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1 Introduction

The propagation of waves in inhomogeneous conservative media is, in some

circumstances, governed by a relatively simple equation describing the trans-

port in the position–wavevector phase space (x,k) of a scalar energy density

a(x,k, t). Transport equations of this type are obtained for waves in me-

dia whose deterministic properties vary slowly compared to the typical wave-

lengths, and they can include the scattering effect of random perturbations of

the medium. If ε � 1 characterises the scale separation between the medium

and the waves, and if the random perturbations have an O(ε1/2) amplitude

and spatial scales comparable to the wavelengths, then transport equations of

the form

∂ta(x,k, t) + ∇ � ω(x,k) · ∇ � a(x,k, t) −∇ � ω(x,k) · ∇ � a(x,k, t)

=
∫

σ(x,k,k′)a(x,k′, t) dk′ − Σ(x,k)a(x,k, t) (1.1)

are obtained at leading-order in ε. Here, ω is the frequency, σ is the differential

scattering cross-section, i.e, the rate at which wave energy with wavevector k′

is converted to wavevector k, and

Σ(x,k) =
∫

σ(x,k′,k) dk′

is the total scattering cross-section. Equation (1.1) is valid when the disper-

sion relation relating frequency ω to k is single valued. When it has several

branches, i.e. when several wave modes coexist, their propagation is governed

by a set of transport equations similar to (1.1) coupled by the scattering terms

on the right-hand side. The degeneracies in the dispersion relation that are

associated with polarised waves lead to a further complication, with addi-

tional transport equations describing the evolution of the polarisation state.

The validity of (1.1) also requires that the random perturbations be not too
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strongly anisotropic: for highly anisotropic perturbations, and in particular for

one-dimensional perturbations, localization effects prevent wave propagation

[e.g. 1, 6].

Transport equations of the form (1.1) or its generalisations have been derived

for many different types of waves using a variety of (essentially equivalent)

techniques. In view of the common features of these derivations, it is of in-

terest to consider more general theories which provide transport equations for

large classes of systems. Ryzhik, Papanicolaou & Keller [10] developed such

a general theory for a class of symmetric hyperbolic systems, and they pre-

sented applications to several systems. We refer the reader to that paper for

further background on transport equations, for details of applications, and for

references.

Ryzhik et al. [10] used a powerful formalism, based on the Wigner func-

tion, which lends itself naturally to further generalisations. Guo & Wang

[3] extended their results by considering vector Schrödinger equations of the

form i∂tu = H(x, ∂ � )u, where H(x, ∂ � ) is a pseudodifferential operator. The

present paper continues this generalisation effort and derives transport equa-

tions for waves in systems governed by pseudodifferential equations of the

form

∂tu = J(x, ∂ � )H(x, ∂ � )u, (1.2)

where J and H are, respectively, skew-adjoint and self-adjoint pseudodiffer-

ential (matrix) operators. This is the most general form for linear systems

conserving an energy-like quadratic quantity, here

H =
1

2

∫

u∗H(x, ∂ � )udx, (1.3)
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with a non-degenerate H(x, ∂ � ). Written as

∂tu = J(x, ∂ � )
δH

δu∗
, (1.4)

(1.2) is recognised as a general linear non-canonical Hamiltonian (or Poisson)

system. In particular, for canonical Hamiltonian systems, u is real and J is

given by the canonical 2n× 2n symplectic matrix

J =















0 −I

I 0















,

where I is the n-dimensional identity matrix, while for (conservative) Schrödinger

equations J = −iI.

We emphasise that linear Poisson systems of the form (1.2) emerge naturally

from nonlinear Poisson systems given by

∂tv = J (v, ∂ � )
δE

δv
, (1.5)

where J is a skew-adjoint operator which may depend on (pseudodifferentials

of) v and satisfies a Jacobi identity, and E a functional of v [e.g. 8, Chapter

6]. This is obvious when the linearisation is about v = 0, but perhaps less so

when it is about a nontrivial equilibrium v = V (x). In the latter case, the

equilibrium condition is crucial in ensuring that

J (V , ∂ � )
δE

δv

∣

∣

∣

∣

∣ �
= � ( � )

= 0.

In turn, this ensures that δE/δv = 0 for v = V (x) or, if J is degenerate,

that a (Casimir) functional C(v) satisfying J (v, ∂ � )δC/δv = 0 for all v can
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be found such that

δ(E + C)

δv

∣

∣

∣

∣

∣ �
= � ( � )

= 0. (1.6)

Introducing the expansion v = V + u into (1.5), linearising for u and taking

(1.6) into account leads to a system of the form (1.2), with

J(x, ∂ � ) = J (V (x), ∂ � ) and H(x, ∂ � ) =
δ2(E + C)

δv2

∣

∣

∣

∣

∣ �
= � ( � )

(1.7)

[see, e.g., 7, for details]. The conserved quadratic invariant H in (1.3) associ-

ated with the operator H(x, ∂ � ) constructed in this way is sometimes referred

to as pseudoenergy; here we follow another standard usage and term it wave

energy.

We emphasise the construction (1.5)–(1.7) because it provides a important

route leading to conservative linear systems of the form (1.2) with spatially

dependent coefficients. In particular, since the equations governing the dy-

namics of inviscid fluids are naturally cast in the Poisson form (1.5) [7], the

propagation of waves in shear flows can be conveniently studied within the

formalism of the present paper.

The plan of this paper is as follows. The detailed structure of the Hamiltonian

linear systems considered is described in section 2: the scaling assumptions are

specified, and the relevant expansion of (1.2) in powers of the small parameter

ε is given. Particular attention is paid to the manner in which the Hamiltonian

structure of (1.2) is reflected in the terms of this expansion. The correlation

tensors which define the random perturbation are also defined in section 2.

Section 3 provides the definition of the Wigner matrix, and the derivation

of an evolution equation for this matrix. A multiple-scale expansion of this

equation leads to the desired transport equations; this is described in section
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4. The reader not interested in derivation details can skip most of section 4:

subsection 4.1 provides all the definitions needed to use the complete form

of the transport equations and scattering cross-sections which are given by

(4.25)–(4.27). The application to Rossby waves is treated in section 5. The

paper concludes with a Discussion in section 6. Details of the (sometimes

lengthy) derivations are given in an Appendix.

2 Formulation

We consider evolution equations of the form (1.2) for a n-dimensional com-

plex variable u(x, t), with x ∈
� d. In this expression, the operators J(x, ∂ � )

and H(x, ∂ � ) are the pseudodifferential operators associated with the corre-

sponding n× n matrices J(x, ik) and H(x, ik). We use the standard (Kohn–

Nirenberg) correspondence in which the differentiations are on the right of the

x-dependence. Thus, for instance,

H(x, ∂ � )u(x, t) =
∫

H(x, ik)û(k, t)ei
�
· �

dk,

where û(k, t) denotes the Fourier transform of u(x, t), with

u(x, t) =
∫

û(k, t)ei
�
· �

dk and û(k, t) =
1

(2π)d

∫

u(x, t)e−i
�
· �

dx.

We have chosen this interpretation of pseudodifferential operators rather than

the Weyl correspondence chosen by Guo & Wang [3] for its simplicity, even

though it makes our derivation of the transport equation somewhat less el-

egant; it is straightforward, if sometimes cumbersome, to translate between

the two interpretations [see, e.g., 2]. With the assumption that J(x, ∂ � ) and

H(x, ∂ � ) are, respectively, skew-adjoint and self-adjoint, the conservation of

the wave energy (1.3) is readily established.
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Our interest is in wave-like solutions to (1.2) with wavelengths much shorter

than the typical scale of deterministic variations of J and H. To make this

explicit, we introduce the scale-separation parameter ε � 1 and, redefining

time and space variables according t 7→ t/ε and x 7→ x/ε, we rewrite (1.2) in

terms of slow variables as

ε∂tu = J(x, ε∂ � )H(x, ε∂ � )u. (2.1)

In addition to the O(1) slowly-varying contribution to J and H indicated in

(2.1), we consider a second contribution that is random with zero average

and varies over the spatial scale of the waves x/ε. The distinguished limit in

which this random contribution has an effect comparable to that of the slow

variations of J and H is achieved when the amplitude of the random pertur-

bation scales like ε1/2 [cf. 10]. We adopt this scaling here and, correspondingly,

expand J and H according to

J(x, ik) =J0(x, ik) + ε1/2J1/2(x/ε, ik) + εJ1(x, ik) + · · · (2.2)

and H(x, ik) =H0(x, ik) + ε1/2H1/2(x/ε, ik) + εH1(x, ik) + · · · , (2.3)

where J1/2 and H1/2 are zero-average random matrices. For simplicity we have

assumed here that J1/2 and H1/2 depend on space only through x/ε; an ad-

ditional, slow dependence on x could in fact be included without significant

changes. We note that the (deterministic) O(ε) terms J1 and H1 appear auto-

matically when J and H are expanded; these terms are crucial, in particular to

ensure wave-energy conservation, and they are related to J0 and H0. Indeed,

the self-adjointess of H and skew-adjointness of J imply at leading order that

H0(x, ik) = H∗

0 (x, ik) and J0(x, ik) = −J∗

0 (x, ik),

where ∗ denotes the Hermitian adjoint, and at O(ε) that
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H1(x, ik) −H∗

1 (x, ik)=−i∇ � · ∇ � H0(x, ik) (2.4)

and J1(x, ik) + J∗

1 (x, ik)=−i∇ � · ∇ � J0(x, ik). (2.5)

The last two equalities determine the skew-adjoint and self-adjoint parts of

H1 and J1, respectively [cf. 15].

The transport equations to be derived turn out to depend on the random

operators J1/2 and H1/2 only through their correlation tensors, which we now

define. Denoting by

Ĵ1/2(l,k) =
1

(2π)d

∫

J1/2(ξ, ik)e−i � · � dξ

the Fourier transform of J1/2(x/ε, ik) with respect to its first argument, and

similarly for H1/2, we define the correlation 4-tensors J, H and K by

〈Ĵαβ
1/2(l,k + m)Ĵγδ

1/2(m,n)〉=−J
αβγδ(l,k,n)δ(l + m) (2.6)

〈Ĥαβ
1/2(l,k + m)Ĥγδ

1/2(m,n)〉= H
αβγδ(l,k,n)δ(l + m) (2.7)

〈Ĵαβ
1/2(l,k + m)Ĥγδ

1/2(m,n)〉= K
αβγδ(l,k,n)δ(l + m), (2.8)

where 〈·〉 denotes ensemble average and α, β, γ, δ = 1, 2, · · · , n denote the

components. We have here assumed that J1/2 and H1/2 are statistically homo-

geneous, hence the presence of the Dirac distributions on the right-hand sides.

For future reference, we note that the skew-adjointness and self-adjointness of

J1/2 and H1/2 imply that

Ĵ∗

1/2(l,k) = −Ĵ1/2(−l,k + l) and Ĥ∗

1/2(l,k) = Ĥ1/2(−l,k + l). (2.9)

Simple manipulations then show that

J
αβγδ∗(l,k,n) = J

δγβα(l,n,k), H
αβγδ∗(l,k,n) = H

δγβα(l,n,k),

and K
αβγδ∗(l,k,n) = −K

βαδγ(−l,k − l,n − l). (2.10)
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3 Wigner matrix

Following Ryzhik et al. [10], we define the n × n (Hermitian) Wigner matrix

associated with u(x, t) by

Wε(x,k, t) =
1

(2π)d

∫

u(x − εy/2, t)u∗(x + εy/2, t)ei
�
· � dy, (3.1)

and we note the dual expression

Wε(x,k, t) =
1

εd

∫

û(k/ε + l/2, t)û∗(k/ε− l/2, t) ei � · �
dl (3.2)

in terms of the Fourier transform û of u. It is useful to relate the conserved

wave energy H given by (1.3) to the Wigner matrix; a short calculation detailed

in Appendix A.1 gives

H =
1

2
Tr
∫∫

H(x, ik + ε∂ � /2)Wε(x,k, t) dxdk, (3.3)

where Tr denotes the trace.

Let us now derive an evolution equation for the Wigner matrix. From (2.1)

and (3.1), we have

ε∂tWε = S0 + ε1/2S1/2 + εS1 + · · · , (3.4)

where the terms on the right-hand side can be written as

Sp =
1

(2π)d

∫

[u(x − εy/2, t) (Lpu)∗ (x + εy/2, t) (3.5)

+ (Lpu) (x − εy/2, t)u(x + εy/2, t)] ei
�
· � dy, (3.6)

for p = 0, 1/2, 1. Here, the pseudodifferential operators Lp = Lp(x±εy/2, ε∂ � )

are defined by the corresponding matrices
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L0(x, ik) = J0(x, ik)H0(x, ik), L1/2(x, ik) = J0(x, ik)H1/2(x/ε, ik) + J1/2(x/ε, ik)H0(x, ik),

and L1(x, ik) = J0(x, ik)H1(x, ik) + J1(x, ik)H0(x, ik) + J1/2(x/ε, ik)H1/2(x/ε, ik).

Note that although the matrix L0 is independent of ε, the term S0 is not, as a

result of the ε dependence of the arguments x± εy/2. Furthermore, L1/2 and

L1 depend on ε through the argument x/ε of J1/2 and H1/2.

To reduce (3.4) to a closed equation for the Wigner matrix, we use the Fourier

transforms of the matrices Lp, defined by

L̂p(l,k) =
1

(2π)d

∫

Lp(x, ik)e−i � · �
dx.

Introducing this transform into (3.6) along with the Fourier transforms of

u(x ± εy/2, t) leads, on using (3.2), to

Sp =
1

(2π)d

∫∫∫

[

Wε(y,k − εl/2, t)L̂∗

p(l,k − εl/2 − εm/2) (3.7)

+L̂p(−l,k + εl/2 + εm/2)Wε(y,k + εl/2, t)
]

ei[ � ·( � − � )− � · � ] dydldm.

It is now straightforward, if tedious, to expand Sp in powers of ε. Expanding

S0 yields

S0 = Q00Wε(x,k, t) + εQ01Wε(x,k, t) +O(ε2), (3.8)

where

Q00W =WL∗

0 + L0W,

Q01W =
i

2
[∇ � W · ∇ � L∗

0 −∇ � W · ∇ � L∗

0 −W∇ � · ∇ � L∗

0]

−
i

2
[∇ � L0 · ∇ � W −∇ � L0 · ∇ � W −∇ � · ∇ � L0W ] ,

for any W = W (x,k, t). In the expansion

S1/2 = Q1/2,0Wε(x,k, t) +O(ε), (3.9)
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of S1/2, Q1/2,0 is given by

Q1/2,0W = 2d
∫

[W (x,k + l, t)V ∗(x,−2l,k + l) + V (x, 2l,k − l)W (x,k − l, t)] e2i � · � /ε dl,

where we have introduced the matrix

V (x, l,k) = Ĵ1/2(l,k)H0(x, ik) + J0(x, ik + il)Ĥ1/2(l,k). (3.10)

To obtain this result, the scaling relating the Fourier transform with respect

to x (involved in the definition of L̂p) to the Fourier transform with respect to

x/ε (involved in the definition of Ĵ1/2 and Ĥ1/2) must be taken into account.

Finally, we have

S1 = Q10Wε(x,k, t) +O(ε), (3.11)

where

Q10W =W [J1(x, ik)H0(x, ik) + J0(x, ik)H1(x, ik)]∗

+ [J1(x, ik)H0(x, ik) + J0(x, ik)H1(x, ik)]W

+ 4d
∫∫

{

W (x,k + l + m, t)
[

Ĵ1/2(−2m,k − l + m)Ĥ1/2(−2l,k + l + m)
]∗

+
[

Ĵ1/2(2m,k + l − m)Ĥ1/2(2l,k − l − m)
]

W (x,k − l − m, t)
}

e2i( � + � )· � /ε dldm.

Together with (3.8)–(3.11), (3.4) provides a closed evolution equation for the

Wigner matrix Wε(x,k, t), accurate to O(ε), which can be solved perturba-

tively. Because the random terms in S1/2 and S1 depend on x/ε, this requires

to use a multiple-scale method. We describe the multiple-scale calculations,

which lead to transport equations, in the next section.
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4 Derivation of the transport equations

We expand the Wigner matrix according to

Wε(x,k, t) = W0(x,k, t) + ε1/2W1/2(x, ξ,k, t) + εW1(x, ξ,k, t) +O(ε3/2).(4.1)

Here, we have introduced the fast spatial variable ξ = x/ε, and we have an-

ticipated the fact that the (deterministic) leading-order approximation W0 to

Wε is independent of ξ. When applied to differential operators, the multiple-

scale method is efficiently implemented using the substitution ∂ � 7→ ∂ � +ε−1∂ �

which follows from the chain rule [e.g. 4]. The analogous substitution for pseu-

dodifferential operators is conveniently carried out in the Fourier representa-

tion. If an operator Q(∂ � ) is given by

Q(∂ � )u(x) =
1

(2π)d

∫∫

Q(im)u(y)ei � ·( � − � ) dydm

when acting on u(x), its multiple-scale version, which we will denote by a

tilde for clarity, acts on u(x, ξ) and is given by

Q̃(∂ � + ε−1∂ � )u(x, ξ) =
1

(2π)2d

∫∫∫∫

Q(im + in/ε)u(y,η)ei[ � ·( � − � )+ 	 ·( � − 
 )] dydmdηdn.

This provides a simple rule to compute the multiple-scale versions of Sp in

(3.7) and, by expansion in powers of ε, of the operators Q̃pq.

Introducing (4.1) into (3.4) leads to a sequence of equations for the Wigner

matrices Wp, p = 0, 1/2, 1, · · ·. We now detail each of these equations, up to

that for W1 whose solvability conditions yield transport equations of the form

(1.1).
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4.1 O(1) equation

At leading order, we find that

Q00W0(x,k, t) = 0. (4.2)

To solve this equation, we consider the eigenvalues −iω(s)(x,k) and (right)

eigenvectors e(s)(x,k) of L0(x,k). These satisfy

L0(x,k)e(s)(x,k) = −iω(s)(x,k)e(s)(x,k), s = 1, 2, · · · , n (4.3)

and respectively define the dispersion relation and polarisation relations for

waves propagating in the system (2.1). The sign convention for the frequencies

is the usual one: seeking approximate solutions to the leading-order approxi-

mation

ε∂tu = J0(x, ∂ � )H0(x, ∂ � )u

of (2.1) in the WKB form

u(x, t) ∝ eiϑ( � ,t)/ε e

leads to the eigenvalue problem (4.3), with the usual relations

k = ∇ � ϑ and ω = −∂tϑ.

We assume (i) that the frequencies ω(s)(x,k) are all real, and (ii) that they

all have multiplicity one. The first assumption, which amounts to the linear

stability of the system, is satisfied in particular if H0(x, ik) is sign definite; the

second assumption excludes polarised waves. We now review some properties
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of the eigenvalue problem (4.3) which will be needed in what follows. The left

eigenvectors ê(s)(x,k) of L0(x,k), which satisfy

L∗

0(x,k)ê(s)(x,k) = iω(s)(x,k)ê(s)(x,k), (4.4)

can be related to the right eigenvectors according to

ê(s)(x,k) = H0(x, ik)e(s)(x,k). (4.5)

The relationship

ê∗

(s)(x,k)J0(x, ik) = −iω(s)(x,k)e∗

(s)(x,k) (4.6)

follows readily. We choose to normalise the eigenvectors so that the orthogo-

nality between left and right eigenvectors read

ê∗

(s)(x,k)e(t)(x,k) = δts. (4.7)

With this normalisation, the n-dimensional identity matrix has the expansion

I =
∑

s

e(s)(x,k)ê∗

(s)(x,k). (4.8)

Returning to (4.2), we note that the null space of Q00 is spanned by the

matrices e(s)(x,k)e∗

(s)(x,k). Thus, the solution of (4.2) takes the general form

W0(x,k, t) =
∑

s

a(s)(x,k, t)e(s)(x,k)e∗

(s)(x,k). (4.9)

for some amplitudes a(s)(x,k, t). These amplitudes, whose transport equations

we seek to derive, can be interpreted as the wave-energy density of mode s in

the (x,k) phase space. Indeed, introducing (4.1) into (3.3) and taking (4.7)
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and (4.9) into account gives the approximation for the wave energy

H =
1

2

∑

s

∫∫

a(s)(x,k, t) dxdk +O(ε1/2). (4.10)

4.2 O(ε1/2) equation

At O(ε1/2), the evolution equation (3.4) for the Wigner matrix gives

Q̃00W1/2(x, ξ,k, t) +Q1/2,0W0(x,k, t) = 0, (4.11)

where

Q̃00W1/2(x, ξ,k, t)=
1

(2π)d

∫∫

[

W1/2(x,η,k, t)L
∗

0(x,k − n/2)

+ L0(x,k + n/2)W1/2(x,η,k, t)
]

ei 	 ·( � − 
 ) dηdn.

To solve this equation, we define the n× n matrix F (x,m,k, t) by

W1/2(x, ξ,k, t) =
∫

F (x,m/2,k, t)ei � · � dm,

and introduce this expression into (4.11) to find that

F (x, l,k, t)L∗

0(x,k − l) + L0(x,k + l)F (x, l,k, t)

=− [W0(x,k + l, t)V ∗(x,−2l,k + l) + V (x, 2l,k − l)W0(x,k − l, t)] .(4.12)

We then expand F according to

F (x, l,k, t) =
∑

s,t

P(s,t)(x, l,k, t)e(s)(x,k + l)e∗

(t)(x,k − l), (4.13)

where the scalar coefficients P(s,t) remain to be determined. This is achieved by

introducing the expansion (4.13) into (4.12), left-multiplying by ê∗

(s)(x,k + l)

and right-multiplying by ê(t)(x,k− l). Calculations detailed in Appendix A.2

yield the result
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i
[

ω(s)(x,k + l) − ω(t)(x,k − l)
]

P(s,t)(x, l,k, t)

=−[a(s)(x,k + l, t) − a(t)(x,k − l, t)]ê∗

(s)(x,k + l)Ĵ1/2(2l,k − l)ê(t)(x,k − l)

+ i[ω(t)(x,k − l)a(s)(x,k + l, t) − ω(s)(x,k + l)a(t)(x,k − l, t)]

×e∗

(s)(x,k + l)Ĥ1/2(2l,k − l)e(t)(x,k − l) (4.14)

which completes the determination of W1/2.

4.3 O(ε) equation

The O(ε) equation for the Wigner matrix reads

∂tW0(x,k, t) = Q̃00W1(x, ξ,k, t) + (Q01 +Q10)W0(x,k, t) + Q̃1/2,0W1/2(x, ξ,k, t),(4.15)

where

Q̃1/2,0W1/2(x, ξ,k, t) =
(

2

π

)d ∫∫∫
[

W1/2(x,η,k + l, t)V ∗(x,−2l,k + l − m)

+ V (x, 2l,k − l + m)W1/2(x,η,k − l, t)
]

e2i[ � ·( � − 
 )+ � · � ] dηdldm

=2d
∫∫

[F (x,m,k + l, t)V ∗(x,−2l,k + l − m)

+V (x, 2l,k − l + m)F (x,m,k − l, t)] e2i( � + � )· � dldm.

The transport equations are deduced as solvability conditions for (4.15). We

first average this equation and note that

〈Q̃00W1(x, ξ,k, t)〉 = Q̃00〈W1(x, ξ,k, t)〉 = Q00〈W1(x, ξ,k, t)〉,

since Q̃00 is deterministic. The solvability conditions follow by left- and right-

multiplying by ê∗

(s)(x,k) and ê(s)(x,k), respectively, for s = 1, 2, · · · , n. This

cancels the first term on the right-hand side of (4.15), leading to

∂ta(s)(x,k, t) = ê∗

(s)(x,k)
[

(Q01 + 〈Q10〉)W0(x,k, t) + 〈Q̃1/2,0W1/2(x, ξ,k, t)〉
]

ê(s)(x,k)(4.16)
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after using (4.7) and (4.9). Because W1/2 can be expressed in terms of W0 and

hence of a(s)(x,k, t), these n equations are closed and, when simplified, provide

the sought transport equations. The simplification starts by considering the

deterministic terms, which are obtained by setting J1/2 = H1/2 = 0; in this

case, Q1/2,0 vanishes and Q10 simplifies. We show in Appendix A.3 that (4.16)

then reduces to transport equations of the Liouville form

∂ta(s)(x,k, t) + ∇ � ω(x,k) · ∇ � a(s)(x,k, t) −∇ � ω(x,k) · ∇ � a(s)(x,k, t) = 0.(4.17)

We now turn to the random contributions to (4.16). We write the last term as

ê∗

(s)(x,k)〈Q̃1/2,0W1/2(x, ξ,k, t)〉ê(s)(x,k)

= 2dê∗

(s)(x,k)〈
∫∫

V (2l,k − l + m)F (x,m,k − l, t)e2i( � + � )· � dldm〉ê(s)(x,k) + c.c.

= IJ + IH + IK + c.c.., (4.18)

where c.c. denotes the complex conjugate of the previous terms. In the last

line of (4.18), we have separated three contributions involving, respectively,

products of the form Ĵ1/2 ⊗ Ĵ1/2, Ĥ1/2 ⊗ Ĥ1/2, and Ĵ1/2 ⊗ Ĥ1/2; thus, in terms

of the correlation tensors defined in (2.6)-(2.8), IJ involves J, IH involves H,

and IK involves K. We detail in Appendix A.4 the derivation of each of these

terms. The first is found to be

IJ = 2π
∑

t

∫

ΞJ

(s,t)(x, l,k)δ
[

ω(t)(x,k − l) − ω(s)(x,k)
]

×
[

a(t)(x,k − l, t) − a(s)(x,k, t)
]

dl, (4.19)

where

ΞJ

(s,t)(x, l,k) = J
αβγδ(l,k,k)êα∗

(s)(x,k)êβ
(t)(x,k − l)êγ∗

(t)(x,k − l)êδ
(s)(x,k)(4.20)

and a summation over the repeated superscripts is understood. The second

term is given by
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IH =2πω2
(s)(x,k)

∑

t

∫

ΞH

(s,t)(x, l,k)δ
[

ω(t)(x,k − l) − ω(s)(x,k)
]

×
[

a(t)(x,k − l, t) − a(s)(x,k, t)
]

dl, (4.21)

where

ΞH

(s,t)(x, l,k) = H
αβγδ(l,k,k)eα∗

(s)(x,k)eβ
(t)(x,k − l)eγ∗

(t)(x,k − l)eδ
(s)(x,k).(4.22)

Finally, the third term is given by

IK =2πω(s)(x,k)
∑

t

∫

ΞK

(s,t)(x, l,k)δ
[

ω(t)(x,k − l) − ω(s)(x,k)
]

×
[

a(t)(x,k − l, t) − a(s)(x,k, t)
]

dl

−
[

a(s)(x,k, t)ê
α∗
(s)(x,k)eδ

(s)(x,k)
∫

K
αββδ(l,k,k) dl + c.c.

]

, (4.23)

where

ΞK

(s,t)(x, l,k) = i
[

K
αβγδ(l,k,k)êα∗

(s)(x,k)êβ
(t)(x,k − l)eγ∗

(t)(x,k − l)eδ
(s)(x,k) (4.24)

+ K
γδαβ(−l,k − l,k − l)eα∗

(s)(x,k)eβ
(t)(x,k − l)êγ∗

(t)(x,k − l)êδ
(s)(x,k)

]

is real.

There is a further random contribution in (4.15), namely that stemming from

the random term in Q10W0. This contribution is given by

4d ê∗

(s)(x,k)
∫∫

{

W0(x,k + l + m, t)〈Ĵ1/2(−2m,k − l + m)Ĥ1/2(−2l,k + l + m)〉∗

+ 〈Ĵ1/2(2m,k + l − m)Ĥ1/2(2l,k − l − m)〉W0(x,k − l − m, t)
}

e2i( � + � )· � dldm ê(s)(x,k).

Taking (2.8) into account, this term can be shown to be identical, up to the

sign, to the second line in the expression (4.23) of IK. Therefore, combining

(4.19)–(4.24) and letting k′ = k − l leads to the transport equations of the

form

∂ta(s)(x,k, t) + ∇ � ω(x,k) · ∇ � a(s)(x,k, t) −∇ � ω(x,k) · ∇ � a(s)(x,k, t)
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=
∑

t

∫

σ(s,t)(x,k,k
′)a(t)(x,k

′, t)dk′ − Σ(s)a(s)(x,k, t). (4.25)

The differential scattering cross-section is found to be given by

σ(s,t)(x,k,k
′) = 2πδ

[

ω(t)(x,k
′) − ω(s)(x,k)

]

×
[

ω2
(s)(x,k)Hαβγδ(k − k′,k,k)eα∗

(s)(x,k)eβ
(t)(x,k

′)eγ∗
(t)(x,k

′)eδ
(s)(x,k)

+J
αβγδ(k − k′,k,k)êα∗

(s)(x,k)êβ
(t)(x,k

′)êγ∗
(t)(x,k

′)êδ
(s)(x,k) (4.26)

+iω(s)(x,k)Kαβγδ(k − k′,k,k)êα∗
(s)(x,k)êβ

(t)(x,k
′)eγ∗

(t)(x,k
′)eδ

(s)(x,k)

+iω(s)(x,k)Kγδαβ(k′ − k,k′,k′)eα∗
(s)(x,k)eβ

(t)(x,k
′)êγ∗

(t)(x,k
′)êδ

(s)(x,k)
]

and is real and non-negative. The total scattering cross section is

Σ(s) =
∑

t

∫

σ(s,t)(x,k,k
′) dk′. (4.27)

From the definitions (2.6)–(2.8) particularized to the case n = k, it can be

shown that

H
αβγδ(k − k′,k,k) = H

γδαβ(k′ − k,k′,k′),

with similar properties for the tensors J and H. This implies the symmetry

property

σ(s,t)(x,k,k
′) = σ(t,s)(x,k

′,k)

which ensures energy conservation.

The transport equations (4.25), together with the explicit expressions (4.26)

and (4.27) for the differential and total scattering cross-sections, are the main

results of this paper. They generalise the results of Ryzhik et al. [10] and

of Guo & Wang [3] (in the conservative case) to the large class of randomly

perturbed linear Hamiltonian systems of the form (1.2). With these results,

the derivation of transport equations for particular systems is reduced to the
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straightforward, algorithmic computation of the left and right eigenvectors

ê(s)(x, t) and e(s)(x, t) and of their products with the correlation 4-tensors

defined in (2.6)–(2.8). This is illustrated in the next section where we obtain

transport equations for a type of waves of importance in geophysical fluid

dynamics, namely Rossby waves.

5 Application to Rossby waves

Rossby waves are planetary-scale waves which propagate in the atmosphere

and oceans as a result of the earth’s rotation and curvature. In the last ten

years or so, the satellite observation of oceanic Rossby waves has stimulated

numerous works, several of which consider the interaction between Rossby

waves and the bottom topography, sometimes modelled as a random function

[see, e.g., 9, 5, 14, and references therein]. Scaling hypotheses of various kinds

have been used to examine this interaction asymptotically, but not, as far

as we are aware, the scattering scaling considered in the present paper. Here

we apply the results of section 4 to obtain a transport equation for Rossby

waves over a random two-dimensional topography. Since one of the aspects of

physical interest is the way in which topography affects the vertical structure

of the waves, we consider the simplest model in which the vertical structure

is represented, namely the two-layer quasi-geostrophic model [e.g. 11, section

12].

5.1 Equations of motion

With x ∈
� 2, the natural dynamical variables for the two-layer quasi-geostrophic

model are q1(x, t) and q2(x, t), the potential-vorticity perturbations in the top
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and bottom layers, respectively. These are related to the streamfunctions of

each layer according to

q1 =∇2ψ1 − F1(ψ1 − ψ2), (5.1)

q2 =∇2ψ2 − F2(ψ2 − ψ1). (5.2)

In these expressions,

F1 =
f 2

g′D1
and F2 =

f 2

g′D2
,

where f is the mean Coriolis parameter, D1 and D2 are the layer depths, and

g′ = g(ρ2−ρ1)/ρ2 is the so-called reduced gravity (with g the gravity constant

and ρ1, ρ2 the density of each layer). The linear evolution equations for q1 and

q2 are

∂tq1 + β∂x1ψ1 = 0, (5.3)

∂tq2 + β∂x1ψ2 −
f

D2

∇h×∇ψ2 = 0, (5.4)

where β is the North–South gradient of the Coriolis parameter, h(x) is the

topography height, and × denotes the cross product in two dimensions (i.e.,

a × b = a1b2 − a2b1).

The Hamiltonian form of (5.3)–(5.4) is found by linearising the Poisson struc-

ture (1.5) of the corresponding nonlinear equation. This structure is given

by

E = −
1

2

∫

(D1ψ1q1 +D2ψ2q2) dx, (5.5)

and

J =















−D−1
1 ∂(q1 + βx2, ·) 0

0 −D−1
2 ∂(q2 + βx2 + fh/D2, ·)















, (5.6)
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where we have introduced the Jacobian operator ∂(a, b) = ∇a × ∇b [cf. 12].

Since the Hamiltonian is quadratic, the linearisation is immediate, and the

operators H and J follow. The form of H is derived from (5.5) by noting that

H(x, ∂ � )















q1

q2















=















δE/δq1

δE/δq2















= −















D1ψ1

D2ψ2















. (5.7)

Using (5.1)–(5.2), the corresponding matrix is written as

H(x, ik) =
1

D















D2
1K

−2 +D1D2L
−2 D1D2(K

−2 − L−2)

D1D2(K
−2 − L−2) D2

2K
−2 +D1D2L

−2















, (5.8)

where we have defined

D = D1 +D2, k = (k1, k2), K2 = k2
1 + k2

2, and L2 = K2 + F1 + F2.

The matrix form of J is directly derived from (5.6) as

J(x, ik) =















ik1β/D1 0

0 ik1β/D2 − if∇h(x) × k/D2
2















. (5.9)

Taking (5.7)–(5.9) into account, it is clear that the linear equations of motion

(5.3)–(5.4) have the Hamiltonian form (1.2).

5.2 Scattering by topography

We consider a small-amplitude random topography h(x). Rescaling h(x) by

ε1/2, we find that the only non-zero matrices in the expansions (2.2)–(2.3) of
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J and H to O(ε) are

J0(ik) =















ik1β/D1 0

0 ik1β/D2















, J1/2(ξ, ik) =















0 0

0 if∇h(ξ) × k/D2
2















,

and H0 = H given in (5.8). Taking the Fourier transform of J1/2 with respect

to ξ, and denoting the power spectrum of h(ξ) by R(l), with

〈ĥ(l)ĥ(m)〉 = R(l)δ(l + m),

we compute the only non-zero entry of the correlation 4-tensor (2.6) as

J
2222(l,k,n) = (l × k)(l × n)f 2R(l)/D4

2.

We now have all the elements needed to derive transport equations for Rossby

waves. Solving the eigenvalue problem (4.3) with (5.8)–(5.9) gives the two

frequencies

ω(1) = −βk1/K
2 and ω(2) = −βk1/L

2, (5.10)

which can be recognised as the frequencies of barotropic and baroclinic Rossby

waves, respectively [e.g. 11]. The corresponding right and left eigenvectors,

suitably normalised, are

e(1) =
K

D1/2















1

1















, ê(1) =
1

KD1/2















D1

D2















,

e(2) =
L

(DD1D2)1/2















D2

−D1















, ê(2) =
(D1D2)

1/2

LD1/2















1

−1















.
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With these results, a straightforward computation provides the scattering sec-

tions defined in (4.26) in the form

σ(k,k′) =
2πf 2

D2
(k × k′)2R(k − k′) (5.11)

×















(KK ′)−2δ(ω(1)(k) − ω(1)(k
′)) (D1/D2)(KL

′)−2δ(ω(1)(k) − ω(2)(k
′))

(D1/D2)(LK
′)−2δ(ω(2)(k) − ω(1)(k

′)) (D1/D2)
2(LL′)−2δ(ω(2)(k) − ω(2)(k

′))















.

Here, we have written the four elements σ(s,t), s, t = 1, 2 in matrix form;

the (1, 1) entry controls the energy transfer between barotropic waves, the

(1, 2) entry the transfer from baroclinic waves to barotropic waves, the (2, 1)

entry the transfer from barotropic to baroclinic waves, and the (2, 2) entry the

transfer between baroclinic waves. Note that σ(1,1) also gives the scattering

cross-section for Rossby waves in a single-layer quasi-geostrophic model.

5.3 Physical implications

Qualitative conclusions about the influence of topography on oceanic Rossby

waves can be drawn from the form of σ(s,t). We first note from (5.10) that the

frequency of the barotropic and baroclinic modes have different ranges:

−∞ < ω(1) <∞ and − ωmax
(2) < ω(2) < ωmax

(2) =
β

2(F1 + F2)1/2
.

As a result, the barotropic modes with |ω(1)| > ωmax
(2) do not interact with the

baroclinic modes.

Next, we estimate typical orders of magnitudes for the total cross sections

Σ(s,t)(k) =
∫

σ(s,t)(k,k
′) dk′, for s, t = 1, 2. (5.12)
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These provide (inverse) time scales for the energy transfer induced by to-

pography from barotropic/baroclinic modes to barotropic/baroclinic modes.

Changing the integration variable in (5.12), we estimate the cross section

Σ(1,1)(k) as follows:

Σ(1,1)(k) =
2πf 2

D2K2

∫

(k × k′)2

|k + k′|2
R(k′)δ(ω(1)(k) − ω(1)(k + k′)) dk′

∼
2πf 2

D2K2cg(1)(k)

∫

k2
⊥
R(k) dk⊥,

where cg(1) = |cg
(1)| denotes the magnitude of the group velocity of the barotropic

mode, and k⊥ denotes the component of k′ perpendicular to c
g
(1)(k) (i.e. along

the dispersion curve). For a topography characterised by its correlation length

γ−1 and variance 〈h2〉, this leads to the estimate

Σ(1,1)(k) ∼
2πf 2〈h2〉γ

D2K2cg(1)(k)
. (5.13)

This is a crude estimate, which neglects the strong anisotropy of Rossby waves;

it nonetheless provides a first measure of effect of topographic scattering.

Reasoning similarly, we estimate the other total cross sections as

Σ(1,2)(k) ∼
2πD1f

2〈h2〉γ

D2D2(F1 + F2)c
g
(2)(k)

, Σ(2,1)(k) ∼
2πD1f

2〈h2〉γ

D2D2(F1 + F2)c
g
(1)(k)

,

and Σ(2,2)(k) ∼
2πD2

1K
2f 2〈h2〉γ

D2
2D

2(F1 + F2)2cg(2)(k)
, (5.14)

where we have approximated L ∼ F1 + F2 as is relevant except for very short

waves. When the interface between the two fluids models the thermocline, as

is usual, D1 � D2. Thus, most of the scattering occurs between barotropic

modes, and the baroclinic modes are affected by topography mainly through

their interactions with barotropic modes. This is of course consistent with the

fact that the baroclinic modes have a weak signature in the lower layer.
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We now compute the order of magnitude of the cross sections estimated in

(5.13)–(5.14). We choose typical North-Atlantic values for the parameters

which define the two-layer quasi-geostrophic model:

D1 = 500 m, D2 = 3000 m, f = 10−4s−1,

β = 2 × 10−11 m−1s−1 and g′ = 0.02 m s−2.

This choice yields F1 = 10−9 m−2, F2 ∼ 2 × 10−10 m−2, and hence an internal

radius of deformation (F1 +F2)
−1/2 ∼ 30 km [cf. 11, section 13]. Because it as-

sumes that the topography correlation length has the same order of magnitude

as the wavelength, the transport theory of this paper best applies to moder-

ately long Rossby waves. To fix ideas, we consider waves with K = 10−5 m−1,

i.e. wavelength of 600 km or so; this is consistent with the reasonable estimate

for the topography correlation length given by γ−1 = 100 km [13]. The scaling

adopted is relevant only to regions where the topography is shallow enough to

affect the waves less than the β-effect. Specifically, the condition

f(〈h2〉)1/2γ

D2

� β (5.15)

needs to be satisfied (cf. (5.4)). This is realistic only in regions with rather

low topographic features, for which we take (〈h2〉)1/2 = 20 m, thus satisfying

(5.15) only marginally. The group velocity of Rossby waves depends strongly

on the angle between their wavevector k and the North–South direction. Here,

since we limit our discussion to order-of-magnitude considerations, we take the

crude approximation

cg(1) ∼ β/K2 ∼ 0.2 m s−1 and cg(2) ∼ β/(F1 + F2) ∼ 0.02m s−1,

for the barotropic and baroclinic mode, respectively.

26



With all these numerical values, we obtain

Σ(1,1) ∼ 10−6 s−1, Σ(1,2) ∼ 2 × 10−7 s−1, Σ(2,1) ∼ 2 × 10−8 s−1, Σ(2,2) ∼ 3 × 10−9 s−1.

This indicates a large difference in the scattering time scales between the

barotropic and baroclinic modes, with the former expected to relax much more

rapidly toward than the latter to an equilibrium distribution (see below). Also,

the scattering between baroclinic modes is essentially negligible. This is due

to two factors: the small depth ratio D1/D2 � 1, and the large group velocity

ratio cg(1)/c
g
(2) � 1.

The corresponding mean free path Σ/c, which gives the typical propagation

distance over which the effect of scattering is relevant, follows: it is of the order

of 200 km for the barotropic mode, and 1000 km for the baroclinic mode. The

fact that the mean free path for the barotropic mode is only marginally larger

than the wavelength suggests that the transport theory has only a limited

applicability for the barotropic mode, even for the small topographic height

assumed here. In contrast, there is a clear separation between wavelength and

mean free path for the baroclinic mode.

It is interesting to examine the energy densities a(1)(x,k, t) and a(2)(x,k, t)

that can be expected at equilibrium. Assuming space independence, it is easily

seen from (4.25)–(4.27) that a time-dependent solution is obtained for

a(1)(k) = φ(ω(1)(k)) and a(2)(k) = φ(ω(2)(k)) (5.16)

for some function of a single variable φ(·). Thus, viewed in the k-plane, the

energy densities for both the barotropic and baroclinic modes are constant

(and equal) along constant-frequency curves. In an initial-value situation, this

equilibrium distribution is attained after a transient adjustment stage on a
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time scale fixed by the total cross sections estimated above. The ratio of

baroclinic to barotropic energy at equilibrium is given by

r =

∫

φ(ω(2)(k)) dk
∫

φ(ω(1)(k)) dk
=

∫

φ(Ω) dΩ
∫

ω(2)=Ω

dl

cg(2)
∫

φ(Ω) dΩ
∫

ω(1)=Ω

dl

cg(1)

,

where l denotes the arclength along constant frequency curve. Remarkably, in

spite of the dispersive and anisotropic nature of the Rossby waves, this ratio

is simply unity in the baroclinic frequency range. This is because

∫

ω(1)=Ω

dl

cg(1)
=

∫

ω(2)=Ω

dl

cg(2)

(

=
πβ2

Ω3

)

,

as a simple computation shows. Thus, according to transport theory, the scat-

tering by topography leads to energy equipartition between barotropic and

baroclinic modes.

To conclude this discussion of Rossby-wave scattering, we note that the equi-

librium distribution (5.16) obtained here under the assumption of space inde-

pendence remains relevant when there are spatial variations over a scale much

larger than the mean free path. In this case, the function φ depends (slowly)

on x and t in addition to the frequency, and it obeys a diffusion equation [cf.

10]. The derivation of the corresponding anisotropic, k-dependent diffusion

tensor would be of interest.

6 Discussion

In this paper, we have extended the derivation of transport equations for

waves in randomly perturbed conservative media due to Ryzhik et al. [10] to
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the general class of linear Hamiltonian systems (1.2). The Hamiltonian nature

of the systems considered results in scattering terms that are clearly conser-

vative, unlike those of Guo & Wang [3] who treated general, non-Hamiltonian

Schrödinger equations.

Our results are limited to systems with non-degenerate dispersion relations.

In the presence of degeneracies, that is, in the presence of polarised waves,

the expansion (4.9) of the Wigner function is not complete, and additional

amplitudes capturing cross-polarisation effects must be introduced [see 10].

There should be no difficulty in extending our results in this manner to derive

transport equations for polarised waves.

We conclude by noting that, to date, the transport equations derived in gen-

eral contexts are valid for time-independent media. It would be of interest to

consider time-dependent media, with a deterministic dependence that is slow

compared to the wave periods, and (possibly) a random time dependence with

a time scale that is comparable to the wave periods. In the absence of random-

ness, transport equations of the Liouville form (4.17) can be expected but for

the density of wave action rather than wave energy. It is worth pointing out

that the transport equations will not be exact conservations as in the time-

independent case, but rather approximate conservations, expressing the adia-

batic invariance of the wave-action density. This adiabatic invariance cannot

be expected to hold for arbitrary time dependence of the operator J , however:

as work about the spatial density of wave action (as opposed to the phase-

space density considered here) indicates [15] the adiabatic invariance of wave

action is valid only for special time dependences of J such as arise when lin-

earising Hamiltonian systems near exact time-dependent solutions. Including

time-dependent random inhomogeneities will lead to scattering; unlike that

examined here, this scattering will involve waves with different frequencies,
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with scattering cross-sections that are controlled by the frequency spectrum

of the inhomogeneities.
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A Derivation details

A.1 Wave energy and Wigner matrix

Introducing the Fourier expansion of u(x, t) into (1.3) leads to

H=
1

2

∫∫∫

û∗(l, t)H(x, iεk)û(k, t)ei(
�
− � )· �

dxdkdl

=
1

2
Tr
∫∫∫

H(x, iεk)û(k, t)û∗(l, t)ei(
�
− � )· �

dxdkdl.

Changing the variables of integration and using (3.2) then gives

H=
1

2(2π)d
Tr
∫∫ ∫∫

H(x, ik + iεl/2)Wε(y,k, t)e
i � ·( � − � ) dxdydkdl

=
1

2
Tr
∫∫

H(x, ik + ε∂ � /2)Wε(x,k, t) dxdk,

A.2 Calculation of P(s,t)

We introduce (4.13) into (4.12), and left- and right-multiply by ê∗

(s)(x,k + l)

and ê(t)(x,k − l), respectively. Using (4.3), (4.7) and (4.9), we obtain

i
[

ω(s)(x,k + l) − ω(t)(x,k − l)
]

P(s,t)(x, l,k, t)

= a(s)(x,k + l, t)e∗

(s)(x,k + l)V ∗(x,−2l,k + l)ê(t)(x,k − l)
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+ a(t)(x,k − l, t)ê∗

(s)(x,k + l)V (x, 2l,k − l)e(t)(x,k − l).

Using the definition (3.10) of V , (4.5) and (4.6), this can be rewritten as

i
[

ω(s)(x,k + l) − ω(t)(x,k − l)
]

P(s,t)(x, l,k, t)

= a(s)(x,k + l, t)
[

ê∗

(s)(x,k + l)Ĵ∗

1/2(−2l,k + l)ê(t)(x,k − l)

+iω(t)(x,k − l)e∗

(s)(x,k + l)Ĥ∗

1/2(−2l,k + l)e(t)(x,k − l)
]

+ a(t)(x,k − l, t)
[

ê∗

(s)(x,k + l)Ĵ1/2(2l,k − l)ê(t)(x,k − l)

−iω(s)(x,k + l)e∗

(s)(x,k + l)Ĥ1/2(2l,k − l)e(t)(x,k − l)
]

.

This expression reduces to (4.14) on using (2.9).

A.3 Deterministic contributions to the transport equations

The deterministic terms in (4.16), namely ê∗

(s)(x,k)(Q01+Q10)W0(x,k, t)e(s)(x,k),

can in principle be simplified by introducing the form of Q10 and Q01, and the

expansion (4.9) of W0, and by making extensive use of the eigenvalue problem

(4.3) and of its consequences. The relationships (2.4)–(2.5) between J1, H1 and

J0, H0 are also crucial. Here, we circumvent most of the tedious computations

that this entails by exploiting the conservation of energy.

We first note that, in the absence of random terms, (4.16) takes the form

∂ta(s)(x,k, t) + f(s)(x,k) · ∇ � a(s)(x,k, t) − g(s)(x,k) · ∇ � a(s)(x,k, t)

=
∑

t

h(s,t)(x,k)a(t)(x,k, t), (A.1)

when (4.7) is used. Here, we have defined

f(s)(x,k) =
i

2

[

ê∗

(s)(x,k)∇ � L0(x,k)e(s)(x,k) − e∗

(s)(x,k)∇ � L∗

0(x,k)ê(s)(x,k)
]

g(s)(x,k) =
i

2

[

ê∗

(s)(x,k)∇ � L0(x,k)e(s)(x,k) − e∗

(s)(x,k)∇ � L∗

0(x,k)ê(s)(x,k)
]

,
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and we have grouped all the terms involving undifferentiated amplitudes a(t)(x,k, t)

on the right-hand side. The scalars h(s,t) can be written in terms of L0, e(s),

ê(s), e(t), ê(t) and their derivatives with respect to x and k (as well as H1 and

J1). Now, differentiating (4.3) with respect to k and x, respectively, leads,

after left-multiplying by ê∗

(s)(x,k) and using (4.7), to

ê∗

(s)(x,k)∇ � L0(x,k)e(s)(x,k)=−i∇ � ω(s)(x,k)

and ê∗

(s)(x,k)∇ � L0(x,k)e(s)(x,k)=−i∇ � ω(s)(x,k).

Therefore,

f(s)(x,k) = ∇ � ω(s)(x,k) and g(s)(x,k) = ∇ � ω(s)(x,k).

We now argue that the scalars h(s,t)(x,k) ≡ 0 for all s and t. For s 6= t, we

have

h(s,t) = −
i

2
ê∗

(s)∇
� L0 e(t) · ∇ � e∗

(t) ê(s) +
i

2
ê∗

(s)∇ � L0 e(t) · ∇ � e∗

(t) ê(s) + c.c.,

where we have omitted the dependence on (x,k) for simplicity. Differentiating

(4.3) with respect to k or x yields

ê∗

(s)∇
� L0e(t) = i(ω(s) − ω(t))ê

∗

(s)∇
� e(t) and ê∗

(s)∇ � L0e(t) = i(ω(s) − ω(t))ê
∗

(s)∇ � e(t)

for s 6= t. Taking this into account, we find that h(s,t) = 0 for s 6= t and thus

that (A.1) reduces to

∂ta(s)(x,k, t) + ∇ � ω(s)(x,k) · ∇ � a(s)(x,k, t) −∇ � ω(s) · ∇ � a(s)(x,k, t)

= h(s,s)(x,k)a(s)(x,k, t).

It is now easy to show that h(s,s)(x,k) ≡ 0: in view of (4.10), the conservation

of the energy H implies at leading order in ε that

d

dt

∑

s

∫∫

a(s)(x,k, t) dxdk =
∑

s

∫∫

h(s,s)(x,k)a(s)(x,k, t) dxdk = 0
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Since this holds for arbitrary a(s)(x,k, t), h(s,s)(x,k) ≡ 0 and the Liouville

form (4.17) of the transport equations follows.

A.4 Derivation of IJ, IH and IK

In this Appendix, we omit the dependence of the various objects on x and t.

We introduce (4.13)–(4.14) into (4.18) and use (2.6)–(2.8) to obtain explicit

expressions for the three terms IJ, IH and IK. A simple computation using

(4.5) and (4.7) gives

IJ = −2di
∑

t

∫ a(t)(k − 2l) − a(s)(k)

ω(t)(k − 2l) − ω(s)(k)
ΞJ

(s,t)(2l,k) dl + c.c.,

with ΞJ

(s,t) defined in (4.20). It is necessary to regularise the denominator

appearing in this expression [cf. 10]. Causality indicates that this is achieved

by adding −iθ to the denominator and taking the limit θ ↓ 0 or, in other

words, by making the substitution

1

ω(t)(k − 2l) − ω(s)(k)
7→ PV

1

ω(t)(k − 2l) − ω(s)(k)
+ iπδ[ω(t)(k − 2l) − ω(s)(k)],(A.2)

where PV denotes the Cauchy principal value. Using the property (2.10) of J,

it is easy to show that ΞJ

s,t(2l,k) is real. Since the energy density and frequency

are also real, the only contribution to IJ comes from the regularisation of the

denominator, leading to

IJ = 2dπ
∑

t

∫

ΞJ

(s,t)(2l,k)δ[ω(t)(k − 2l) − ω(s)(k)][a(t)(k − 2l) − a(s)(k)] dl + c.c.,

Changing the integration variable yields (4.19). The treatment of IH is similar:

using (4.6) and (4.7), it can be written in the form

IH = −2diω(s)(k)
∑

t

∫ ω(s)(k)a(t)(k − 2l) − ω(t)(k − 2l)a(s)(k)

ω(t)(k − 2l) − ω(s)(k)
ΞH

(s,t)(2l,k) dl + c.c.,
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with ΞH

(s,t) defined in (4.22). Using (2.10) shows that ΞH

(s,t) is real, so that

only the regularisation of the denominator contributes to IH. Using (A.2) and

changing the variable of integration leads to (4.21).

The third term, IK is computed in a similar, though lengthier, manner. Using

(4.5), (4.6) and (4.7), it can be written as

IK =−2d

[

iω(s)(k)
∑

t

∫ a(t)(k − 2l) − a(s)(k)

ω(t)(k − 2l) − ω(s)(k)
ΞH

(s,t)(2l,k) dl

+a(s)(k)
∑

t

∫

K
αβγδ(2l,k,k)êα∗

(s)(k)êβ
(t)(k − 2l)eγ∗

(t)(k − 2l)eδ
(s)(k) dl

]

+ c.c.,

where ΞK

(s,t) defined in (4.24). Taking (4.8) into account, the term on the second

line can be simplified into

−2da(s)(k)
∫

K
αββδ(2l,k,k)êα∗

(s)(k)eδ
(s)(k) dl + c.c..

Using (2.10), it can be shown that ΞK

(s,t) is real. Thus, when substituting (A.2)

into the first line of IK, only the regularisation remains, leading to (4.23) after

changing the variable of integration.
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