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Abstract The generation of inertia-gravity waves in the atmosphere and oceans is
examined using a geometric-optics approach. This approachconsiders the dynam-
ics of a small-scale wavepacket in prescribed time-dependent, balanced flows. The
wavepacket is assumed to be in the so-called wave-capture regime, where the wave
intrinsic frequency is negligible compared to the Doppler shift. The dynamics is
reduced to a number of ordinary differential equations describing the evolution of
the wavepacket position, of its wavevector, and of three scalar fields describing the
wavepacket amplitude and polarisation. The approach clearly identifies two classes
of wave-generation processes: unbalanced instabilities,associated with linear inter-
actions between inertia-gravity waves, and spontaneous generation, associated with
a conversion between vortical and inertia-gravity modes. Applications to simple
steady flows and to random-strain models are discussed.

1 Introduction

The dynamics of the atmosphere and ocean is dominated by large-scale, slow mo-
tion in nearly geostrophic and hydrostatic balance. Small-scale, fast motion, in the
form of inertia-gravity waves can play an important role, however, for instance by
transporting momentum or by enhancing mixing. There is, therefore, considerable
interest in identifying and quantifying sources of wave activity. Among the source
mechanisms, one has proved particularly elusive: the dynamical generation of waves
by the evolving balanced flow, often termed spontaneous generation. The difficulty
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in capturing this mechanism stems from the smallness of the waves and from the
ambiguity that exists in the separation between balanced flow and waves. Nonethe-
less, several recent results, both numerical and analytical, have clearly demonstrated
that spontaneous generation occurs in the small-Rossby-number regime relevant to
most of the atmosphere and oceans [22, 17, 23, 24, 18, 16, and references therein].
Asymptotic results, in particular, show that the waves generated in this regime are
exponentially small in the Rossby number [22, 20, 21].

The asymptotic work carried so far, relying on the smallnessof the Rossby num-
ber, has been limited to very simple flows. Here, we propose analternative approach,
based on a spatial-scale separation between waves and balanced flows. This ap-
proach can in principle be applied to complex flows, e.g. derived from numerical
simulations. It is motivated by the observation that, in many realistic circumstances,
the inertia-gravity waves that are generated have a much smaller scale than the bal-
anced flow. A key advantage is that there is no restriction to alarge frequency sep-
aration between waves and flow, so that the wave generation can be captured when
it is at it largest, that is, when relatively short time scales appear. The exponential
smallness is of course recovered in the limit of small Rossbynumber.

2 Geometric-optics approach

The approach we propose is closely related to the geometric-optics approach to
stability reviewed in Ref. [7]. This has recently been applied to rotating-stratified
flows in [8], where equations equivalent to the ones we now derive have been ob-
tained. The approach considers the evolution of a wavepacket with small wave-
length superimposed to a spatially-varying, time-independent basic flow, with ve-
locity U = (U,V,0) satisfying∇ ·U = 0. The perturbation fields, in particular the
x-component of the velocity, are written in the form

u(x,t) = û(x,t)eiθ(x,t)/µ +c.c., (1)

whereµ ≪ 1 characterises the spatial scale separation. Introduction into the three-
dimensional Boussinesq equations gives

Dθ
Dt

=
∂θ
∂ t

+U ·∇θ = 0 (2)

at leading order inµ . This equation governs the change in the phaseθ (x,t)/µ of
wavepackets whose trajectories obey

Dx
Dt

= U, (3)

that is, they are simply advected by the basic flow. Taking thegradient of (2) leads
to
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Dk
Dt

= −(∇U)T k, (4)

wherek = (k, l,m) = ∇θ is the wavevector (scaled byµ). This is the standard WKB
result for waves whose frequency

ω0 = U ·k (5)

is entirely associated with the Doppler shift. This is a natural outcome for small-
scale inertia-gravity waves, since their intrinsic frequencies

ω1 = ±
(

f 2m2 + N2(k2 + l2)
)1/2

/κ , (6)

whereκ = |k|, are formally smaller by a factorµ than the Doppler shift frequency.
(Here f andN are the Coriolis and Brunt–Väisälä frequencies, respectively.) The
regime considered here, where wavepackets are simply advected by the flow, can
be recognised as the wave-capture regime examined in Refs. [3, 4]. Note that this
regime is a feature of three-dimensional stratified fluids without analogue in the
shallow-water model.

Carrying out the expansion to the next order inµ leads to a system of equations
governing the evolution of the complex amplitudes ˆu(x,t), v̂(x,t), etc. along the
wavepacket trajectory. This system can be reduced to a set ofthree equations for the
amplitudes of divergencêδ (x,t), vertical vorticity ζ̂ (x,t), and potential vorticity
q̂(x,t). Ignoring the effects of the basic-flow buoyancy, these equations reduce to

Dδ̂
Dt

=

(

m2 f
κ2 +

k2 + l2

ακ2 N2 +
2m2

κ2(k2 + l2)
(kl(∂xU − ∂yV )+ l2∂xV − k2∂yU)

)

ζ̂

+

(

m2− k2− l2

mκ2 (k∂zU + l∂zV ) (7)

− 2m2

κ2(k2 + l2)
(kl(∂xV + ∂yU)+ l2∂yV + k2∂xU)

)

δ̂ − k2 + l2

ακ2 q̂,

Dζ̂
Dt

= −αδ̂ , (8)

Dq̂
Dt

= −û ·∇Q, (9)

whereα = f + Ω + l∂zU/m− k∂zV/m, Ω = ∂xV − ∂yU , and Q is the potential
vorticity of the basic flow. The perturbation velocity fieldû in (9) is reconstructed
from δ̂ andζ̂ according to

û =
1

k2 + l2

(

ilζ̂ − ikδ̂ ,−ikζ̂ − ilδ̂
)

.

Equations (3)–(4) and (7)–(9) form a closed system of nine ordinary differen-
tial equations governing the position, wavevector and amplitude of the wavepacket.
They can be solved for a given, possibly time-dependent, flowto assess whether
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perturbations to this flow grow; when the Rossby number is small, the perturbation
can further be approximately decomposed into a balanced (orvortical) part and an
inertia-gravity-wave part, and the growth of latter implies a mechanism of inertia-
gravity-wave generation.

WhenU is zero or uniform, the wavevectork is constant, and the system (7)–(9)
is readily solved by letting

(δ̂ , ζ̂ , q̂) = exp(−iω1t)e, (10)

wheree is a constant three-dimensional vector. The correspondingeigenvalue prob-
lem for ω1 has the three solutionsω1 = 0 and the two values given in (6) corre-
sponding to the vortical mode and the two inertia-gravity modes, respectively. A
non-uniformU has two consequences for (7)–(9): first, it leads to a time-dependent
wavevectork, and second it directly introduces terms proportional to∇U. In general,
the ordinary differential equations (3)–(4) and (7)–(9) need to be solved numerically.
Some general comments about the behaviour of their solutions can nonetheless be
made. We concentrate on the particular case of uniform background potential vor-
ticity, ∇Q = 0, so that the perturbation potential vorticity has a constant amplitude:
q̂(t) = q̂(0). The equations (7)–(8) for̂δ andζ̂ are then equivalent to the equations
governing a linear oscillator with time-dependent frequency and time-dependent
forcing. Note that the wavevector enters these equations only through its direction
k/κ

For small Rossby number, the frequency of this oscillator isapproximately given
by (6); it depends on time on a scale fixed by the Lagrangian time-scale of the strain
∇U. This gives a good local definition of a Rossby number as the inverse of the
product of this time scale byω1. When this number is small, the growth of free-
oscillations in(δ̂ , ζ̂ ) – the mark of inertia-gravity-wave generation – is very weak;
in fact, it can be expected to be exponentially small in the Rossby number if the
(Lagrangian) time dependence of∇U is smooth (real analytic). Two mechanisms of
wave generation can be distinguished. First, for ˆq(0) 6= 0, the response of(δ̂ , ζ̂ ) is
balanced to all orders in the Rossby numbers; any transient behaviour of∇U does
however lead to exponentially small free oscillations. Since these cannot be elim-
inated by initialisation, the mechanism is one of genuine spontaneous generation
[22, 21]; it may be interpreted as a conversion from the vortical mode into the two
gravity-wave modes. Note that this conversion is not a conservative one since the
background flow provides a source of energy. The second mechanism is active with
q̂ = 0. In this case, the equations for(δ̂ , ζ̂ ) describe a slowly varying (unforced)
oscillator, and the adiabatic invariance of the action, which holds to all orders in
the Rossby number, applies; thus, in a transient scenario whereU is uniform as
t →±∞, (δ̂ , ζ̂ ) can only change by an exponentially small amount. However, if U
remains time dependent, e.g. if the wavepacket trajectories are periodic or chaotic,
the changes can accumulate, leading to the growth of(δ̂ , ζ̂ ). This mechanism of
inertia-gravity-wave generation can be interpreted as a form of parametric instabil-
ity. In the next section, we discuss solutions of (3)–(4) and(7)–(9) in simple flows
which illustrate the mechanisms just described.
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3 Applications to simple flows

We consider three time-independent flows: a vertically sheared, horizontally strained
flow, an elliptical flow, and a dipolar flow. We then briefly discuss the behaviour that
can be expected in more complex flows with chaotic wavepackettrajectories on the
basis of random-strain models.

3.1 Horizontal strain and vertical shear

Perhaps the simplest flow leading to a non-trivial time dependence ofk is a pure
strain flow. Here we consider the added effect of a vertical strain and takeU =
(β x,−β y+Σz,0) for some constantsβ > 0 andΣ . We focus on the case ˆq = 0 and
on the long time behaviour, when the wavevector is approximately

(k, l,m) ∼ (0,eβ t ,Σeβ t/β ),

up to an irrelevant constant factor. This leads to constant coefficients in (7)–(8) and
to a solution(δ̂ , ζ̂ ) ∝ exp(σ t), where the growth rateσ satisfies

2σ = β ±
(

β 2−4
Σ2 + N2β 2/ f 2

β 2 + Σ2

)1/2

.

Thus the divergence and vertical vorticity(δ̂ , ζ̂ ) of the wavepacket increases expo-
nentially. Their growth rate is however less than the growthrateβ of the wavevector
magnitudeκ . Still, the unbounded growth of(δ̂ , ζ̂ ) is significant: in particular it
implies the growth of the vertical gradient of the density and the ultimate breaking
of the wavepacket (cf. [4]).

3.2 Elliptical flow

The parametric instability associated with periodic fluctuations ofk is illustrated by
the uniform-vorticity elliptical flowU = (ay,−by,0), wherea andb are constants
satisfyingab > 0. The instability of this flow is an example of elliptical instability
[10], here of a rotating stratified fluid. Equations (7)–(8) have periodic coefficents,
and their stability can be analysed using Floquet theory. Numerical and explicit
results in the limit of small eccentricity|a/b−1|≪ 1 have been obtained by several
authors [10, 13, 12]. They indicate that perturbations whose wavenumber satisfy
some resonance conditions grow. In the presence of rotationand stratification, the
growth rates decrease rapidly, however. More specifically,for N > f , the growth
rates can be shown to be exponentially small in the Rossby number

√
ab/ f . They

never vanish, so that elliptical flows, both anticyclonic (ab > 0) and cyclonic (ab <
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Fig. 1 Trajectories of three
wavepackets in the flow gen-
erated by a quasi-geostrophic
dipole. The location of the
two point vortices is indicated
by circles. The wavepack-
ets, which travel in the plane
z = 0 of the dipole, are char-
acterised by their distance
d = 50, 100 and 150 km from
the axis of the dipole ast ±∞.
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0) are unstable, albeit in exponentially narrow bands of wavenumbers (see [2] for
asymptotic estimates of the growth rates). Qualitatively,the same conclusions are
expected to hold for all time-independent flows with closed particle trajectories and
hence closed wavepacket trajectories.

3.3 Dipole

To illustrate the spontaneous generation of inertia-gravity waves by wavepackets
with q̂ 6= 0, we consider the evolution of a wavepacket in the simple flowcorre-
sponding, in the three-dimensional quasi-geostrophic approximation, to a dipole.
(This flow is only a solution of the fluid equations in the limitof large f andN,
but we use it as a crude model since we expect the qualitative properties of the
wavepacket evolution to be insensitive to the details of theflow.) The potential vor-
ticity of the dipole isQ = κ(δ (x−L)+ δ (x + L))δ (y)δ (z), with the separation of
the point vortices chosen to be 2L = 250 km. The strengthκ was taken such that the
propagation speed of the dipole is 10 m s−1. It is convenient to think of this dipole as
arrested by a uniform flow; wavepackets located at large distances from the dipole
in they-direction are then swept past the dipole and experience a transient change
of wavevector. Figure 1 shows the corresponding trajectories in the(x,y)-plane for
three wavepackets located at distancesd = 50, 100 and 150 km from the dipole axis
as |t| → ±∞. Since the flow is uniform fort → ±∞, we can use the exact solu-
tion (10) to decompose the perturbation into a vortical modeand two inertia-gravity
waves for|t| large. Fort → −∞, we assume that only the vortical mode is excited.
As a result of the transient activity, the inertia-gravity-wave modes are excited and
their amplitudeA(t) becomes simplyA(t)∼ A∞ exp(±iω1t) ast → ∞. The constant
A∞ is therefore an appropriate measure of the spontaneous generation that occurs.

We report results obtained for a wavepacket withm/
√

k2 + l2 ≈ 10 located in
the planez = 0 of the dipole. The other relevant parameters aref = 10−4 s−1 and
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Fig. 2 Inertia-gravity waves generated spontaneously as vortical-mode wavepackets are swept past
a dipole. The left panel shows the amplitude of one of the two inertia-gravity-wave mode as a
function of time for wavepackets located at distancesd = 25,50 and 100 km (from top to bottom
curves) of the dipole axis ast → ±∞. The top and bottom curves are offset by±1 unit in the
A-direction. The right panel shows the ampltitude of the inertia-gravity-wave mode ast → ∞ as a
function of the distanced of the wavepacket to the dipole axis.

N = 10−2 s−1. Figure 2 shows results obtained for the different values ofthe distance
d of the wavepacket to the dipole axis. The left panel shows theamplitude of the
inertia-gravity-wave component of the flow (obtained by projecting(δ̂ , ζ̂ , q̂) on one
of the inertia-gravity-wave mode) ford = 25, 50 and 100 km. It demonstrates clearly
the appearance of fast oscillations that follows the transient behaviour associated
with the encounter with the dipole. It also illustrates the strong dependence of the
inertia-gravity-wave ampliude ond which can be thought of as a proxy for an inverse
Rossby number. The right panel of Figure 2 shows the magnitude of the amplitude
A∞ that characterises the inertia-gravity waves fort → ∞. It uses linear–logarithmic
coordinates to demonstrate the exponential dependence ofA∞ on d and hence on
the inverse Rossby number. Note that an exponential-asymptotics analysis similar
to that of Ref. [22] could be carried out to obtain an explicitapproximation forA∞.

3.4 Random-strain models

As is well known from the study of particle advection, the trajectories of particles
and hence wavepackets are typically chaotic when the velocity field is time depen-
dent. The Lagrangian time dependence of the strain∇U that appears on the right-
hand side of (4) is therefore very complicated; it is naturalto model it by a station-
ary random process. This is the key idea of the random-strainmodels proposed by
Kraichan [11] in the context of passive-scalar avection (the scalar-concentration gra-
dient obeys (4)). Haynes and Anglade [9] considered random-strain models adapted
to the layerwise two-dimensional nature of geophysical flows and concluded that
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while, typically, κ → ∞, the aspect ratiom/
√

k2 + l2 reaches a stationary distri-
bution. Since this ratio together with∇U determine the coefficients of (7)–(8) for
q̂ = 0 for random-strain models, these equations are essentially those of a linear os-
cillator with stationary random coefficients. This observation makes it possible to
draw some conclusion about the behaviour of(δ̂ , ζ̂ ). First, these quantities typically
grow exponentially, with a deterministic growth rate defined by limt→∞ t−1 log|ζ |,
say, that can be recognised as the Lyapunov exponent of the system. Second, in
the limit of small Rossby number, naturally defined using thecorrelation time of
the random process determining the oscillator frequency, the growth rate can be
expected to depend crucially on the smoothness of this process. Specifically, the ex-
plicit results available for closely related problems [1, 6], suggest that the growth
rate is proportional to the power spectrum of the random process evaluated at twice
the average oscillator frequency. In the small-Rossby-number limit this average fre-
quency is in the tail of the spectrum and hence entirely controlled by the smoothness
of the process. In particular, if the process is real-analytic, the growth rate will be
exponentially small in the Rossby number. Thus spontaneousinertia-gravity-wave
generation is predicted by random-strain models to have a similar Rossby-number
dependence in complex flows as in simple steady flows. The key assumption, which
may not always be satisfied, is that the Lagrangian time series of∇U is real-analytic.
Note that a simple model for which analytic progress is possible would take∇U
to be a white noise so as to apply the techniques developed forthe Kazantsev–
Kraichnan models of kinematic dynamo and passive-scalar advection (see, e.g.,
[5, 14] and references therein). This would however be appropriate only for flows
with correlation times short compared tof−1 and to the inverse strain.

4 Discussion

This paper applies the geometric-optics approach to fluid stability (e.g. [7]) in order
to study the spontaneous generation of inertia-gravity waves in a variety of flows.
This application, which requires introducing the effect ofrotation and stratifica-
tion, is straightforward because of the particular dispersion relation of inertia-gravity
waves: since their intrinsic frequency remainsO(1) as |k| → ∞, the kinematics of
short waves is dominated by the Doppler shift, and wavepackets are simply advected
by flows like fluid particles. Nine coupled ordinary differential equations govern the
dynamics of the wavepackets, with three controlling their amplitude. This implies
that the three types of modes that can be identified whenU is uniform – the vor-
tical mode and the two inertia-gravity modes – are strongly coupled. Only when
the Lagrangian evolution is slow compared to the inertia-gravity-wave frequency,
that is, in the limit of small (Lagrangian) Rossby number, are they asymptotically
decoupled. It is interesting to note that the three amplitude equations then form a
two-time-scale system with the same structure as the complete (partial differential)
fluid equations [25]. The general conclusions that can be drawn for these system
apply, and the generation of inertia-gravity waves, eitherthrough spontaneous con-
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version of the vortical modes or through unbalanced instabilities, is exponentially
weak in the Rossby number. The simple models discussed in this paper make this
explicit.

The key interest of the geometric-optics approach is that itmakes it possible to
examine the growth of perturbations to solutions of partial-differential equations
by solving ordinary differential equations. (See Refs. [19, 15] for an alternative
approach, namely the pressureless approximation, which also leads to ordinary dif-
ferential equations.) Here we have considered highly idealised flows for which the
velocity field can be written in closed form. This is not necessary, and our future
work will implement the solutions of the amplitude equations (7)–(9) for more com-
plex flows obtained from numerical simulations. It will alsoconsider the scaling
f , N = O(µ−1) for which the intrinsic frequency is of the same order as the Doppler
shift; in this case interactions between the vortical and inertia-gravity modes remain
possible, but they are exponentially small inµ .
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