗t) if the advection–diffusion system is perturbed, for instance
by external noise.

Pseudomodes are easily constructed from the WKB analysis in §3.2. Indeed, if Re f(x)
has a local maximum x∗ > 0 for a given λ, that is Re f ′(x∗) = 0, Re f ′′(x∗) > 0, then
a pseudomode localised near x∗ can be built by taking the WKB solution in an O(1)-
neighbourhood of x∗ and joining it smoothly to 0 outside this neighbourhood so that
the periodic boundary conditions are satisfied. Since the switch from one solution of
(3.1) (the WKB solution) to another one (≡ 0) is made where the former solution is
exponentially small, the result is exponentially close to an eigensolution, even though
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λ is distant from the spectrum. This type of argument can be made rigorous (Dencker
et al. 2004; Trefethen 2005), but the heuristic justification just given is sufficient for our
purpose.

The construction of a pseudomode is illustrated in the right panel of Figure 4. This
shows Re f(x) and Re f ′(x) for w = 1 and λ = 0.0267 + i 0.930 (the smallest eigenvalue
found numerically for κ = 10−6). In the range of 0 < x < 2.6, f(x) has a maximum at
x∗ = 0.89, and a local minimum at π − x∗ = 2.25. Correspondingly, the WKB solution
has the form of a wavepacket localised near x∗. For x > 2.6, Re f(x) increases well
above Re f(x∗), and the WKB solution grows widely, as the extreme right of the Figure
suggests. This, however, does not affect the construction of the pseudomode, since the
WKB solution is replaced by 0 in that region. Note that an optimum pseudomode, in
the sense that it approximates a solution of (3.1) for fixed λ with minimum error, is
constructed by switching from the WKB solution to 0 in a neighbourhood of π − x∗,
where Re f(x) is minimum.

Among all the possible pseudomodes, it is intuitive that the ones with smallest Re λ
are the most important for the dynamics since they decay most slowly. However, for
fixed κ, there is a limitation in how small Re λ can be. This limitation, which we now
examine, is key to the κ2/5-power law observed in the presence of noise. We first note
that the small values of Re λ found in our numerical solution of the eigenvalue problem
for w = 1 correspond to Imλ close to ±1 (see Figure 4), with x∗ ≈ π/2 or 3π/2. Focusing
on Imλ > 0, and seeking a distinguished scaling, we let

λ = i(1 + ǫ2λi) + ǫ4λr and x = π/2 + ǫξ, (4.1)

where ǫ is a small parameters, and λi, λr and ξ are O(1) constants. Introducing into the
expression of f ′(x) and solving for x∗ gives the approximation

x∗ = π/2 + ǫξ∗, with ξ∗ = −21/2
(

wλ1/2
r − λi

)1/2

.

(There may be two additional zeros between x∗ and π − x∗, but these do not change
the structure of the WKB solution.) If, as argued above, a pseudomode is constructed
optimally by replacing the WKB solution by zero where this solution is the smallest, that
is, at π − x∗, the error made in the eigenvalue problem is roughly exp(−α), where

α =
f(x∗) − f(π − x∗)

κ1/2

can be termed ‘attenuation factor’. With the scaling in (4.1), this factor is approximately

α ∼
8ǫ5

(

wλ
1/2
r − λi

)3/2 (

3wλ
1/2
r + 2λi

)1/2

15w3κ1/2
.

Only pseudomodes with a sufficiently small error are susceptible to be excited by small
external noise: this requires that α be sufficiently large and hence that ǫ ≥ O(κ1/10).
Returning to (4.1), we therefore obtain the scaling Re λ = O(κ2/5) consistent with the
numerical results of §3.4. The additional scalings Imλ = i + O(κ1/5) and x∗ − π/2 =
O(κ1/10) are also consistent with the eigenvalues and eigenfunctions found numerically
(not shown) when the round-off error plays a major role.

Further insight in the role of the pseudomodes can be gained from Figure 5. The
leftmost panel shows the evolution of the concentration in simulations with multiplicative
noise with amplitude A = 10−3 and for three values of κ. The evolution is akin to a
succession of transient events caused by the noise. The structure of Ĉ is highly transient,
but its gross features stay similar throughout the simulation, with two highly oscillatory
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0 0.5 1 1.5
−0.2 

−0.1 

0    

0.1  

0.2  

x

Re Ĉ

Figure 5. Evolution of the concentration in the presence of a small noise. The leftmost panel
shows the evolution of the L2 norm ||Ĉ|| of the concentration for κ = 10−6, 10−5 and 10−4

(solid lines with decreasing thickness). The two right panels show part the concentration profile
for κ = 10−6 at t = 2150 and t = 4000, respectively.

peaks shifted by π. This is illustrated by the two panels on the right of Figure 5 showing
Re Ĉ and |Ĉ| obtained for κ = 10−6 at two different times. These plots focus on the
range 0 ≤ x ≤ 1.5, so a single peak appears in each. Whilst one cannot associate a single
pseudomode to each peak, as their form is continuously evolving as a result of the noise,
comparison with the pseudomodes with small Reλ and Imλ near ±1 strongly suggests
that these play a crucial role in the dynamics.

5. Discussion

The main conclusion of the paper is as follows. In the translating shear flow (2.1) or
equivalently the steady two-dimensional flow (−u, α sinx), the decay rate of a passive
scalar can be arranged to be O(1) in the small diffusivity limit κ → 0 by a suitable
choice of u. Specifically, taking u = O(κ1/2) gives a decay rate

Re λ ∼ f(w), (5.1)

where f(w) is an O(1) function given by either by the first term in (3.5) or by (3.13)
depending on whether w = u/κ1/2 is smaller or larger than w∗ = 1.0787 · · · .

This conclusion has been reached by considering a single Fourier mode l 6= 0 in the
y-direction, but it is easily verified that it implies that a suitable choice of u leads to an
O(1) decay rate of all the non-zero Fourier modes, and therefore to the fast decay of any
concentration distribution with zero y-average. To see this, we return to the unscaled
variables λ, u and κ used in (2.1)–(2.2), and rewrite (5.1) as

L

α
Re λ ∼ nf

(

n−1/2w
)

, where w =
L1/2u

(ακ)1/2

and n = 1, 2, · · · characterises the Fourier mode. Choosing u such that w = w∗ means
that f(·) is defined by the first term in (3.5) and hence that

L

α
Reλ ∼

w2
∗

4
for n = 1, 2, · · ·

as κ → 0. Thus all the non-zero Fourier modes have asymptotically the same decay rate.
(In fact, the O(κ1/2) correction in (3.5) adds a term proportional to nκ1/2 to the decay
rate, so that the higher modes n > 1 experience faster decay.)
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Our results also indicate that the non-zero limit of the decay rate as κ → 0 is fragile,
as might be expected from the non-normality of the governing eigenvalue problem. This
is quantified by showing that the decay rate decreases to 0 like κ2/5 in the presence of
a small noise, and explained in terms of pseudomodes. We note that the pseudomodal
behaviour may be relevant to the situation recently examined by Vanneste (2006) where
the shear flow translates randomly in time rather than steadily.

The authors thank S. J. Cowley and L. N. Trefethen for useful suggestions. J.V. is
funded by a NERC Advanced Research Fellowship.
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