Inertia-gravity-wave generation:
a geometric-optics approach
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Abstract The generation of inertia-gravity waves in the atmospheaceaceans is
examined using a geometric-optics approach. This approacs$iders the dynam-
ics of a small-scale wavepacket in prescribed time-dep#ntalanced flows. The
wavepacket is assumed to be in the so-called wave-capwireegwhere the wave
intrinsic frequency is negligible compared to the Doppleifts The dynamics is

reduced to a number of ordinary differential equations desg the evolution of

the wavepacket position, of its wavevector, and of thretasdields describing the
wavepacket amplitude and polarisation. The approachlglentifies two classes
of wave-generation processes: unbalanced instabilégsciated with linear inter-
actions between inertia-gravity waves, and spontaneausrggon, associated with
a conversion between vortical and inertia-gravity modesplgations to simple

steady flows and to random-strain models are discussed.

1 Introduction

The dynamics of the atmosphere and ocean is dominated bs-$aae, slow mo-
tion in nearly geostrophic and hydrostatic balance. Ssale, fast motion, in the
form of inertia-gravity waves can play an important roleweser, for instance by
transporting momentum or by enhancing mixing. There ig;ettoge, considerable
interest in identifying and quantifying sources of waveatst Among the source
mechanisms, one has proved particularly elusive: the digggeneration of waves
by the evolving balanced flow, often termed spontaneousrggas. The difficulty
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in capturing this mechanism stems from the smallness of #theesvand from the

ambiguity that exists in the separation between balanceddtal waves. Nonethe-
less, several recent results, both numerical and andlytiaee clearly demonstrated
that spontaneous generation occurs in the small-Rossimp@uregime relevant to
most of the atmosphere and oceans [22, 17, 23, 24, 18, 16e8sr@émces therein].

Asymptotic results, in particular, show that the waves gaieel in this regime are
exponentially small in the Rossby number [22, 20, 21].

The asymptotic work carried so far, relying on the smallrafdhe Rossby num-
ber, has been limited to very simple flows. Here, we proposdtamative approach,
based on a spatial-scale separation between waves andédlows. This ap-
proach can in principle be applied to complex flows, e.g.w@erifrom numerical
simulations. It is motivated by the observation that, in gnagalistic circumstances,
the inertia-gravity waves that are generated have a muchesrseale than the bal-
anced flow. A key advantage is that there is no restrictionlége frequency sep-
aration between waves and flow, so that the wave generatioheaaptured when
it is at it largest, that is, when relatively short time ssaé@pear. The exponential
smallness is of course recovered in the limit of small Rosslyber.

2 Geometric-optics approach

The approach we propose is closely related to the geommgitics approach to
stability reviewed in Ref. [7]. This has recently been apglto rotating-stratified
flows in [8], where equations equivalent to the ones we nowedrave been ob-
tained. The approach considers the evolution of a wavepacikie small wave-
length superimposed to a spatially-varying, time-indejegr basic flow, with ve-
locity U = (U,V,0) satisfyingd- U = 0. The perturbation fields, in particular the
x-component of the velocity, are written in the form

u(x,t) = a(x,t)d?>V/H 4 cc., (1)

wherepu < 1 characterises the spatial scale separation. Introduictio the three-
dimensional Boussinesq equations gives
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at leading order iru. This equation governs the change in the phéGet)/u of

wavepackets whose trajectories obey
Dx
—=U 3
5 = U 3)

that is, they are simply advected by the basic flow. Takinggttaelient of (2) leads
to
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wherek = (k,1,m) = 08 is the wavevector (scaled ly). This is the standard WKB
result for waves whose frequency

(OU)Tk, (4)

w =U-k (5)

is entirely associated with the Doppler shift. This is a nateutcome for small-
scale inertia-gravity waves, since their intrinsic freqcies

W = £ (F2m2 + N2(k2 +12)) "2 /k, (6)

wherek = |k|, are formally smaller by a factqr than the Doppler shift frequency.
(Here f andN are the Coriolis and Brunt—Vaisala frequencies, rethpelg.) The
regime considered here, where wavepackets are simply &aivbyg the flow, can
be recognised as the wave-capture regime examined in RBef4]. [Note that this
regime is a feature of three-dimensional stratified fluidtheut analogue in the
shallow-water model.

Carrying out the expansion to the next ordepiteads to a system of equations
governing the evolution of the complex amplitudgs,t), V(x,t), etc. along the
wavepacket trajectory. This system can be reduced to a Hateaf equations for the
amplitudes of divergencé(x,t), vertical vorticity {(x,t), and potential vorticity
4(x,t). Ignoring the effects of the basic-flow buoyancy, these gqosreduce to
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wherea = f +Q +19U/m—kd,V/m, Q = o,V — U, andQ is the potential
vorticity of the basic flow. The perturbation velocity fieldin (9) is reconstructed
from & and{ according to

u:k2—+|2(|IZ—|k5,—|kZ—|I5).

Equations (3)—(4) and (7)—(9) form a closed system of nirnary differen-
tial equations governing the position, wavevector and #&oge of the wavepacket.
They can be solved for a given, possibly time-dependent, ftoassess whether
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perturbations to this flow grow; when the Rossby number idisitha perturbation
can further be approximately decomposed into a balancegbtical) part and an
inertia-gravity-wave part, and the growth of latter impli@ mechanism of inertia-
gravity-wave generation.

WhenU is zero or uniform, the wavevectkris constant, and the system (7)—(9)
is readily solved by letting

(5,.6) = exp(—iant)e, (10)

whereeis a constant three-dimensional vector. The corresporeigenvalue prob-
lem for « has the three solutions; = 0 and the two values given in (6) corre-
sponding to the vortical mode and the two inertia-gravitydes respectively. A
non-uniformU has two consequences for (7)—(9): first, it leads to a tinpeddent
wavevectok, and second it directly introduces terms proportionalth In general,
the ordinary differential equations (3)—(4) and (7)—(®a& be solved numerically.
Some general comments about the behaviour of their sokiian nonetheless be
made. We concentrate on the particular case of uniform lvacakgl potential vor-
ticity, JQ = 0, so that the perturbation potential vorticity has a camtsaanplitude:
4(t) = §(0). The equations (7)—(8) fa¥ and( are then equivalent to the equations
governing a linear oscillator with time-dependent frequeand time-dependent
forcing. Note that the wavevector enters these equatiolystbrough its direction
k/k

For small Rossby number, the frequency of this oscillatapisroximately given
by (6); it depends on time on a scale fixed by the Lagrangiae-S8oale of the strain
OU. This gives a good local definition of a Rossby number as thierge of the
product of this time scale by,. When this number is small, the growth of free-
oscillations in(d,{) — the mark of inertia-gravity-wave generation — is very weak
in fact, it can be expected to be exponentially small in thesRg number if the
(Lagrangian) time dependenceldf) is smooth (real analytic). Two mechanisms of
wave generation can be distinguished. First,di@) % 0, the response db, () is
balanced to all orders in the Rossby numbers; any transedraviour of(JU does
however lead to exponentially small free oscillations.c8ithese cannot be elim-
inated by initialisation, the mechanism is one of genuingnggneous generation
[22, 21]; it may be interpreted as a conversion from the galtmode into the two
gravity-wave modes. Note that this conversion is not a cwasge one since the
background flow provides a source of energy. The second misrhas active with
g = 0. In this case, the equations f@¥,{) describe a slowly varying (unforced)
oscillator, and the adiabatic invariance of the action,chtiolds to all orders in
the Rossby number, applies; thus, in a transient scenareredth is uniform as
t — +oo, (8,¢) can only change by an exponentially small amount. Howef/é&t, i
remains time dependent, e.g. if the wavepacket trajectarie periodic or chaotic,
the changes can accumulate, leading to the growtfdof). This mechanism of
inertia-gravity-wave generation can be interpreted agma faf parametric instabil-
ity. In the next section, we discuss solutions of (3)—(4) éfe-(9) in simple flows
which illustrate the mechanisms just described.
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3 Applications to simple flows

We consider three time-independent flows: a vertically sédbdnorizontally strained
flow, an elliptical flow, and a dipolar flow. We then briefly diss the behaviour that
can be expected in more complex flows with chaotic wavepacijettories on the
basis of random-strain models.

3.1 Horizontal strain and vertical shear

Perhaps the simplest flow leading to a non-trivial time déjeece ofk is a pure
strain flow. Here we consider the added effect of a vertigaistand takeU =

(Bx,—By+ 2z,0) for some constant8 > 0 andX. We focus on the casg=0 and
on the long time behaviour, when the wavevector is approtéima

(k,I,m) ~ (0,e, 5P/ B),

up to an irrelevant constant factor. This leads to constaefficients in (7)—(8) and
toa solut|on(6 Z) O exp(at), where the growth rate satisfies

, 324 N2B2/f2 1/2
ZG_Bi(B B2+ 52 )

Thus the divergence and vertical vortic(t& 2) of the wavepacket increases expo-
nentially. Their growth rate is however less than the grawatb3 of the wavevector
magnitudex. Still, the unbounded growth dfé Z) is significant: in particular it
implies the growth of the vertical gradient of the density &me ultimate breaking
of the wavepacket (cf. [4]).

3.2 Elliptical flow

The parametric instability associated with periodic flattons ofk is illustrated by
the uniform-vorticity elliptical flowU = (ay, —by, 0), wherea andb are constants
satisfyingab > 0. The instability of this flow is an example of elliptical taility
[10], here of a rotating stratified fluid. Equations (7)—(8y& periodic coefficents,
and their stability can be analysed using Floquet theoryméhical and explicit
results in the limit of small eccentricity/b— 1| < 1 have been obtained by several
authors [10, 13, 12]. They indicate that perturbations whaavenumber satisfy
some resonance conditions grow. In the presence of rotatidrstratification, the
growth rates decrease rapidly, however. More specificdlyN > f, the growth
rates can be shown to be exponentially small in the Rosshybaugiab/ f. They
never vanish, so that elliptical flows, both anticyclorab ¢ 0) and cyclonic &b <
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Fig. 1 Trajectories of three 1
wavepackets in the flow gen- 1
erated by a quasi-geostrophic
dipole. The location of the
two point vortices is indicated 05
by circles. The wavepack-
ets, which travel in the plane
z= 0 of the dipole, are char- Yo o
acterised by their distance
d =50, 100 and 150 km from
the axis of the dipole ast co. 08

-2 -1 0

0) are unstable, albeit in exponentially narrow bands ofemawnbers (see [2] for
asymptotic estimates of the growth rates). Qualitativiélg, same conclusions are
expected to hold for all time-independent flows with closediple trajectories and
hence closed wavepacket trajectories.

3.3 Dipole

To illustrate the spontaneous generation of inertia-gyavaves by wavepackets
with § # 0, we consider the evolution of a wavepacket in the simple fiowe-
sponding, in the three-dimensional quasi-geostrophica@mation, to a dipole.
(This flow is only a solution of the fluid equations in the linoit large f andN,
but we use it as a crude model since we expect the qualitatiyeepties of the
wavepacket evolution to be insensitive to the details oflthwe.) The potential vor-
ticity of the dipole isQ = k(3(x— L)+ 6(x+L))d(y)d(z), with the separation of
the point vortices chosen to be 2 250 km. The strengtk was taken such that the
propagation speed of the dipole is 10 nt slt is convenient to think of this dipole as
arrested by a uniform flow; wavepackets located at largauigts from the dipole
in they-direction are then swept past the dipole and experiencanaiint change
of wavevector. Figure 1 shows the corresponding trajezsan the(x,y)-plane for
three wavepackets located at distantes50, 100 and 150 km from the dipole axis
as |t| — +o. Since the flow is uniform fot — +, we can use the exact solu-
tion (10) to decompose the perturbation into a vortical memgtwo inertia-gravity
waves for|t| large. Fort — —co, we assume that only the vortical mode is excited.
As a result of the transient activity, the inertia-grawtgve modes are excited and
their amplitudeA(t) becomes simphA(t) ~ A, exp(tiwt) ast — co. The constant
A is therefore an appropriate measure of the spontaneousagienehat occurs.
We report results obtained for a wavepacket withv/k? 412 ~ 10 located in
the planez = 0 of the dipole. The other relevant parametersfare 10 s~ ! and
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Fig. 2 Inertia-gravity waves generated spontaneously as vbrticale wavepackets are swept past
a dipole. The left panel shows the amplitude of one of the testia-gravity-wave mode as a
function of time for wavepackets located at distandes 25,50 and 100 km (from top to bottom
curves) of the dipole axis as— +o. The top and bottom curves are offset #11 unit in the
A-direction. The right panel shows the ampltitude of thetiaegravity-wave mode as— « as a
function of the distanced of the wavepacket to the dipole axis.

N =102sL. Figure 2 shows results obtained for the different valueés@tlistance

d of the wavepacket to the dipole axis. The left panel showsathplitude of the
inertia-gravity-wave component of the flow (obtained byjeeting(J, {,§) on one

of the inertia-gravity-wave mode) for= 25, 50 and 100 km. It demonstrates clearly
the appearance of fast oscillations that follows the temtsbehaviour associated
with the encounter with the dipole. It also illustrates th®isg dependence of the
inertia-gravity-wave ampliude athwhich can be thought of as a proxy for an inverse
Rossby number. The right panel of Figure 2 shows the magaitfithe amplitude
A that characterises the inertia-gravity wavestfer . It uses linear—logarithmic
coordinates to demonstrate the exponential dependengg oh d and hence on
the inverse Rossby number. Note that an exponential-asfivpanalysis similar
to that of Ref. [22] could be carried out to obtain an explgproximation folA..

3.4 Random-strain models

As is well known from the study of particle advection, thgecdories of particles
and hence wavepackets are typically chaotic when the \glfield is time depen-
dent. The Lagrangian time dependence of the strdinthat appears on the right-
hand side of (4) is therefore very complicated; it is nattwahodel it by a station-
ary random process. This is the key idea of the random-stnaitels proposed by
Kraichan [11] in the context of passive-scalar avectioa @talar-concentration gra-
dient obeys (4)). Haynes and Anglade [9] considered ransimain models adapted
to the layerwise two-dimensional nature of geophysical $l@amd concluded that
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while, typically, k — o, the aspect ration/v/k?+ 12 reaches a stationary distri-
bution. Since this ratio together witiU determine the coefficients of (7)—(8) for
g = 0 for random-strain models, these equations are essgrhiakie of a linear os-
cillator with stationary random coefficients. This obseimva makes it possible to
draw some conclusion about the behaviouf@f( ). First, these quantities typically
grow exponentially, with a deterministic growth rate defir®y lim; ...t *log||,
say, that can be recognised as the Lyapunov exponent of #tensySecond, in
the limit of small Rossby number, naturally defined using ¢berelation time of
the random process determining the oscillator frequemey,growth rate can be
expected to depend crucially on the smoothness of this pso&pecifically, the ex-
plicit results available for closely related problems [}, €iggest that the growth
rate is proportional to the power spectrum of the randomegseevaluated at twice
the average oscillator frequency. In the small-Rossbydemtimit this average fre-
quency is in the tail of the spectrum and hence entirely odlett by the smoothness
of the process. In particular, if the process is real-amglytie growth rate will be
exponentially small in the Rossby number. Thus spontane@usa-gravity-wave
generation is predicted by random-strain models to havendasiRossby-number
dependence in complex flows as in simple steady flows. Thedsynaption, which
may not always be satisfied, is that the Lagrangian timesefigU is real-analytic.
Note that a simple model for which analytic progress is gmesivould take[1U
to be a white noise so as to apply the techniques developethdoKazantsev—
Kraichnan models of kinematic dynamo and passive-scaleedidn (see, e.g.,
[5, 14] and references therein). This would however be gmmte only for flows
with correlation times short comparedto?® and to the inverse strain.

4 Discussion

This paper applies the geometric-optics approach to flaioilétly (e.g. [7]) in order
to study the spontaneous generation of inertia-gravityesam a variety of flows.
This application, which requires introducing the effectrofation and stratifica-
tion, is straightforward because of the particular disjpereelation of inertia-gravity
waves: since their intrinsic frequency remadgl) as|k| — o, the kinematics of
short waves is dominated by the Doppler shift, and wavepaeke simply advected
by flows like fluid particles. Nine coupled ordinary diffete equations govern the
dynamics of the wavepackets, with three controlling theiphtude. This implies
that the three types of modes that can be identified whés uniform — the vor-
tical mode and the two inertia-gravity modes — are stronglypted. Only when
the Lagrangian evolution is slow compared to the inert@viy-wave frequency,
that is, in the limit of small (Lagrangian) Rossby numbeg tirey asymptotically
decoupled. It is interesting to note that the three ampditaquations then form a
two-time-scale system with the same structure as the caenfdartial differential)
fluid equations [25]. The general conclusions that can bevdifar these system
apply, and the generation of inertia-gravity waves, eithesugh spontaneous con-
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version of the vortical modes or through unbalanced inktigsi, is exponentially
weak in the Rossby number. The simple models discussedsp#per make this
explicit.

The key interest of the geometric-optics approach is thataikes it possible to
examine the growth of perturbations to solutions of padifkrential equations
by solving ordinary differential equations. (See Refs.,[19] for an alternative
approach, namely the pressureless approximation, whichi@hds to ordinary dif-
ferential equations.) Here we have considered highly isedlflows for which the
velocity field can be written in closed form. This is not nesa@y, and our future
work will implement the solutions of the amplitude equasdn)—(9) for more com-
plex flows obtained from numerical simulations. It will alsonsider the scaling
f, N =O(u~1) for which the intrinsic frequency is of the same order as topjer
shift; in this case interactions between the vortical ardtia-gravity modes remain
possible, but they are exponentially smaljin
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